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Abstract

This dissertation contains several approaches to resolve irregularity issues of CFD

problems, including a decoupling of non-linearly coupled fluid-fluid interaction, due

to high Reynolds number. New models present not only regularize the linear systems

but also produce high accurate solutions both in space and time. To achieve this goal,

methods solve a computationally attractive artificial viscosity approximation of the

target problem, and then utilize a correction approach to make it high order accurate.

This way, they all allow the usage of legacy code — a frequent requirement in the

simulation of fluid flows in complex geometries. In addition, they all pave the way for

parallelization of the correction step, which roughly halves the computational time

for each method, i.e. solves at about the same time that is required for DNS with

artificial viscosity. Also, methods present do not requires all over function evaluations

as one can store them, and reuse for the correction steps. All of the chapters in

this dissertation are self-contained, and introduce model first, and then present both

theoretical and computational findings of the corresponding method.

xxi





Chapter 1

A High Accuracy Minimally

Invasive Regularization Technique

for Navier-Stokes Equations at

High Reynolds Number

1.1 Introduction

The motion of incompressible fluid flow in the flow domain Ω = (0, L)d is governed by

the Navier-Stokes equations: find the velocity-pressure pair u : Ω× (0, T ]→ Rd, (d =

1



2, 3) and p : Ω× (0, T ]→ R satisfying

ut + u · ∇u− ν∆u+∇p = f, for x ∈ Ω, 0 < t ≤ T (1.1.1)

∇ · u = 0, x ∈ Ω, for 0 ≤ t ≤ T,

u(x, 0) = u0(x), for x ∈ Ω,

with the normalization condition
∫

Ω
p(x, t) dx = 0 for 0 < t ≤ T , and viscosity

coefficient ν. Throughout this chapter, we consider the case of homogeneous Dirichlet

boundary conditions to simplify the proofs; non-homogeneous Dirichlet boundary

conditions can be treated in exactly the same manner and the same results hold.

According to the Kolmogorov theory [66], there exists a continuum of scales in tur-

bulent fluid flow, with the smallest scales (in the case of a 3 −D flow) being of the

order O(Re−3/4), where the Reynolds number Re is inverse proportional to ν. Thus,

capturing all the small structures in a turbulent flow requires the number of mesh

points in space for each time step to be O(Re9/4) for three-dimensional problems. It

is not uncommon to have Re ∼ O(108) in real-life applications.

Hence, the direct numerical simulation (DNS) of a 3−D turbulent flow is often not

computationally economical or even feasible. Sometimes it is desirable (especially for

2



turbulent flows in complex geometries) to be able to use pre-existing codes. Thus, we

are aiming at constructing a method that would approximate a flow at high Reynolds

number, while being computationally attractive, stable and of high accuracy in both

space and time.

To that end, we consider a defect correction approach from [25]. Defect correction

strategies have been successfully applied to stiff systems [50, 53, 58, 62, 64], and in

particular to evolutionary Navier Stokes Equation (NSE) - see, e.g., [25] and references

therein.

The general idea of any Defect Correction Method (DCM) can be formulated as

follows (see, e.g., [48, 68]):

Find a unique solution of Fx = 0 by

DCM: Use an approximation F̃ to build an iterative procedure:

F̃ x1 = 0,

xi+1 = (I − F̃−1F )xi, i ≥ 1.

The choice of a particular approximation F̃ determines the defect correction method in

use. As a result of using the artificial viscosity approximation-based defect correction

3



method of [25], we have an approach that allows for the usage of legacy codes and

gives a second order accurate in space approximation of a flow at high Reynolds

number. This is obtained by computing two consecutive approximations u1 and u2

with Backward Euler method and with exactly the same matrix (the correction step

only modifies the right hand side of the system for u2 by a function of the previously

computed u1). These approximations, however, are first order accurate in time. The

question is: can we increase the time accuracy without increasing the computational

cost? The answer lies in the temporal counterpart of the defect correction idea, known

as deferred correction.

The main advantage of the deferred correction approach is that a simple low-order

method can be employed, and the recovered solution is of high-order accuracy, due

to a sequence of deferred correction equations. The classical deferred correction ap-

proach could be seen, e.g., in [69]. However, in 2000 a modification of the classical

deferred correction approach was introduced by Dutt, Greengard and Rokhlin [39].

This allowed the construction of stable and high-order accurate spectral deferred cor-

rection methods. In [34], M.L. Minion discusses these spectral deferred correction

(SDC) methods in application to an initial value ODE

φ′(t) = F (t, φ(t)), t ∈ [a, b] (1.1.2)

φ(a) = φa.

4



The solution is written in terms of the Picard integral equation; a polynomial is used

to interpolate the subintegrand function and the obtained integral term is replaced by

its quadrature approximation. The deferred correction approach was used to improve

the temporal accuracy of a turbulence model in [71].

When both the defect and deferred correction are combined into one method, we seek

two approximations uh,i1 and uh,i2 to the true solution u(ti). Both are computed with

the same matrix of the system, but with different right hand sides. The computa-

tional attractiveness is due to two important factors. First, the cost of computing

each approximation is the cost of solving a Backward Euler method for the NSE with

increased viscosity coefficient - a method which is hard to beat in terms of compu-

tational cost. Secondly, the defect-deferred correction methods are readily paralleliz-

able, as the solutions uh,i+k1 , uh,i+k−1
2 ,...,uh,ik+1 can be computed simultaneously on k+1

cores to produce a potentially (k + 1)-order accurate approximation.

We propose the following two-step method that produces a sequence of approxima-

tions (uh1 , p
h
1), (uh2 , p

h
2) of the true solution (u, p).

(
uh,n+1

1 − uh,n1

k
, vh) + (h+ ν)(∇uh,n+1

1 ,∇vh) + b∗(uh,n+1
1 , uh,n+1

1 , vh)

−(ph,n+1
1 ,∇ · vh) = (f(tn+1), vh),

(1.1.3)

5



(
uh,n+1

2 − uh,n2

k
, vh) + (h+ ν)(∇uh,n+1

2 ,∇vh) + b∗(uh,n+1
2 , uh,n+1

2 , vh)

−(ph,n+1
2 ,∇ · vh) = (

f(tn+1) + f(tn)

2
, vh) +

ν

2
k(∇(

uh,n+1
1 − uh,n1

k
), vh)

+
1

2
b∗(uh,n+1

1 , uh,n+1
1 , vh)− 1

2
b∗(uh,n1 , uh,n1 , vh) + h(∇uh,n+1

1 ,∇vh),

(1.1.4)

where b∗(·, ·, ·) is the explicitly skew-symmetrized trilinear form, defined later.

The remainder of this chapter is organized as follows. Section 1.2 introduces the

necessary notation and preliminaries; Section 1.3 then follows on the accuracy and

stability of the defect step approximation. These results come mostly from [25], as

the equation for the defect step of the defect-deferred approach is exactly the defect

step of the approach in [25]. The novelty of the proposed method appears in Section

1.7, where stability and increased accuracy (both time and space) of the correction

step is studied. The quantitative and qualitative computational tests are presented

in Section 1.10.

1.2 Mathematical Preliminaries and Notations

Throughout this chapter, the norm ||.|| denotes the usual L2(Ω) norm of scalars,

vectors and tensors, induced by the usual L2 inner-product, denoted by (·, ·). The

space in which velocity sought(at time t) is

6



X = H1
0 (Ω)d = {v ∈ L2(Ω)d : ∇v ∈ L2(Ω)dxd and v = 0 on ∂Ω}.

with the norm ||v||X = ||∇v||. The space dual to X is equipped with the norm

||f ||−1 = sup
v∈X

(f, v)

||∇v||
.

The space that velocity (at time t) belongs to is

Q = L2
0(Ω) = {q ∈ L2(Ω) :

∫
Ω

q(x)dx = 0}.

Introduce the space of weakly divergence-free functions

X ⊃ V = {v ∈ X : (∇ · v, q) = 0,∀q ∈ Q}.

For measurable v : [0, T ]→ X, we define

||v||Lp(0,T ;X) =
(∫ T

0

||v||PXdt
) 1
p
, 1 ≤ p <∞,

and

||v||L∞(0,T ;X) = ess sup
0≤t≤T

||v(t)||X .

7



Define the trilinear form on X ×X ×X

b(u, v, w) =

∫
Ω

u · ∇v · wdx.

The following lemma is also necessary for the analysis.

Lemma 1 There exist finite constant M = M(d) and N = N(d) s.t. M ≥ N and

M = sup
u,v,w∈X

b(u, v, w)

||u||||v||||w||
<∞, N = sup

u,v,w∈V

b(u, v, w)

||u||||v||||w||
<∞.

The proof can be found in [32]. The corresponding constants Mh and Nh are defined

by replacing X by the finite element space Xh ⊂ X and V by V h ⊂ X. Note that

M ≥ max(Mh, N,Nh) and that as h→ 0, Nh → N and Mh →M (see [32]).

Throughout the chapter, assume that the velocity-pressure finite element spaces Xh ⊂

X andQh ⊂ Q are conforming, have typical approximation properties of finite element

spaces commonly in use, and satisfy the discrete inf-sup, or LBBh, condition

inf
qh∈Qh

sup
vh∈Xh

(qh,∇ · vh)
‖∇vh‖‖qh‖

≥ βh > 0, (1.2.1)
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where βh is bounded away from zero uniformly in h. Examples of such spaces can

be found in [32]. Consider Xh ⊂ X, Qh ⊂ Q to be spaces of continuous piecewise

polynomials of degree m and m− 1, respectively, with m ≥ 2. The case of m = 1 is

not considered, because the optimal error estimate (of the order h) is obtained after

the first step of the method, and therefore the DCM in this case is reduced to the

artificial viscosity approach.

The space of discretely divergence-free functions is defined as follows

V h = {vh ∈ Xh : (qh,∇ · vh) = 0,∀qh ∈ Qh}.

In the analysis, the properties of the following Modified Stokes Projection are used.

Definition 1 (Modified Stokes Projection) Define the Stokes projection opera-

tor PS: (X,Q)→ (Xh, Qh), PS(u, p) = (ũ, p̃), satisfying

(h+ ν)(∇(u− ũ),∇vh)− (p− p̃,∇ · vh) = 0, (1.2.2)

(∇ · (u− ũ), qh) = 0,

9



for any vh ∈ V h, qh ∈ Qh.

In (V h, Qh) this formulation reads: given (u, p) ∈ (X,Q), find ũ ∈ V h satisfying

(h+ ν)(∇(u− ũ),∇vh)− (p− qh,∇ · vh) = 0, (1.2.3)

for any vh ∈ V h, qh ∈ Qh.

Define the explicitly skew-symmetrized trilinear form

b∗(u, v, w) :=
1

2
(u · ∇v, w)− 1

2
(u · ∇w, v).

The following estimate is easy to prove (see, e.g., [32]): there exists a constant

C = C(Ω) such that

|b∗(u, v, w)| ≤ C(Ω)‖∇u‖‖∇v‖‖∇w‖. (1.2.4)

The proofs will require the sharper bound on the nonlinearity. This upper bound is

improvable in R2.
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Lemma 2 (The sharper bound on the nonlinear term) Let Ω ⊂ Rd, d = 2, 3.

For all u, v, w ∈ X

|b∗(u, v, w)| ≤ C(Ω)
√
‖u‖‖∇u‖‖∇v‖‖∇w‖.

Proof 1 See [32].

Also the following inequalities are needed: for any u ∈ V

inf
v∈V h
‖∇(u− v)‖ ≤ C(Ω) inf

v∈Xh
‖∇(u− v)‖, (1.2.5)

inf
v∈V h
‖u− v‖ ≤ C(Ω) inf

v∈Xh
‖∇(u− v)‖, (1.2.6)

The proof of (1.2.5) can be found, e.g., in [32], and (1.2.6) follows from the Poincare-

Friedrich’s inequality and (1.2.5).

Assume that the inverse inequality holds: there exists a constant C independent of

11



h, such that

||∇v|| ≤ Ch−1||v||, ∀v ∈ Xh. (1.2.7)

Define also the number of time steps N := T
k

.

The following error decomposition will be used.

ei` = ui − uh,i` = ui − ũi + ũi − uh,i` = ηi` − φ
h,i
` ,

where ũi ∈ V h is some projection of ui onto V h,

and ηi` = ui − ũi, φh,i` = uh,i` − ũ
i, φh,i` ∈ V

h,∀i,∀` = 1, 2.

(1.2.8)

Conclude the preliminaries by formulating the discrete Gronwall’s lemma, see, e.g.

[70]

Lemma 3 Let k,B, and aµ, bµ, cµ, γµ, for integers µ ≥ 0, be nonnegative numbers

such that:

an + k

n∑
µ=0

bµ ≤ k

n∑
µ=0

γµaµ + k

n∑
µ=0

cµ +B for n ≥ 0.

Suppose that kγµ < 1 for all µ, and set σµ = (1− kγµ)−1. Then

an + k
n∑
µ=0

bµ ≤ ek
∑n
µ=0 σµγµ · [k

n∑
µ=0

cµ +B].
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Upon giving the relationship between Reynolds Number and the kinetic viscosity (ν)

below, we will use ν instead of Re−1.

Re =
ρvL

µ
=
vL

ν
,

where v is the maximum velocity of the object relative to the fluid, L is a characteristic

linear dimension, µ is the dynamic viscosity of the fluid and ρ is the density of the

fluid.

1.3 AV Approximation

In this section we prove the unconditional stability and error estimate of the discrete

artificial viscosity approximation uh1 and use this result to prove an error estimate

of its time derivative de1
dt

. Over 0 ≤ t ≤ T < ∞ the approximations uh1 is bounded

uniformly in ν.

Hence, the formulation (1.1.3) gives O(h + k) accurate, unconditionally stable ex-

tension of the artificial viscosity approximation to the time-dependent Navier-Stokes

equations.

We start by giving stability and error estimate of the modified Stokes Projection,

that we use as the approximation ũ0 to the initial velocity u0.
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1.4 Stokes Projection

Proposition 4 (Stability of the Stokes projection) Let u, ũ satisfy (1.2.3).

The following bound holds

(h+ ν)‖∇ũ‖2 ≤ 2(h+ ν)‖∇u‖2 (1.4.1)

+2d(h+ ν)−1 inf
qh∈Qh

‖p− qh‖2,

where d is the dimension, d = 2, 3.

Proposition 5 (Error estimate for Stokes Projection). Suppose the discrete inf-sup

condition (4.2.1) holds. Then the error in Stokes Projection satisfies

(h+ ν)||∇(u− ũ)||2 ≤ C[(h+ ν) inf
vh∈V h

||∇(u− vh)||2

+(h+ ν)−1 inf
qh∈Qh

||p− qh||2],

where C is a constant independent of h and Re.

(1.4.2)

Proof 2 Proofs can be found in [25]
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1.5 Stability of the AV approximation

Lemma 6 Let uh1 satisfy the equation (1.1.3). Let f ∈ L2(0, T ;H−1(Ω)). Then for

n = 0, ..., N − 1

‖uh,n+1
1 ‖2 + kΣn+1

i=1 (h+ ν)‖∇uh,i1 ‖2 ≤ ‖us0‖2

+
1

h+ ν
kΣn+1

i=1 ‖f(ti)‖2
−1.

Also, if f ∈ L2(0, T ;L2(Ω)) and the time constraint T is finite, then there exists a

constant C = C(T ) such that

‖uh,n+1
1 ‖2 + kΣn+1

i=1 (h+ ν)‖∇uh,i1 ‖2 (1.5.1)

≤ C(‖us0‖2 + kΣn+1
i=1 ‖f(ti)‖2).

Proof 3 Can be found in [25].
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1.6 Error Estimates of AV Approximation

Definition 2 Let

Cu := ||u(x, t)||L∞(0,T ;L∞(Ω)),

C∇u := ||∇u(x, t)||L∞(0,T ;L∞(Ω)),

C̃u := ||u(x, t)||L∞(0,T ;L2(Ω)),

C̃∇u := ||∇u(x, t)||L∞(0,T ;L2(Ω)),

and introduce C̃, satisfying

inf
v∈V h
||∇(u− v)|| ≤ C1 inf

v∈Xh
||∇(u− v)|| ≤ C2h

m||u||Hm+1 ≤ C̃hm (1.6.1)

Also, using the constant C(Ω) from Lemma 2.3, we define C̄ := 1728C4(Ω).

Theorem 7 Let f ∈ L2(0, T ;H−1), let uh1 , u
h
2 satisfy (1.1.3) and (1.1.4), respectively,

k ≤ h+ ν

4C2
u + 2(h+ ν)C∇u + 2C̄C̃4(h+ ν)−2h4m

,

u ∈ L2(0, T ;Hm+1(Ω)) ∩ L∞(0, T ;L∞(Ω)),∇u ∈ L∞(0, T, L∞(Ω)),
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ut ∈ L2(0, T ;Hm+1(Ω)), utt ∈ L2(0, T ;L2(Ω)), p ∈ L2(0, T ;Hm(Ω)).

Then there exist a constant C = C(Ω, T, u, p, f, h+ ν), such that

max
1≤i≤N

||u(ti)− uh,i1 ||+
(
k
n+1∑
i=1

(h+ ν)||∇(u(ti)− uh,i1 )||2
)1/2

≤ C(hm + h+ k)

Proof 4 Can be found [25].

We will need the following lemma in the proof of Theorem (9).

Lemma 8 Let f ∈ L2(0, T ;H−1(Ω)). Suppose φ0 and φ1 to be the Stokes projections

of the initial velocity and velocity at the first time level, respectively. Let m ≥ 2 and

k <
4(h+ ν)

13(4(h+ ν)C∇u + 3C2
u)
.

Then there exist a constant C = C(Ω, T, u, p, f, h+ ν), such that

||φ
1 − φ0

k
||2 +

13

2
(h+ ν)k||∇φ

1 − φ0

k
||2 ≤ C(kh2m + h2 + k2 + k2h2m−3) (1.6.2)

Proof 5 From the Stokes Projection(1) and error decomposition(1.2.8), we have
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(h+ ν)(∇φ0,∇v)− (h+ ν)(∇η0,∇v)− (p0 − q,∇.v) = 0 (1.6.3)

On the other hand the solution at the first time level satisfies the following

||φ
1 − φ0

k
||2 + (h+ ν)(∇φ1,∇φ

1 − φ0

k
) + b∗(u1, u1,

φ1 − φ0

k
)

−b∗(u1
1, u

1
1,
φ1 − φ0

k
) + (p1,∇.φ

1 − φ0

k
)

= h(∇u1,∇φ
1 − φ0

k
) + k(ρ1,

φ1 − φ0

k
)

+(
η1 − η0

k
,
φ1 − φ0

k
) + (h+ ν)(∇η1,

φ1 − φ0

k
),

where kρ1 =
u1 − u0

k
− u1

t = kuθtt, for some θ ∈ (0, k).

(1.6.4)

Subtracting equation 1.6.3 from equation 1.6.4 for v = φ1−φ0
k

, we have

||φ
1 − φ0

k
||2 + k(h+ ν)||∇φ

1 − φ0

k
||2

+b∗(u1, u1,
φ1 − φ0

k
)− b∗(u1

1, u
1
1,
φ1 − φ0

k
)

−k(
p1 − p0

k
− q,∇.φ

1 − φ0

k
)

= h(∇u1,∇φ
1 − φ0

k
) + (ρ1,

φ1 − φ0

k
) + (

η1 − η0

k
,
φ1 − φ0

k
)

+k(h+ ν)(∇η
1 − η0

k
,∇φ

1 − φ0

k
)

(1.6.5)
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Adding and subtracting b∗(u1
1, u

1, φ
1−φ0
k

) to the nonlinear terms in equation (1.6.5)

together with error decomposition (1.2.8) gives

b∗(u1, u1,
φ1 − φ0

k
)− b∗(u1

1, u
1
1,
φ1 − φ0

k
)

= b∗(e1
1, u

1,
φ1 − φ0

k
) + b∗(u1

1, e
1
1,
φ1 − φ0

k
)

= b∗(φ1, u1,
φ1 − φ0

k
)− b∗(η1, u1,

φ1 − φ0

k
)

+ b∗(u1
1, φ

1,
φ1 − φ0

k
)− b∗(u1

1, η
1,
φ1 − φ0

k
) (1.6.6)

Adding and subtracting φ0 to the first component of the first nonlinear term in the

equation (1.6.6) gives

b∗(φ1, u1,
φ1 − φ0

k
) = kb∗(

φ1 − φ0

k
, u1,

φ1 − φ0

k
) + b∗(φ0, u1,

φ1 − φ0

k
) (1.6.7)

In the first nonlinear term of (1.6.7), applying Cauchy-Schwarz and Young’s inequal-

ities together with the regularity assumption of u and bound 1.2.4 gives
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k|b∗(φ
1 − φ0

k
, u1,

φ1 − φ0

k
)| ≤ kC∇u||

φ1 − φ0

k
||2

+kµ∗(h+ ν)||∇φ
1 − φ0

k
||2 + k

C2
u

16(h+ ν)µ∗
||φ

1 − φ0

k
||2

(1.6.8)

In the second nonlinear term of (1.6.7), applying Cauchy Schwarz and Young’s in-

equalities together with bound 1.2.4 and inverse inequality (1.2.7) gives

|b∗(φ0, u1,
φ1 − φ0

k
)| ≤ µ||φ

1 − φ0

k
||2 +

Ch−2

4µ
||∇φ0||2 (1.6.9)

In the second nonlinear term of (1.6.6), applying Cauchy Schwarz and Young’s in-

equalities together with bound 1.2.4 and inverse inequality (1.2.7) gives

|b∗(η1, u1,
φ1 − φ0

k
)| ≤ µ||φ

1 − φ0

k
||2 +

Ch−2

4µ
||∇η1||2 (1.6.10)

For the third nonlinear term of equation (1.6.6), applying error decomposition (1.2.8)

gives
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|b∗(u1
1, φ

1,
φ1 − φ0

k
)| ≤ |b∗(u1, φ1,

φ1 − φ0

k
)|+ |b∗(φ1, φ1,

φ1 − φ0

k
)|

+|b∗(η1, φ1,
φ1 − φ0

k
)|

(1.6.11)

Since nonlinear form is skew-symmetric in the second and third entry, we can re-

place terms like the first nonlinear term in the inequality (1.6.11) with terms like

|b∗(u1, φ0, φ
1−φ0
k

)|. Applying Cauchy-Schwarz and Young’s inequalities together with

the regularity assumption of u and inverse inequality gives

|b∗(u1, φ0,
φ1 − φ0

k
)| ≤ 2µ||φ

1 − φ0

k
||2 +

C2
u

4µ
(||∇φ0||2 + h−2||φ0||2) (1.6.12)

Applying Young’s inequality together with the sharper bound (2) and inverse inequality

(1.2.7) in the second nonlinear term of 1.6.11 gives

|b∗(φ1, φ1,
φ1 − φ0

k
)| = |b∗(φ1, φ0,

φ1 − φ0

k
)| ≤ µ||φ

1 − φ0

k
||2 +

Ch−3

4µ
||φ1||2||∇φ0||2

(1.6.13)

For the last nonlinear term in the inequality (1.6.11), we can apply 1.2.4 and inverse

inequality followed by Young’s inequality to have
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|b∗(η1, φ1,
φ1 − φ0

k
)| = |b∗(η1, φ0,

φ1 − φ0

k
)|

≤ µ||φ
1 − φ0

k
||2 +

Ch−2

4µ
||∇η1||2||∇φ0||2

(1.6.14)

For the forth nonlinear term of equation (1.6.6), applying error decomposition gives

|b∗(u1
1, η

1,
φ1 − φ0

k
)| ≤ |b∗(u1, η1,

φ1 − φ0

k
)|+ |b∗(φ1, η1,

φ1 − φ0

k
)|

+|b∗(η1, η1,
φ1 − φ0

k
)|

(1.6.15)

For all the nonlinear terms in the inequality (1.6.15), we can apply bound 1.2.4 and

inverse inequality followed by Young’s inequality to have

|b∗(u1, η1,
φ1 − φ0

k
)| ≤ µ||φ

1 − φ0

k
||2 +

Ch−2

4µ
||∇η1||2 (1.6.16)

|b∗(φ1, η1,
φ1 − φ0

k
)| ≤ µ||φ

1 − φ0

k
||2 + Ch−4||∇η1||2||φ1||2 (1.6.17)
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|b∗(η1, η1,
φ1 − φ0

k
)| ≤ µ||φ

1 − φ0

k
)||2 + Ch−2||∇η1||4 (1.6.18)

Apply Cauchy-Schwarz and Young’s inequalities to (1.6.5).

Since ||∇.φ1−φ0
k
|| ≤ d||∇φ1−φ0

k
||,

(1− 12µ− (
C∇u

2
+

C2
u

16(h+ ν)µ∗
)k)||φ

1 − φ0

k
||2

+(1− 3µ∗)(h+ ν)k||∇φ
1 − φ0

k
||2

≤ dk

4µ∗(h+ ν)
inf
q∈Qh
||p

1 − p0

k
− q||2 +

h2

4µ
||∆u1||2 +

k2

4µ
||ρ1||2 +

1

4µ
||η

1 − η0

k
||2

+
k(h+ ν)

4µ∗
||∇η

1 − η0

k
||2 +

Ch−2

4µ
||∇φ0||2 +

C2
u

4µ
||∇φ0||2 +

C2
uh
−2

4µ
||φ0||2

+
Ch−3

4µ
||φ1||2||∇φ0||2 +

Ch−2

4µ
||∇η1||2||∇φ0||2

+
Ch−2

2µ
||∇η1||2 + Ch−4||φ1||2||∇η1||2 + Ch−2||∇η1||4

(1.6.19)

Use the approximation properties of Xh, Qh. Since the mesh nodes do not depend upon

the time level, it follows from (1.2.5), (1.2.6) that
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inf
q∈Q
||p

1 + p0

k
− q||2 ≤ Ch2m,

||η
1
2 − η0

2

k
||2 ≤ Ch2m+2,

||η1
2||2 ≤ Ch2m+2.

(1.6.20)

Taking µ = 1/13 and µ∗ = 1/6 and using bounds (1.6.20) for each term, it follows

from the regularity assumption of u that

(
1

13
− (

C∇u
2

+
3C2

u

8(h+ ν)
)k)||φ

1 − φ0

k
||2 +

1

2
(h+ ν)k||∇φ

1 − φ0

k
||2

≤ C(h2m−2 + h2 + k2 + k2h2m−3)

(1.6.21)

The last inequality implies the lemma statement.

Theorem 9 Let the assumptions of Lemma (8) and Theorem (7) be satisfied.

Let k ≤ min{ h+ν
2CC∇u(h+ν)+2CC2

u
, C(h+ ν)

5
3 , C(h+ ν)3}

Then

||e
n+1
1 − en1
k

||2 + k
n∑
i=0

(h+ ν)||∇e
i+1
1 − ei1
k

||2 ≤ C[h2m + h2 + k2]
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Proof 6 Start with the proof of the bound for ||φn+1−φn
k
||.

From the inequality (5.14) in [25], we have

||sh,n+1||2 + k(h+ ν)
n∑
i=1

||∇sh,i+1||2

≤ ||sh,1||2 + C[h2m + h2 + k2]

+Ck
n∑
i=1

(C∇u +
C2
u

h+ ν
+

1

(h+ ν)3
||∇ei1||4)||sh,i+1||2,

where sh,n+1 =
φn+1 − φn

k

(1.6.22)

In order to apply Gronwall’s Lemma 3 in the inequality 1.6.22, we have to verify that

Ck(C∇u +
C2
u

h+ ν
+

1

(h+ ν)3
||∇ei1||4) < 1.

To this end, we can first assume

Ck(C∇u +
C2
u

h+ ν
) <

1

2
and

Ck

(h+ ν)3
||∇ei1||4 <

1

2
.
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Due to the first inequality, we have a bound on k in the form

k <
h+ ν

CC∇u(h+ ν) + CC2
u

.

For the second inequality we investigate case by case.

For k ≤ h, it follows from the inverse inequality and theorem (7) that

Ck

(h+ ν)3
||∇ei1||4 ≤

Ckh−4

(h+ ν)3
||ei1||4 ≤

Ck

(h+ ν)3
(1 +

k

h
)4

≤ Ck

(h+ ν)3
<

1

2
.

Thus, we have a bound on k in the form k < C(h+ ν)3.

For h ≤ k, it follows from the theorem (7) that

Ck

(h+ ν)3
||∇ei1||4 ≤

Ck−1

(h+ ν)5
(h4 + k4) ≤ 2Ck3

(h+ ν)5
<

1

2
.

It follows from the above calculations and theorem statement that
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(C∇u +
C2
u

h+ ν
+

1

(h+ ν)3
||∇ei1||4)k < 1.

Now, we can apply discrete Gronwall’s Lemma in the inequality (1.6.22) to have

following bound

||φ
n+1 − φn

k
||2 + (h+ ν)k

n∑
i=1

||∇φ
i+1 − φi

k
||2 ≤ C[h2m + h2 + k2] (1.6.23)

Using the triangle inequality in the error decomposition (1.2.8), we obtain

||e
n+1
1 − en1
k

||2 + k
n∑
i=0

(h+ ν)||∇e
n+1
1 − en1
k

||2 ≤ C[h2m + h2 + k2] (1.6.24)

This result proves the theorem.

1.7 Correction Step Approximation

In this section we prove the unconditional stability and error estimate of the correction

step approximation uh2 . Over 0 ≤ t ≤ T < ∞ the approximations uh2 is bounded

uniformly in Re.
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Hence, the formulation (1.1.4) gives O(h2+k2) accurate, unconditionally stable exten-

sion of correction step approximation to the time-dependent Navier-Stokes equations.

We start by proving stability of correction step approximation.

1.8 Stability of the CS Approximation

Theorem 10 Let f ∈ L2(0, T ;H−1(Ω)), let uh1 , u
h
2 satisfy (1.1.3) and (1.1.4), respec-

tively. Then for n=0,...,N-1,

||uh,n+1
2 ||2 + 5h2(h+ ν)−2||uh,n+1

1 ||2 + k
n+1∑
i=1

(h+ ν)||∇uh,i2 ||2

≤ C[||us0||2 + (h+ ν)−1k
n+1∑
i=1

||f(ti)||2−1].

Proof 7 Take vh = uh,n+1
2 ∈ V h in the equation (1.1.4). This gives with Cauchy-

Schwarz and Young’s inequality that
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1

2k
(||uh,n+1

2 ||2 − ||uh,n2 ||2) + (h+ ν)||∇uh,n+1
2 ||2

≤ (
f(tn+1) + f(tn)

2
, uh,n+1

2 ) +
ν

2
k(∇(

un+1
1 − un+1

1

k
,∇uh,n+1

2 )

+
1

2
b∗(uh,n+1

1 , uh,n+1
1 , uh,n+1

2 )− 1

2
b∗(uh,n1 , uh,n1 , uh,n+1

2 ) + h(∇uh,n1 ,∇uh,n2 )

(1.8.1)

It follows from Cauchy-Schwarz, Young’s and triangle inequalities with the error es-

timate ei1 = u(ti)− ui1 that

ν

2
k(∇(

un+1
1 − un1
k

,∇uh,n+1
2 ) ≤ µ(h+ ν)||∇uh,n+1

2 ||2

+
ν2k2

8µ(h+ ν)
||∇(

un+1 − un

k
)||2 +

ν2k

8µ(h+ ν)
k||∇(

en+1
1 − en1
k

)||2.
(1.8.2)

Adding and subtracting 1
2
b∗(uh,n+1

1 , uh,n1 , uh,n+1
2 ) to the nonlinear terms and applying

the bound (1.2.4) followed by Cauchy-Schwarz, Young’s and triangle inequalities with

regularity assumption of u, we have
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1

2
b∗(uh,n+1

1 , uh,n+1
1 , uh,n+1

2 )− 1

2
b∗(uh,n1 , uh,n1 , uh,n+1

2 )

≤ 1

2
[kb∗(uh,n+1

1 ,
uh,n+1

1 − uh,n1

k
, uh,n+1

2 ) + kb∗(
uh,n+1

1 − uh,n1

k
, uh,n1 , uh,n+1

2 )]

≤ 2µ(h+ ν)||∇uh,n+1
2 ||2

+
1

16µ(h+ ν)3
(h+ ν)k||∇(

uh,n+1
1 − uh,n1

k
)||2[(h+ ν)k||∇uh,n+1

1 ||2

+(h+ ν)k||∇uh,n1 ||2]

≤ 2µ(h+ ν)||∇uh,n+1
2 ||2

+
1

8µ(h+ ν)3
(h+ ν)k||∇(

eh,n+1
1 − eh,n1

k
)||2[(h+ ν)k||∇uh,n+1

1 ||2

+(h+ ν)k||∇uh,n1 ||2]

+
1

8µ(h+ ν)2
kC2
∇ut [(h+ ν)k||∇uh,n+1

1 ||2 + (h+ ν)k||∇uh,n1 ||2],

where C∇ut = ||∇(
un+1 − un

k
)||2

(1.8.3)

Cauchy-Schwarz and Young’s inequalities with µ = 1/10 give
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1

2k
(||uh,n+1

2 ||2 − ||uh,n2 ||2) +
1

2
(h+ ν)||∇uh,n+1

2 ||2

≤ 5

2(h+ ν)
||f(tn+1)− f(tn)

2
||2−1

+
5ν2k2

4(h+ ν)
C2
∇ut +

5ν2k

4(h+ ν)2
k(h+ ν)||∇(

en+1
1 − en1
k

)||2

+
5h2

2(h+ ν)2
(h+ ν)||∇uh,n+1

1 ||2

+
5

4(h+ ν)3
(h+ ν)k||∇(

eh,n+1
1 − eh,n1

k
)||2[(h+ ν)k||∇uh,n+1

1 ||2

+(h+ ν)k||∇uh,n1 ||2]

+
5

4(h+ ν)2
kC2
∇ut [(h+ ν)k||∇uh,n+1

1 ||2 + (h+ ν)k||∇uh,n1 ||2]

(1.8.4)

Multiplying inequality by 2k and summing over all time levels followed by Lemma (6)

and Theorem (9) give
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||uh,n+1
2 ||2 +

n+1∑
i=1

(h+ ν)||∇uh,i2 ||2

≤ ||us0||2 +
5

(h+ ν)
k

n+1∑
i=1

||f(ti)− f(ti−1)

2
||2−1

+
5ν2k3

2(h+ ν)
C2
∇ut +

5ν2k2

2(h+ ν)2
C(h2m + h2 + k2)

+
5h2

(h+ ν)2
(||us0||2 − ||u

h,n+1
1 ||2 +

1

h+ ν
k
n+1∑
i=1

||f(ti)||2−1)

+
5

2(h+ ν)2
(
(h2m + h2 + k2)

(h+ ν)
+ k2C2

∇ut)[2||u
s
0||2

+
1

h+ ν
k

n+1∑
i=1

||f(ti)||2−1 +
1

h+ ν
k

n+1∑
i=1

||f(ti)||2−1]

(1.8.5)

After some algebraic manipulation, we have the following inequality

||uh,n+1
2 ||2 +

5h2

(h+ ν)2
||uh,n+1

1 ||2 +
n+1∑
i=1

(h+ ν)||∇uh,i2 ||2

≤ ||us0||2 +
5

(h+ ν)
k
n+1∑
i=1

||f(ti)− f(ti−1)

2
||2−1

+
5ν2k3

2(h+ ν)
C2
∇ut +

5ν2k2

2(h+ ν)2
C(h2m + h2 + k2)

+C(||us0||2 +
1

h+ ν
k
n+1∑
i=1

||f(ti)||2−1)

(1.8.6)

The last inequality implies the theorem statement.
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The result of Theorem (10), combined with the result Proposition (4), proves the

unconditional stability of both uh,i1 and uh,i2 for any i ≥ 0.

Next we will prove the error estimate of correction step approximation.

1.9 Error Estimate of CS Approximation

Theorem 11 Let the assumptions of Theorem (9) be satisfied. Let

k <
h+ ν

(h+ ν)C∇u + 2C2
u + (h+ ν)Chm−1 + 2Ch2m

.

Then there exists a constant C = C(Ω, T, u, p, f, h+ ν), such that

max
1≤i≤N

||u(ti)− uh,i2 ||+ (k
n∑
i=0

(h+ ν)||∇(u(ti)− uh,i2 )||2)1/2

≤ C(hm + h2 + k2 + hk).

Proof 8 By Taylor expansion around t = tn+1+tn
2

, we have un+1−un
k

− un+1
t +unt

2
=

k2ρn+1, where ρn+1 =
u
n+1

2
ttt

8
.

Summing variational formulations of NSE at t = tn and at t = tn+1, and then,

dividing by 2, we have the following equation.
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(
un+1 − un

k
, v) +

ν

2
(∇(

un+1 + un

2
),∇v) +

1

2
b∗(un+1, un+1, v)

+
1

2
b∗(un, un, v)− (

pn+1 + pn

2
,∇.v)

= (
f(tn+1) + f(tn)

2
, v)− (

un+1
t + unt

2
, v) + (

un+1 − un

k
, v)

(1.9.1)

Subtracting (1.1.4) from the equation (1.9.1) and using error decomposition (1.2.8),

we have

(
φh,n+1

2 − φh,n2

k
, φh,n+1

2 ) + (h+ ν)(∇φh,n+1
2 ,∇φh,n+1

2 )

=
ν

2
k(∇(

eh,n+1
1 − eh,n1

k
),∇φh,n+1

2 ) + (
ph,n+1 + ph,n

2
− pn+1

2 ,∇.φh,n+1
2 )

−b∗(un+1, φh,n+1
2 , φh,n+1

2 ) + b∗(un+1, ηn+1
2 , φh,n+1

2 )

−b∗(φh,n+1
2 , uh,n+1

2 , φh,n+1
2 ) + b∗(ηn+1

2 , uh,n+1
2 , φh,n+1

2 )

+
1

2
kb∗(

un+1 − un

k
, eh,n1 , φh,n+1

2 ) +
1

2
kb∗(un+1,

eh,n+1
1 − eh,n1

k
, φh,n+1

2 )

+
1

2
kb∗(eh,n+1

1 ,
uh,n+1

1 − uh,n1

k
, φh,n+1

2 ) +
1

2
kb∗(

eh,n+1
1 − eh,n1

k
, uh,n1 , φh,n+1

2 )

h(∇eh,n+1
1 ,∇φh,n+1

2 ) + k2(ρn+1, φh,n+1
2 ) + (

ηn+1
2 − ηn2

k
, φh,n+1

2 )

+(h+ ν)(∇ηn+1
2 ,∇φh,n+1

2 )

(1.9.2)

We bound the nonlinear terms on the right hand side of (1.9.2), starting now with

the second, fifth and sixth terms. Use the bound (1.2.4), regularity assumption of u
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and Young’s inequality to obtain

|b∗(un+1, ηn+1
2 , φh,n+1

2 )| ≤ µ(h+ ν)||∇φh,n+1
2 ||2

+
C2
∇u

4µ(h+ ν)
||∇ηn+1

2 ||2
(1.9.3)

|1
2
kb∗(

un+1 − un

k
, eh,n1 , φh,n+1

2 )| ≤ µ(h+ ν)||∇φh,n+1
2 ||2

+
k2C2

∇ut
16µ(h+ ν)

||∇eh,n1 ||2
(1.9.4)

|1
2
kb∗(un+1,

eh,n+1
1 − eh,n1

k
, φh,n+1

2 )| ≤ µ(h+ ν)||∇φh,n+1
2 ||2

+
k2C2

∇u
16µ(h+ ν)

||∇(
eh,n+1

1 − eh,n1

k
)||2

(1.9.5)

In order to obtain bounds on the third and the fourth terms, we use the error decompo-

sition (1.2.8), triangle inequality, bound (2), regularity assumption of u and Young’s

inequality
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|b∗(φh,n+1
2 , uh,n+1

2 , φh,n+1
2 )| ≤ |b∗(φh,n+1

2 , uh,n+1, φh,n+1
2 )|

+|b∗(φh,n+1
2 , ηn+1

2 , φh,n+1
2 )|

≤ 2µ(h+ ν)||∇φh,n+1
2 ||2

+||φh,n+1
2 ||2(

C∇u
2

+
C2
u

16µ(h+ ν)
+

1

2
||∇ηn+1

2 ||+ 1

16µ(h+ ν)
||∇ηn+1

2 ||2)

(1.9.6)

|b∗(ηn+1
2 , uh,n+1

2 , φh,n+1
2 )| ≤ |b∗(ηn+1

2 , uh,n+1, φh,n+1
2 )|+ |b∗(ηn+1

2 , ηn+1
2 , φh,n+1

2 )|

≤ 2µ(h+ ν)||∇φh,n+1
2 ||2

+
1

4µ(h+ ν)
||∇ηn+1

2 ||2(C2
∇u + ||∇ηn+1

2 ||2)

(1.9.7)

For the bounds on the seventh and the eighth terms, we use the error decomposition

uh,n1 = un − eh,n1 , triangle inequality, bound (1.2.4), regularity assumptions of u and

Young’s inequality

|1
2
kb∗(eh,n+1

1 ,
uh,n+1

1 − uh,n1

k
, φh,n+1

2 )| ≤ |1
2
kb∗(eh,n+1

1 ,
eh,n+1

1 − eh,n1

k
, φh,n+1

2 )|

+|1
2
kb∗(eh,n+1

1 ,
un+1 − un

k
, φh,n+1

2 )| ≤ 2µ(h+ ν)||∇φh,n+1
2 ||2

+
1

16µ(h+ ν)
||∇eh,n+1

1 ||2(k2C2
∇ut + k2||∇(

eh,n+1
1 − eh,n1

k
)||2)

(1.9.8)
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|1
2
kb∗(

eh,n+1
1 − eh,n1

k
, uh,n1 , φh,n+1

2 )| ≤ |1
2
kb∗(

eh,n+1
1 − eh,n1

k
, un, φh,n+1

2 )|

+|1
2
kb∗(

eh,n+1
1 − eh,n1

k
, eh,n1 , φh,n+1

2 )| ≤ 2µ(h+ ν)||∇φh,n+1
2 ||2

+
1

16µ(h+ ν)
||∇(

eh,n+1
1 − eh,n1

k
)||2(k2C2

∇u + k2||∇eh,n1 ||2)

(1.9.9)

Apply the Cauchy-Schwarz and Young’s inequality to (1.9.2). Since ||∇.φh,n+1
2 ||2 ≤

d||∇φh,n+1
2 ||2 for all µ > 0
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||φh,n+1
2 ||2 − ||φh,n2 ||2

2k
+ (1− 16µ)(h+ ν)||∇φh,n+1

2 ||2

≤ d

4µ(h+ ν)
inf

qh∈Qh
||p

h,n+1 + ph,n

2
− qh,n+1||2

+
ν2k2

16µ(h+ ν)
||∇(

eh,n+1
1 − eh,n1

k
)||2

+
h2

4µ(h+ ν)
||∇eh,n+1

1 ||2 +
k4

4µ(h+ ν)
||ρn+1||2−1

+
1

4µ(h+ ν)
||η

n+1
2 − ηn2

k
||2−1 +

h+ ν

4µ
||∇ηn+1

2 ||2 +
C2
∇u

4µ(h+ ν)
||∇ηn+1

2 ||2

+
k2C2

∇ut
16µ(h+ ν)

||∇eh,n1 ||2 +
k2C2

∇u
16µ(h+ ν)

||∇(
eh,n+1

1 − eh,n1

k
)||2

+||φh,n+1
2 ||2(

C∇u
2

+
C2
u

16µ(h+ ν)
+

1

2
||∇ηn+1

2 ||+ 1

16µ(h+ ν)
||∇ηn+1

2 ||2)

+
1

4µ(h+ ν)
||∇ηn+1

2 ||2(C2
∇u + ||∇ηn+1

2 ||2)

+
k2

16µ(h+ ν)
||∇eh,n+1

1 ||2(C2
∇ut + ||∇(

eh,n+1
1 − eh,n1

k
)||2)

+
k2

16µ(h+ ν)
||∇(

eh,n+1
1 − eh,n1

k
)||2(C2

∇u + ||∇eh,n1 ||2)

(1.9.10)

Take µ = 1/32, multiply (1.9.10) by 2k and sum over all time levels. It follows from

the regularity assumptions of theorem that

k

n∑
i=0

||ρi+1||2−1k
4 ≤ Ck

n∑
i=0

||ρi+1||2k4 ≤ Ck4

Therefore we obtain
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||φh,n+1
2 ||2 + (h+ ν)k

n∑
i=0

||∇φh,i+1
2 ||2

≤ C

h+ ν
k

n∑
i=0

[
inf

qh∈Qh
||p

h,i+1 + ph,i

2
− qh,i+1||2

k2||∇(
ei+1

1 − ei+1
1

k
)||2 + h2||∇ei+1

1 ||2 + k4 + ||η
i+1
2 − ηi2
k

||2−1

+||∇ηi+1
2 ||2 + k2||∇ei+1

1 ||2 + ||∇ηi+1
2 ||4

+k||∇(
ei+1

1 − ei+1
1

k
)||2(k||∇ei+1

1 ||2 + k||∇ei1||2)

+k
n∑
i=0

||φh,i+1
2 ||2

[C∇u
2

+
2C2

u

(h+ ν)
+

1

2
||∇ηi+1

2 ||

+
2

h+ ν
||∇ηi+1

2 ||2
]

+ ||φh,02 ||2

(1.9.11)

Take ũi in the error decomposition (1.2.8) to be the L2-projection onto V h, for i ≥ 1.

Take ũ0 to be us0. This gives φh,02 = 0 and e0
1 = η0

2. Also it follows from the Proposition

(5) that ||η0
2|| ≤ Chm; under the assumption of the theorem applying the discrete

Gronwall’s lemma (3) and using bounds in theorems (7), (9), give
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||φh,n+1
2 ||2 + (h+ ν)k

n∑
i=0

||∇φh,i+1
2 ||2

≤ C

h+ ν
k

n∑
i=0

[
inf

qh∈Qh
||p

h,i+1 + ph,i

2
− qh,i+1||2

+
k2

h+ ν
(h2 + k2) +

h2

h+ ν
(h2 + k2) + k4

+||η
i+1
2 − ηi2
k

||2−1 + ||∇ηi+1
2 ||2 + ||∇ηi+1

2 ||4

+
k

(h+ ν)2
(h2 + k2)(h2 + k2)

]
+ Ch2m

(1.9.12)

Use the approximation properties of Xh, Qh. Since the mesh nodes do not depend upon

the time level, it follows from (1.2.5), (1.2.6) that

k
n∑
i=0

inf
qh∈Qh

||p
h,i+1 + ph,i

2
− qh,i+1||2 ≤ Ch2m,

k
n∑
i=0

||η
i+1
2 − ηi2
k

||2−1 ≤ Ck
n∑
i=0

||η
i+1
2 − ηi2
k

||2 ≤ Ch2m,

k
n∑
i=0

||ηi+1
2 ||2 ≤ Ch2m.

(1.9.13)

Bounds (1.9.12) and (1.9.13) give the following result
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||φh,n+1
2 ||2 + (h+ ν)k

n∑
i=0

||∇φh,i+1
2 ||2

≤ C

(h+ ν)2
(h2m + h4 + k4 + h2k2).

(1.9.14)

Using the error decomposition and triangle inequality with (1.9.14), we obtain

||eh,n+1
2 ||+ ((h+ ν)k

n∑
i=0

||∇eh,i+1
2 ||2)

1
2

≤ C

(h+ ν)
(hm + h2 + k2 + hk).

(1.9.15)

This proves the Theorem (11). Thus, we derived the error estimates, that agree

with the general theory of the defect and deferred correction methods. Briefly, the

Correction Step approximation uh2 is improved by an order of h in space and of k in

time, compared to the Artificial Viscosity approximation uh1 .

Next, we will give some computational results.
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1.10 Computational Tests

We perform one quantitative and one qualitative test of the proposed regularization

procedure. In both tests the non-homogeneous Dirichlet boundary conditions are

implemented, and the computational results support the theoretical findings.

1.11 Quantitative Test

For the quantitative assessment, consider a two-dimensional problem with a known

exact solution. The traveling wave solution of the NSE in Ω = [0.5, 1]2 is given by

u =

0.75 + 0.25 cos(2π(x− t)) sin(2π(y − t))exp(−8π2tν)

0.75− 0.25 sin(2π(x− t)) cos(2π(y − t))exp(−8π2tν)

 , (1.11.1)

p = − 1

64
(cos(4π(x− t)) + cos(4π(y − t)))exp(−16π2tν),

and the right-hand side f and initial condition u0 are computed so that (1.11.1)

satisfies (4.1.1). The final time in the computations is taken to be T = 1.
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In order to verify the theoretical claims on the convergence rates, we take the time

step equal to the mesh diameter, ∆t = h.

For ν = 1
100

the calculated convergence rates in Tables 1.1 and 1.2 confirm what is

predicted by Theorems (7) and (11) for (P2, P1) Taylor-Hood finite elements: the

convergence rates are doubled after the correction step. Notice also the asymptotic

character of convergence, typical of the defect correction methods.

Table 1.1
AV approximation, ν = 0.01.

N ||u− uh1 ||L2(0,T ;L2(Ω)) rate ||u− uh1 ||L2(0,T ;H1(Ω)) rate

8 0.0139742 - 0.23282 -

16 0.00945258 0.56 0.179798 0.37

32 0.00580328 0.70 0.123682 0.54

64 0.00331349 0.81 0.0766837 0.69

128 0.00178142 0.90 0.0433087 0.82

256 0.000922772 0.95 0.0228883 0.92
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Table 1.2
Correction step approximation, ν = 0.01.

N ||u− uh2 ||L2(0,T ;L2(Ω)) rate ||u− uh2 ||L2(0,T ;H1(Ω)) rate

8 0.0106313 - 0.189918 -

16 0.0060028 0.83 0.128519 0.56

32 0.00272105 1.14 0.0710604 0.86

64 0.000993846 1.45 0.0314236 1.18

128 0.000302142 1.72 0.0111824 1.49

256 0.0000817667 1.89 0.00336761 1.73

As the viscosity coefficient ν decreases, the convergence rates improve slower - see the

results for the flow at ν = 1
2000

in Tables 1.3 and 1.4.
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Table 1.3
AV approximation, ν = 0.0005.

N ||u− uh1 ||L2(0,T ;L2(Ω)) rate ||u− uh1 ||L2(0,T ;H1(Ω)) rate

8 0.0262208 - 0.439399 -

16 0.0188948 0.47 0.367997 0.26

32 0.0125722 0.59 0.291022 0.34

64 0.00776946 0.69 0.2206 0.40

128 0.00443914 0.81 0.159449 0.49

256 0.00237518 0.9 0.108957 0.55

Table 1.4
Correction step approximation, ν = 0.0005.

N ||u− uh2 ||L2(0,T ;L2(Ω)) rate ||u− uh2 ||L2(0,T ;H1(Ω)) rate

8 0.0217697 - 0.396863 -

16 0.0141143 0.63 0.32536 0.29

32 0.00777988 0.86 0.249133 0.39

64 0.0036525 1.09 0.178223 0.48

128 0.00152888 1.26 0.118064 0.59

256 0.000597594 1.36 0.0709845 0.73
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To further comment on the asymptotic nature of convergence of defect correction

methods, notice that the a priori error estimates have the term (h+ ν)−1 in the right

hand side. This decreases the convergence rates on the coarse meshes, where h >> ν.

The term that contains ∇(u−uhi ), i = 1, 2 in the left hand side is also proportional to

(h+ ν), which further decreases the convergence rates in the H1-seminorm on coarse

meshes for problems with high Reynolds number. We also ran the same tests (not

shown here) with ∆t = h2 and obtained the convergence rates very similar to those

presented above, which indicates that the reduced convergence rates are due to the

asymptotic behaviour of the defect correction, and not the deferred correction part

of the error.

1.12 Qualitative Test

For the qualitative assessment, consider the 2-D flow past an obstacle, at high

Reynolds number Re = 600. The von Karman vortex street is expected to be seen for

a fully resolved flow; on a coarse mesh with h ∼ 1
32

the true solution demonstrates the

oscillatory behavior past the obstacle (Figure 1.1). Note that the solution is known

to depend on the Reynolds number in the following manner: for 1 < Re < 10 the

flow is no longer symmetric behind the obstacle, for 10 < Re < 100 re-circulation

areas appear in the wake behind the obstacle and, as the Reynolds number grows be-

yond Re = 100, these vortices develop and start to oscillate. Roughly at Re = 1000
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turbulence develops and the coherent structures in the flow disappear.

Figure 1.1: DNS velocity field u

We compute the defect step solution u1 and the corrected solution u2 on the

same coarse mesh with 32 nodes per unit boundary (h ∼ 1
32

). The domain is

Ω = [0, 1] × [0, 3] with a circle of radius 0.15, centered at (0.5, 0.5), cut out of Ω.

The parabolic inflow on the left boundary is introduced, with zero forcing. The

results were computed with Re = 600, T = 20, ∆t = h.

Figure 1.2: AV Approximation uh1

47



Figure 1.3: AV Approximation zoomed in

As seen in Figures 1.2 and 1.3, artificial viscosity approximation gives a result that

cannot capture the flow pattern due to high viscosity coefficient and low accuracy of

the AV approximation.

Figure 1.4: CS Approximation uh2
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Figure 1.5: CS Approximation Zoomed in

Although the correction solution is computed with the same viscosity coefficient as

the AV approximation, it gives some qualitative features of the flow pattern even on

the coarse mesh - one can clearly see the re-circulation regions in the wake. This

demonstrates the qualitative behavior of the correction step solution: it behaves as if

the Reynolds number of the flow was increased, although the matrix of the system re-

mains the same as in the AV case. Thus, the benefits of using the correction procedure

are clear: for virtually no extra cost (when the parallelization is implemented) one

can model turbulent flows at increasing Reynolds numbers (the interesting possibility

that two or three correction steps would deepen this effect is yet to be explored).
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Chapter 2

Two Approaches to Creating a

Turbulence Model with Increased

Temporal Accuracy

2.1 Introduction

The motion of incompressible fluid flow in the flow domain Ω = (0, L)d is governed by

the Navier-Stokes equations: find the velocity-pressure pair u : Ω× [0, T ] → Rd (d =

51



2, 3) and p : Ω× (0, T ]→ R satisfying

ut + u · ∇u− ν∆u+∇p = f, for x ∈ Ω, 0 < t ≤ T (2.1.1)

∇ · u = 0, x ∈ Ω, for 0 ≤ t ≤ T,

u(x, 0) = u0(x), for x ∈ Ω,

with the normalization condition
∫

Ω
p(x, t) dx = 0 for 0 < t ≤ T . Throughout this

paper, we consider the case of periodic boundary conditions.

According to the Kolmogorov K41 theory, there exists a continuum of scales in tur-

bulent fluid flow, with the smallest scales (in the case of a 3 − D flow) being of

the order O(Re−3/4), where the Reynolds number Re is inverse proportional to the

viscosity coefficient ν. Thus, capturing all the small structures in a turbulent flow

requires the number of mesh points in space for each time step to be O(Re9/4) for

three-dimensional problems. It is not uncommon to have Re ∼ O(108 − 1012) in

real-life applications.

Hence, the direct numerical simulation (DNS) of a 3 − D turbulent flow is often

not computationally economical or even feasible. On the other hand, the largest

structures in the flow (containing most of the energy in the flow) are responsible
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for much of the mixing and most of the momentum transport. This observation led

to several numerical regularizations; one of these is Large Eddy Simulation (LES)

[41, 42, 43] which is based on the idea that the flow can be represented by a collection

of scales with different sizes, and instead of trying to approximate all of them down

to the smallest one, one defines a filter width δ > 0 and computes only the scales of

size bigger than δ (large scales), whereas the effect of the small scales on the large

scales is modeled. This reduces the number of degrees of freedom in a simulation and

accurately represents the large structures in the flow.

If (·)δ denotes a local, spacing averaging operator that commutes with differentiation,

then averaging (4.1.1) gives the following non-closed equations for uδ and pδ in (0, T )×

Ω:

uδt +∇ · (uδuT δ)− ν∆uδ +∇pδ +∇ · (uuT δ − uδuT δ) = f
δ
, (2.1.2a)

∇ · uδ = 0. (2.1.2b)

An LES model arises when one tries to close the system (2.1.2) by choosing an ap-

proximation to the last term on the left-hand side of (2.1.2a). Many different LES

regularizations have been proposed and studied; we consider the family of Approxi-

mate Deconvolution Models (ADMs) that allow for arbitrarily high spatial accuracy.

These models were introduced by Stolz and Adams in [1] and extensively studied;
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see, e.g., [2, 3, 4, 5, 6, 8]. Given the family of Approximate Deconvolution opera-

tors GN defined in Section 2, the Approximate Deconvolution Model for turbulent

Navier-Stokes equations is given by

wt +∇ · (GNw)(GNw)T
δ

− ν∆w +∇qδ = f
δ
, (2.1.3a)

∇ · w = 0, (2.1.3b)

subject to w(0, x) = uδ0(x) and periodic boundary conditions (with zero means).

We begin by introducing the simplest approximate deconvolution model of turbulence;

see, e.g., [3]. To this end, a filtering operator needs to be chosen that commutes with

differentiation under periodic boundary conditions. Throughout this paper, we shall

use the self-adjoint filtering operator A−1 = (I − δ2∆)−1 defined in Section 2.2.

The zeroth (N = 0) ADM, written in the traditional variational formulation (and

with the exact deconvolution operator A applied to both sides of (2.1.3a)), seeks

(w, q) ∈ ((X
⋂
H2(Ω)), Q) such that for any (v, χ) ∈ (X,Q)

(Awt, v) + ν(A∇w,∇v) + b∗(w,w; v)− (q,∇ · v) = (f, v), (2.1.4)

(∇ · w, χ) = 0,
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where the pair of model variables (w, q) approximates the averaged velocity ū and the

pressure p of the Navier-Stokes equations. Note, however, that with the given choice of

the filtering operator A we get a fourth order term νδ2(∆w,∆v) in (2.1.4). In order to

avoid using C1 elements, we follow [3] and employ the mixed variational formulation:

find (wh, ζh, qh) ∈ (Xh, Xh, Qh) such that for any (vh, ξh, χh) ∈ (Xh, Xh, Qh)

(wht , v
h) + δ2(∇wht ,∇vh) + ν(∇wh,∇vh) + νδ2(∇ζh,∇vh) (2.1.5)

+b∗(wh, wh; vh)− (qh,∇ · vh) = (f, vh),

(∇wh,∇ξh) = (ζh, ξh),

(∇ · wh, χh) = 0.

The velocity space X and the pressure space Q are defined in Section 2.2, along with

the corresponding velocity-pressure finite element spaces Xh, Qh.

In addition to having other advantages, the ADMs were applied in different areas, in-

cluding magnetohydrodynamics and the compressible Navier-Stokes equations. High

spatial accuracy is achieved, but the time discretization was always performed by a

low-order backward Euler or Crank-Nicolson method which introduces non-physical
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oscillations. But because solving the Navier-Stokes equations is computationally ex-

pensive even with turbulence models, one usually cannot choose the time step signif-

icantly smaller than the mesh size. Hence, one of the main advantages of the ADMs,

the increased spatial accuracy, cannot be taken full advantage of unless it is com-

bined with a high-accuracy time discretization. The proposed method also needs to

be stable and allow for explicit-implicit implementations with different time scales.

To that end, [71] employs the spectral deferred correction (SDC) method, proposed for

stiff ODEs by Dutt et al., [39], and further developed by Minion et al.; see [34, 36, 106]

and the references therein. SDC methods were studied and compared to intrinsi-

cally high-order methods such as additive Runge-Kutta methods and linear multistep

methods based on BDFs, with the conclusion that the SDC methods are at least

comparable to the latter. In addition, achieving high accuracy for the turbulent NSE

using Runge-Kutta-based methods is very expensive, and the BDF-based methods

typically do not perform well in problems where relevant time scales associated with

different terms in the equation are widely different; see, e.g., [36] for an example

of an advection-diffusion-reaction problem for which the SDC is the best choice for

high-accuracy temporal discretization.

It is also important to notice that in some situations there aren’t many obvious

approaches to increasing the temporal accuracy, with deferred correction being the

only choice. For example, when one seeks a method to decouple a complex system
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in a stable way, one typically develops a first order accurate method; increasing the

accuracy of such a method through deferred correction might be possible - see, e.g.,

[38]. In fact, the atmosphere-ocean-type setting, discussed in [38], was the main

motivating factor for the authors. When one or both of the flows in the fluid-fluid

coupling become turbulent, the researcher must find a decoupling method which has

to be stable, preferably accurate, and allow for a built-in turbulence model. The first

step in that direction is the combination of a turbulence model (ADM chosen here)

and a deferred correction technique - simply because there is currently no result, other

than [38], that allows for a decoupled, stable and higher order accurate approximation.

The two-step deferred correction method for ADM, introduced and studied in [71],

computes (wh1 , q
h
1 ) and (wh2 , q

h
2 ), two consecutive approximations for the averaged

velocity and pressure (ū, p). These approximations satisfy the following equa-

tions for (wh,n+1
1 , ζh,n+1

1 , qh,n+1
1 ), (wh,n+1

2 , ζh,n+1
2 , qh,n+1

2 ) ∈ (Xh, Xh, Qh),∀(vh, ξh, χh) ∈
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(Xh, Xh, Qh) at t = tn+1, n ≥ 0, with k := ∆t = ti+1 − ti:

(
wh,n+1

1 − wh,n1

k
, vh) + δ2(∇(

wh,n+1
1 − wh,n1

k
),∇vh) + ν(∇wh,n+1

1 ,∇vh) (2.1.6a)

+ νδ2(∇ζh,n+1
1 ,∇vh) + b∗(wh,n+1

1 , wh,n+1
1 , vh)− (qh,n+1

1 ,∇ · vh) = (f(tn+1), vh),

(
wh,n+1

2 − wh,n2

k
, vh) + δ2(∇(

wh,n+1
2 − wh,n2

k
),∇vh) + ν(∇wh,n+1

2 ,∇vh) (2.1.6b)

+ νδ2(∇ζh,n+1
2 ,∇vh) + b∗(wh,n+1

2 , wh,n+1
2 , vh)− (qh,n+1

2 ,∇ · vh)

= (
f(tn+1) + f(tn)

2
, vh) +

ν

2
k(∇(

wh,n+1
1 − wh,n1

k
),∇vh)− 1

2
k(
qh,n+1

1 − qh,n1

k
,∇ · vh)

+
ν

2
δ2k(∇(

ζh,n+1
1 − ζh,n1

k
),∇vh) +

1

2
(b∗(wh,n+1

1 , wh,n+1
1 , vh)− b∗(wh,n1 , wh,n1 , vh)),

(∇wh,n+1
j ,∇ξh) = (ζh,n+1

j , ξh), j = 1, 2, (2.1.6c)

(∇ · wh,n+1
j , χh) = 0, j = 1, 2, (2.1.6d)

where b∗(·, ·, ·) is the explicitly skew-symmetrized trilinear form, defined below. Note

that the second step utilizes the same backward Euler time discretization as in the first

step; only the right-hand side is modified by a known quantity, i.e, a known solution

from the first step. This results in the computational attractiveness of the method:

computing two low-order accurate approximations is much less costly (especially for

very stiff problems) than computing a single higher-order approximation. We will

refer to this method as ADM-DCM.

Unfortunately, the accuracy of the ADMs comes at a price: the mixed formulation

(2.1.6) introduces an extra variable, which increases the size of the system. In some
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areas (uncertainty quantification, control, etc.) it is vital to save as much computa-

tional time as possible, while trying not to ruin the quality of a solution. To that

end, we propose a new method, which replaces (2.1.6a) with a less computationally

expensive equation, saving up to 35% of CPU time needed for the ADM-DCM, when

the method is run sequentially.

The paper is organized as follows. In Section 2.2, we introduce the necessary notations

and preliminary results. The new method is introduced in section 2.3 and the stability

and accuracy results are given. The numerical tests, given in Section 2.4, compare

the proposed method to the one from [71] - quantitatively, qualitatively, and in terms

of the required computational resources.

2.2 Mathematical preliminaries and notations

Throughout this paper, the norm ‖·‖ denotes the usual L2(Ω)-norm of scalars, vectors,

and tensors, induced by the usual L2 inner-product, denoted by (·, ·). The space that

the velocity (at time t) belongs to is given by

X = H1
per(Ω)d = {v ∈ L2(Ω)d : ∇v ∈ L2(Ω)d×d and v is periodic with period L}
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equipped with the norm ‖v‖X = ‖∇v‖. The space dual to X is equipped with the

norm

‖f‖−1 = sup
v∈X

(f, v)

‖∇v‖
.

The pressure (at time t) is sought in the space

Q = L2
per(Ω) = {q : q ∈ L2(Ω),

∫
Ω

q(x)dx = 0, q periodic with period L}.

Also introduce the space of weakly divergence-free functions

X ⊃ V = {v ∈ X : (∇ · v, q) = 0,∀q ∈ Q}.

For measurable v : [0, T ]→ X, we define

‖v‖Lp(0,T ;X) = (

∫ T

0

‖v(t)‖pXdt)
1
p , 1 ≤ p <∞
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and

‖v‖L∞(0,T ;X) = ess sup
0≤t≤T

‖v(t)‖X .

Define the trilinear form on X ×X ×X

b(u, v, w) =

∫
Ω

u · ∇v · wdx.

The following lemma is also necessary for the analysis

Lemma 12 There exist finite constants M = M(d) and N = N(d) such that M ≥ N

and

M = sup
u,v,w∈X

b(u, v, w)

‖∇u‖‖∇v‖‖∇w‖
<∞ , N = sup

u,v,w∈V

b(u, v, w)

‖∇u‖‖∇v‖‖∇w‖
<∞.

The proof can be found, for example, in [32]. The corresponding constants Mh and

Nh are defined by replacing X by the finite element space Xh ⊂ X and V by V h ⊂ X,

which will be defined below. Note that M ≥ max(Mh, N,Nh) and that as h → 0,
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Nh → N and Mh →M ; see [32].

Throughout the paper, we shall assume that the velocity-pressure finite element spaces

Xh ⊂ X and Qh ⊂ Q are conforming, have typical approximation properties of finite

element spaces commonly in use, and satisfy the discrete inf-sup, or LBBh, condition

inf
qh∈Qh

sup
vh∈Xh

(qh,∇ · vh)
‖∇vh‖‖qh‖

≥ βh > 0, (2.2.1)

where βh is bounded away from zero uniformly in h. Examples of such spaces can

be found in [32]. We shall consider Xh ⊂ X, Qh ⊂ Q to be spaces of continuous

piecewise polynomials of degree r and r − 1, respectively, with r ≥ 1.

The space of discretely divergence-free functions is defined as follows

V h = {vh ∈ Xh : (qh,∇ · vh) = 0,∀qh ∈ Qh}.

The idea of approximate deconvolution modeling is based on the definition and prop-

erties of the following operator.
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Definition 3 (Approximate Deconvolution Operator) For a fixed finite N , de-

fine the N th approximate deconvolution operator GN by

GNφ =
N∑
n=0

(I − A−1
δ )nφ,

where the averaging operator A−1
δ is the differential filter: given φ ∈ L2(Ω), φ

δ ∈

H2(Ω) is the unique solution of

Aδφ
δ

:= −δ2∆φ
δ

+ φ
δ

= φ in Ω, (2.2.2)

subject to periodic boundary conditions. Under periodic boundary conditions, this

averaging operator commutes with differentiation.

Lemma 13 The operator Gi
N is compact, positive, and is an asymptotic inverse to

the filter A−1
δ , i.e., for very smooth φ and as δ → 0, it satisfies

φ = GNφ
δ

+ (−1)N+1δ2N+2∆N+1A
−(N+1)
δ φ. (2.2.3)

The proof of Lemma 13 can be found in [8].
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We also define the following norm, induced by the deconvolution operator A:

‖φ‖2
A = ‖φ‖2 + δ2‖∇φ‖2.

Define the explicitly skew-symmetrized trilinear form

b∗(u, v, w) :=
1

2
(u · ∇v, w)− 1

2
(u · ∇w, v).

2.3 New Method: Formulation and Theoretical

Results

We now propose a modification to the ADM-DCM method (2.1.6), based on the fol-

lowing key observation. In order for the correction step approximation wh2 of (2.1.6b)

to be stable and second order accurate, the defect step approximation wh1 need not

satisfy (2.1.6a)! Instead, the pair wh1 , q
h
1 from the right hand side of (2.1.6b) must be

computed by any method, that satisfies the following three requirements:

† The method must be stable (any restrictions on its stability will transfer onto
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the corresponding restrictions for the resulting approximation wh2 ).

† The method must be first order accurate in both space and time.

† Finally, the discrete time derivative ū(tn+1)−ū(tn)
k

of the filtered true solution

ū(t) must be approximated within O(h, k) (in the norm L2(0, T ;L2(Ω))) by

wh,n+1
1 −wh,n1

k
.

We can use the fact that the first approximation wh1 need not come from a compu-

tationally expensive turbulence model (note that the ADMs use hyperviscosity, and

this requires either C1 finite elements, or the usage of the mixed formulation (2.1.6),

which increases the size of the system by introducing extra variables). The simplest

method for computing wh1 , that would satisfy all three of the above requirements, is

the well-known artificial viscosity (AV) approximation (see, e.g., [25] and [111] for

the theoretical results on stability and accuracy of the AV approximation, and the

accuracy of its discrete time derivative) below.

(
wh,n+1

1 − wh,n1

k
, vh) + (ν + h)(∇wh,n+1

1 ,∇vh) + b∗(wh,n+1
1 , wh,n+1

1 , vh) (2.3.1)

−(qh,n+1
1 ,∇ · vh) = (f(tn+1), vh).
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In turbulent regimes, when the Reynolds number is prohibitively high, the iterative

methods would fail to compute a solution to (2.3.1), if it weren’t for the increased

viscosity coefficient (ν + h). A solution (w1, q1) of (2.3.1) is usually too crude and

over-diffusive, but it does satisfy the three requirements above, and obtaining it is

much less computationally expensive, than getting a solution of (2.1.6a).

Combining (2.3.1) with (2.1.6b)− (2.1.6d), we propose the following

Algorithm 2.3.1 Let f ∈ L2(0, T ;H−1(Ω)), time step k > 0 and end time T > 0

be given. Set M = T/∆t and wh,01 = wh,02 = ū(0), qh,01 = qh,02 = p(0). For all

n = 0, 1, ...,M − 1, compute wh,n+1
2 , qh,n+1

2 via:

Step 1: Find wh,n+1
1 ∈ Xh, qh,n+1

1 ∈ Qh satisfying for all vh ∈ Xh, χ
h ∈ Qh

(
wh,n+1

1 − wh,n1

k
, vh) + (ν + h)(∇wh,n+1

1 ,∇vh) + b∗(wh,n+1
1 , wh,n+1

1 , vh) (2.3.2)

−(qh,n+1
1 ,∇ · vh) = (f(tn+1), vh),

(∇ · wh,n+1
1 , χh) = 0

Step 2: Find ζh,n+1
1 ∈ Xh satisfying for all ξh ∈ Xh
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(∇wh,n+1
1 ,∇ξh) = (ζh,n+1

1 , ξh). (2.3.3)

Step 3: Find wh,n+1
2 , ζh,n+1

2 ∈ Xh, qh,n+1
2 ∈ Qh satisfying for all vh, ξh ∈ Xh, χ

h ∈ Qh

(
wh,n+1

2 − wh,n2

k
, vh) + δ2(∇(

wh,n+1
2 − wh,n2

k
),∇vh) + ν(∇wh,n+1

2 ,∇vh)

+ νδ2(∇ζh,n+1
2 ,∇vh) + b∗(wh,n+1

2 , wh,n+1
2 , vh)− (qh,n+1

2 ,∇ · vh)

= (
f(tn+1) + f(tn)

2
, vh) +

ν

2
k(∇(

wh,n+1
1 − wh,n1

k
),∇vh)− 1

2
k(
qh,n+1

1 − qh,n1

k
,∇ · vh)

+
ν

2
δ2k(∇(

ζh,n+1
1 − ζh,n1

k
),∇vh) +

1

2
(b∗(wh,n+1

1 , wh,n+1
1 , vh)− b∗(wh,n1 , wh,n1 , vh)),

(∇wh,n+1
2 ,∇ξh) = (ζh,n+1

2 , ξh),

(∇ · wh,n+1
2 , χh) = 0. (2.3.4)

The method is easily parallelizable (as is the method (2.1.6) from [71]), because Steps

1 and 3 can be run simultaneously on two cores. No extra core would be needed for

Step 2: the time needed to run Steps 1 and 2 sequentially on the same core, is still

less than the time needed to do one run of Step 3.

The numerical analysis, performed in [71], along with the corresponding stability

and accuracy results of the AV approximation from [25] and [111], provides all the
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necessary details for the proofs of the two theorems below. Note that the restriction

on the time step could be waved if the model was linearized (one approach is due to

Baker ’76; see, e.g., [7]).

Theorem 14 (Stability) Let wh2 be computed by Algorithm 2.3.1. Let f ∈

L2(0, T ;H−1(Ω)). Also let ū ∈ L2(0, T ;H3(Ω)) and ūtt ∈ L2(0, T ;H1(Ω)).

Then, for n = 0, . . . , N − 1,

‖wh,n+1
2 ‖2

A + νkΣn
i=0‖∇w

h,i+1
2 ‖2 + νδ2kΣn

i=0‖ζ
h,i+1
2 ‖2

≤ ‖wh,02 ‖2
A + Cν−2kΣn

i=0‖
f(ti+1) + f(ti)

2
‖2
−1.

Theorem 15 (Accuracy) Let the assumptions of Theorem 14 be satisfied. Let the

time step satisfy

k <
ν3

maxi=0,1,..,N ‖∇ū(ti)‖4
. (2.3.5)

Also let ūt ∈ L2(0, T ;H3(Ω)) and ūttt ∈ L2(0, T ;H1(Ω)). Then, the error in the
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second approximation satisfies

‖ū(tn+1)− wh,n+1
2 ‖2

A + νk
n∑
i=0

‖∇(ū(ti+1)− wh,i+1
2 )‖2 (2.3.6)

+νδ2k
n∑
i=0

‖ζ(ti+1)− ζh,i+1
2 ‖2

≤ C(ν, ū)(k4 + δ4 + δ2k
n∑
i=0

inf
χ∈Xh

‖ζ(ti)− χi‖2

+k
n∑
i=0

( inf
v∈V h
‖∇(ū(ti)− vi)‖2 + inf

q∈Qh
‖p(ti)− qi‖2)).

2.4 Numerical Tests

We now compare the ADM-DCM solution of (2.1.6) with the new method, AV-ADM,

given by Algorithm 2.3.1. The first comparison will be qualitative: both approaches

will be tested on a problem with the known true solution, to verify the claimed second

order accuracy of AV-ADM. To that end, we consider Ω = [0, 1] × [0, 1], T = 1, and

the right hand side chosen so that the true solution is given by
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u1 = e−8t(1− x2 − y2)y,

u2 = −e−8t(1− x2 − y2)x,

p = 0.

First, we try the flow in a laminar regime, with ν = 0.1.

Table 2.1
The first step of AV-ADM, ν = 0.1, h = ∆t = δ

N || ū− wh1 ||L2(0,T ;L2(Ω)) rate || ū− wh1 ||L2(0,T ;H1(Ω)) rate

4 0.00555074 - 0.0568668 -

8 0.00583349 - 0.0556956 0.03

16 0.00452737 0.37 0.0422693 0.40

32 0.00293495 0.63 0.0272595 0.63

64 0.00169471 0.79 0.0157943 0.79
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Table 2.2
The correction step of AV-ADM, ν = 0.1, h = ∆t = δ

N || ū− wh2 ||L2(0,T ;L2(Ω)) rate || ū− wh2 ||L2(0,T ;H1(Ω)) rate

4 0.00674305 - 0.053864 -

8 0.00416039 0.70 0.0325734 0.73

16 0.00165678 1.33 0.0134262 1.28

32 0.000492286 1.75 0.00422331 1.67

64 0.000130285 1.92 0.00118431 1.83

Table 2.3
The first step of ADM-DCM, ν = 0.1, h = ∆t = δ

N || ū− wh1 ||L2(0,T ;L2(Ω)) rate || ū− wh1 ||L2(0,T ;H1(Ω)) rate

4 0.00562277 - 0.0454994 -

8 0.00350465 0.68 0.031502 0.53

16 0.00283339 0.31 0.0285787 0.14

32 0.00202803 0.48 0.0208906 0.45

64 0.00118028 0.78 0.0123171 0.76
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Table 2.4
The correction step of ADM-DCM, ν = 0.1, h = ∆t = δ

N || ū− wh2 ||L2(0,T ;L2(Ω)) rate || ū− wh2 ||L2(0,T ;H1(Ω)) rate

4 0.00828015 - 0.0638702 -

8 0.00464303 0.83 0.0347793 0.88

16 0.0017667 1.39 0.0135634 1.36

32 0.000519078 1.77 0.0041831 1.70

64 0.000137056 1.92 0.00116371 1.85

The results in Tables 1-4 demonstrate that both methods achieve the claimed conver-

gence rates, when modeling a laminar flow. As expected for the deferred correction-

type methods, the convergence is asymptotic in h,∆t. Next, we apply the methods

to the flow in a turbulent regime, ν = 10−5.
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Table 2.5
The first step of AV-ADM, ν = 0.00001, h = ∆t = δ

N || ū− wh1 ||L2(0,T ;L2(Ω)) rate || ū− wh1 ||L2(0,T ;H1(Ω)) rate

4 0.00746608 - 0.0759235 -

8 0.0093729 - 0.091114 -

16 0.00927388 0.02 0.0898472 0.02

32 0.00786712 0.24 0.0785126 0.19

64 0.00578672 0.44 0.0616183 0.35

128 0.00376394 0.62 0.044508 0.47

Table 2.6
The correction step of AV-ADM, ν = 0.00001, h = ∆t = δ

N || ū− wh2 ||L2(0,T ;L2(Ω)) rate || ū− wh2 ||L2(0,T ;H1(Ω)) rate

4 0.0338806 - 0.280109 -

8 0.0200362 0.76 0.174428 0.68

16 0.00802842 1.32 0.082568 1.08

32 0.00250324 1.68 0.0336661 1.29

64 0.000690117 1.86 0.0131069 1.36

128 0.000179588 1.94 0.00498518 1.39
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Table 2.7
The first step of ADM-DCM, ν = 0.00001, h = ∆t = δ

N || ū− wh1 ||L2(0,T ;L2(Ω)) rate || ū− wh1 ||L2(0,T ;H1(Ω)) rate

4 0.0274338 - 0.233568 -

8 0.0214227 0.36 0.229293 -

16 0.020055 0.10 0.259242 -

32 0.0147868 0.44 0.243666 0.09

64 0.00890914 0.73 0.206143 0.24

128 0.00482633 0.88 0.164244 0.33

Table 2.8
The correction step of ADM-DCM, ν = 0.00001, h = ∆t = δ

N || ū− wh2 ||L2(0,T ;L2(Ω)) rate || ū− wh2 ||L2(0,T ;H1(Ω)) rate

4 0.0338833 - 0.280133 -

8 0.0200413 0.76 0.17445 0.68

16 0.00803423 1.32 0.0825819 1.08

32 0.00250582 1.68 0.036317 1.30

64 0.000691374 1.86 0.0129472 1.37

128 0.000180689 1.94 0.0049732 1.38
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The results of the comparison of the two methods show their agreement in both the

sizes of the errors and the convergence rates - see Tables 6 and 8 for the comparison

of the correction step results. Thus, at least quantitatively, a solution based on the

computationally cheap AV approximation behaves just as well as the one based on

the ADM solution.

Next we try the qualitative test: we check that the AV-ADM solution is able to

capture the coherent structures of a turbulent flow past the step. This would demon-

strate, that the correction step solution of AV-ADM, although based on a much less

”sophisticated” AV approximation, than the solution of ADM-DCM, still is not too

dissipative to miss any of the important physical characteristics of the flow.
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(a) ADM-ADM, T = 10

(b) AV-ADM, T = 10

(c) ADM-DCM, T = 20

(d) AV-ADM, T = 20

(e) ADM-ADM, T = 30

(f) AV-ADM, T = 30

Figure 2.1: Flow past forward backward-facing step streamlines, ν = 1/600
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(a) ADM-DCM, T = 40

(b) AV-ADM, T = 40

(c) ADM-DCM, T = 50

(d) AV-ADM, T = 50

Figure 2.2: Flow past forward backward-facing step streamlines, ν = 1/600

Figures 1 and 2 show that both methods are able to capture equally well the formation,

shedding and traveling of the eddies. Thus, qualitatively, as well as quantitatively,

the methods are in excellent agreement - and they both produce the expected results.

Now to the main reason for possibly choosing AV-ADM instead of ADM-DCM: the
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computational attractiveness. We compare the computational time that it took the

methods to produce the pictures above. The table below shows two cases: when both

methods are run sequentially (time marching to compute the defect step approxima-

tions, then compute all the correction step approximations on the same core) and in

parallel (with wh,n+1
1 and wn2 computed at the same time on two different cores). The

results clearly demonstrate the effectiveness of the proposed new approach - but only

in the sequential setting. When each of the methods is parallelized, the computational

time needed for the correction step becomes the leading factor for both methods; this

correction step involves resolving an approximate deconvolution model (with the right

hand sides being different for both methods) - and so in the parallelized versions these

methods require the same amount of computational resources.

Table 2.9
Computational Times for the Qualitative Testing

ADM-ADM AV-ADM

Parallel 2584 2590

Sequential 4530 3043

For one extra qualitative comparison of the methods we consider the two-dimensional

flow between two offset circles; see, e.g., [136], [137], [138]. The domain is a circle

with an interior off-center circle obstacle.
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Let r1 = 1, r2 = 0.1, c1 = 0.5, and c2 = 0. The domain is then given by

Ω = {(x, y) : x2 + y2 ≤ r2
1} ∩ {(x, y) : (x− c1)2 + (y − c2)2 ≥ r2

2}.

Zero initial conditions and no-slip boundary conditions have been chosen for both

cases. The flow is driven by the counterclockwise rotational body force

f(x, y, t) =
(
− 4y(1− x2 − y2), 4x(1− x2 − y2)

)T
.

All computations have been performed using deal.II — a general-purpose object-

oriented finite element library [128]. For all of the computations below, ∆t = δ =

H = 0.025.

To verify the accuracy of AV-ADM and ADM-ADM methods, we plot the velocity

fields, as is done in [138], and vorticity contours at the final time T = 5. In addition,

we give two plots for the model energy ||w||2 + δ2||∇w||2 and enstrophy 1
2
||∇×w||2 +

δ2

2
||∆w||2. As seen in figures 2.3, 2.4 and 2.5, computational results are consistent

both within ADM-DCM and AV-ADM, and they are also consistent with [138].
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Figure 2.3: The difference between velocity fields at the final time T =
5 of ADM-DCM (on the left) and AV-ADM (on the right) approximations
(ν = 1/200).

Figure 2.4: The difference between vorticities at the final time T = 5
of ADM-DCM (on the left) and AV-ADM (on the right) approximations
(ν = 1/200).
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(a) The difference between energies (b) The difference between enstrophies

Figure 2.5: Time Evolutions of Energy and Enstrophy (ν = 1/200)
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Chapter 3

A Defect-Deferred Correction

Method for Fluid-Fluid Interaction

3.1 Introduction

Global climate and regional weather simulations often require the resolution of phe-

nomena related to atmosphere-ocean interaction (AOI), such as hurricanes, monsoons,

and climate variability like El Niño-Southern Oscillation and the Madden-Julian Os-

cillation [77, 113, 114, 115]. The most common numerical approach is to pass fluxes

(across the fluid interface) of conserved quantities between an ocean code and an

atmosphere code with some prescribed frequency, such as every simulated day. The
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ocean and atmosphere codes otherwise view each other as black boxes. Each code

is optimized to resolve the dynamics of the respective physical system. For exam-

ple, energy in the atmosphere remains significant at smaller time scales and larger

spatial scales than in the ocean, so different time steps and grids are often used for

each system. This intuitive approach is now well-established, with numerous codes in

existence. Some examples are the so-called global circulation models (GCMs) used to

assess climate change by the Intergovernmental Panel on Climate Change (IPCC) [98],

as well as coupled Weather Research and Forecasting (WRF) and Regional Oceanic

Models (ROMS) [94, 96, 107, 108].

We consider an approach to improve two numerical aspects of typical AOI simula-

tions: artificial diffusion (or viscosity) processes, and the coupling across the fluid

interface. Viscosity and diffusion parameterizations are included in simulations to

control numerical noise and to model subscale mixing processes; we provide some

details in Section 3.1.2. But the net effect can be to overdiffuse (formally) and im-

pact model resolution. For example, reduction of viscosity parameters in the ocean

alone have been shown to improve some simulation outputs for both the ocean and

atmosphere [99], but remain larger than physical parameter values in order to control

numerical noise. Meanwhile, typical coupling methods induce time-consistency errors

(with rare exceptions; coupling details are discussed below). Some studies indicate

sensitivity with respect to this error, demonstrating that improved coupling methods

could translate to better simulation results in many cases [84, 96].
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There is an abundance of literature regarding the physics behind surface fluxes and

the preservation of flux conservation properties when mapping between different com-

putational grids. In contrast, the literature that addresses the temporal aspects of

flux calculations in the context of AOI is somewhat sparse. The method in [85] ex-

emplifies the approach used for climate models, while approaches for regional coupled

models may be found in [76, 109]. The common feature we point out is that the time

consistency is always formally first-order with respect to the size of time interval be-

tween coupling air and sea components. An exception is the recent method in [95, 96],

which employs iteration to achieve second-order consistency; further details are dis-

cussed below. Generally, the development of flux-passing algorithms is complicated

by technical issues of numerical stability and consistency. Numerical analysis of algo-

rithms can illustrate the challenges and provide insight for future developments, but

few examples of this sort of analysis exist that address time-dependent issues. To our

knowledge, the papers are [78, 91, 92, 95, 116]. Our approach is investigated for a

simple model of two viscous fluids that retains the key aspect of their coupling; the

ensuing algorithms are amenable to a rigorous mathematical analysis.

Consider the d-dimensional domain Ω in space that consists of two subdomains Ω1

and Ω2, coupled across an interface I, for times t ∈ [0, T ]. The problem is: given

νi > 0, fi : [0, T ] → H1(Ωi)
d, ui(0) ∈ H1(Ωi)

d and κ ∈ R, find (for i = 1, 2)
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ui : Ωi × [0, T ]→ Rd and pi : Ωi × [0, T ]→ R satisfying (for 0 < t ≤ T )

ui,t = νi∆ui − ui · ∇ui −∇pi + fi, in Ωi, (3.1.1)

−νin̂i · ∇ui · τ = κ|ui − uj|(ui − uj) · τ, on I, i, j = 1, 2 , i 6= j , (3.1.2)

ui · n̂i = 0 on I, i = 1, 2 (3.1.3)

∇ · ui = 0, in Ωi (3.1.4)

ui(x, 0) = u0
i (x), in Ωi, (3.1.5)

ui = 0, on Γi = ∂Ωi \ I. (3.1.6)

The vectors n̂i are the unit normals on ∂Ωi, and τ is any vector such that τ · n̂i = 0.

The parameters νi represent kinematic viscosities. We include generic body forces

fi, for generality. This model for fluid velocities, ui, and pressures, pi, was studied

in [91], initially.

The coupling condition (3.1.2) represents the flux of momentum across a boundary

layer region near the fluid interface. The interface is modelled as being flat (just a

line segment for d = 2). The bulk fluids slide past each other across the boundary

layers. The action of the fluid in the layer region is modelled as imparting a horizontal

frictional drag force that scales quadratically with the jump in velocities across the
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layers. The constant κ > 0 is a friction parameter. A discussion of the full equations

of the atmosphere and ocean and their mathematical analysis is provided in the work

of Lions, Temam and Wang [103]. Our condition (3.1.2) is analogous to the coupling

equations in [103], up to scaling constants.

In application, momentum flux is not calculated using simultaneous values of the

ocean and air velocities, as would be required to satisfy (3.1.2). Fluxes are averaged

locally in time to remove aliasing effects and computed using explicit or semi-implicit

methods, so that the ocean and atmosphere codes may be run independently; se-

quentially, or even in parallel. This introduces a consistency error in time. A review

of numerical coupling strategies is provided in the work of Lemarié, Blayo and De-

breu [95], where an alternative coupling method is proposed and analyzed that is

second-order consistent in time, and could be extended to higher order. In contrast,

the methods in most codes, and in [78, 91, 92, 116], are only first-order time accurate.

The approaches in [78, 95] advocate iterating between the fluid solvers until conver-

gence. These methods are flux-conservative and stable. In particular, the method

of [95] applies to a general class of flux computations encountered in application codes.

In this chapter, we develop a method that is unconditionally stable and second-order

time accurate, with exactly two solves per time step; further iterations are not required

for stability or (formal) consistency. It is desirable to minimize iterations as much as

possible, since in practice these require the execution of expensive physics subroutines
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and additional parallel communication. However, further iterations (in the manner

of [95]) might still be justified for accuracy when fluxes become large. We also provide

a correction for the use of viscosity parameterizations. Our goal is to outline a broad

methodology, but also provide a specific algorithm with a full mathematical analysis,

and computational examples to illustrate the theory. The coupling method we focus

on is not flux-conservative or time-averaged, as one encounters in application codes.

More general flux calculations will be handled in future work.

3.1.1 Improvement of time consistency via spectral deferred

correction

The main advantage of the deferred correction approach is that a simple low-order

method can be employed, and the recovered solution is of high-order accuracy, due to a

sequence of deferred correction equations. The classical deferred correction approach

could be seen, e.g., in [69]. However, in 2000 a modification of the classical deferred

correction approach was introduced by Dutt, Greengard and Rokhlin, [39]. This

allowed the construction of stable and high-order accurate spectral deferred correction

(SDC) methods.

In [105], Minion discusses these SDC methods in application to an initial value ODE.
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For clarity, that discussion is adapted here to explain the application to our prob-

lem. Assume a method-of-lines approach in each fluid domain; application of a given

discrete method in space for (3.1.1)-(3.1.6) generates a semi-discrete problem of the

form

φ′i(t) = Fi(t, φ1(t), φ2(t)), t ∈ (0, T ] (3.1.7)

φi(0) = φ0
i ,

for i = 1, 2. Here, φi ∈ RNi is a vector of unknowns to approximate, for example, all

fluid variables at grid points in space, and Fi : (0, T ]×RN1 ×RN2 → RNi . Boundary

conditions are already included in the operator Fi. The simultaneous flux condi-

tions (3.1.2) are applied on I, which is the reason that both φ1 and φ2 are required

as inputs for Fi. The above formulation does not assume that the same methods are

applied to the equations in both fluid domains.

Let u = (u1, u2) and define [u] ≡ u1 − u2. Our base (low-order) numerical method is

derived by applying a backward-Euler method to approximate (3.1.7), but with the
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following semi-implicit modification to the coupling conditions:

− νin̂i · ∇ui(tn+1) · τ ≈ κ|[u](tn)|ui(tn+1) · τ

− κ
√
|[u](tn)|

√
|[u](tn−1)|uj(tn) · τ, on I, i, j = 1, 2 , i 6= j. (3.1.8)

When using a finite element formulation in space, this treatment of the coupling

was shown to be unconditionally stable in [91]. Without the geometric averaging

in (3.1.8), the coupling is known to exhibit less stable behavior for large enough time

steps; see [116]. Since the data uj(t
n+1) is not used in the coupling, the result is a

system of fully-discrete equations of the form

φn+1
i − φni

∆t
= F̃i(φ

n+1
i , φni , φ

n−1
i , φnj , φ

n−1
j )

= Fi(t
n+1, φ1(tn+1), φ2(tn+1)) +O(∆t),

(3.1.9)

where φni ≈ φi(t
n), for i = 1, 2 and i 6= j. The variables φn+1

1 and φn+1
2 are thus

“decoupled”, enabling solvers for each to run in parallel. We note that other coupling

methods and time discretizations could be represented in an analogous form in order

to explore extensions to applications. The time step size ∆t represents the length of

time between coupling of the fluid models. Typically, subcycling of the atmosphere

is performed due to the faster dynamics compared to the ocean. In mathematical

terminology, this is known as multirate time stepping.

In the deferred correction approach, the formal accuracy of (3.1.9) is increased to
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order ∆tk through a series of k − 1 additional correction steps. We focus on the

case of k = 2, so we define one correction step. In the derivation of the correction

equations, one introduces an abstract continuum reconstruction in time of the data

φni , say φ̃i : [0, T ]→ RNi , such that φ̃i(t
n) = φni for i = 1, 2 and all n. Corrections are

found by approximating the error function δi(t) ≡ φi(t)− φ̃i(t). One notes first that

we may eliminate φi by inserting φi = φ̃i + δi in (3.1.7) and integrating to yield

φ̃i(t) + δi(t) = φ0
i +

∫ t

0

Fi(τ, φ̃1 + δ1, φ̃2 + δ2) dτ.

The following functions are one measure of error in φ̃i:

Ei(t, φ̃1(t), φ̃2(t)) ≡ φ0
i +

∫ t

0

Fi(τ, φ̃1, φ̃2) dτ − φ̃i(t).

An equation for the error is then

δi(t) =

∫ t

0

{
Fi(τ, φ̃1 + δ1, φ̃2 + δ2)− Fi(τ, φ̃1, φ̃2)

}
dτ + Ei(t, φ̃1(t), φ̃2(t)),

from which one sees that

δi(t
n+1)− δi(tn)

∆t
=

1

∆t

∫ tn+1

tn

{
Fi(τ, φ̃1 + δ1, φ̃2 + δ2)− Fi(τ, φ̃1, φ̃2)

}
dτ

+
Ei(t

n+1, φ̃n+1
1 , φ̃n+1

2 )− Ei(tn, φ̃n1 , φ̃n2 )

∆t
.

(3.1.10)
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The Ei-terms satisfy

Ei(t
n+1, φ̃n+1

1 , φ̃n+1
2 )− Ei(tn, φ̃n1 , φ̃n2 )

∆t
=

1

∆t

∫ tn+1

tn
Fi(τ, φ̃1, φ̃2) dτ − φ̃n+1

i − φ̃ni
∆t

.

In order to achieve the desired (second-order) accuracy, the deferred correction

method requires this latter integral to be evaluated using a second-order quadrature

rule. We apply the trapezoidal rule in this research.

A benefit of the deferred correction approach is that the same base discretization

method may be applied to the remaining terms in (3.1.10), so we apply our semi-

discrete method and approximate Fi by F̃i. The error approximations are denoted by

δni ≈ δi(t
n), which are added to φni to get the corrected approximations, say

ηni ≡ φni + δni = φi(t
n) +O(∆t2).

After applying the discretization method to (3.1.10) and eliminating the values δni ,

the method for the corrected approximation is

ηn+1
i − ηni

∆t
=
{
F̃i(η

n+1
i , ηni , η

n−1
i , ηnj , η

n−1
j )− F̃i(φn+1

i , φni , φ
n−1
i , φnj , φ

n−1
j )

}
+

1

2

{
Fi(t

n+1, φn+1
1 , φn+1

2 ) + Fi(t
n, φn1 , φ

n
2 )
}
.

(3.1.11)

Note that ηn+1
j is not needed to compute ηn+1

i for i 6= j. The data φn+1
i and some

terms in (3.1.11) are already computed in the predictor step. The correction step
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is equivalent to performing the predictor step with some extra source terms and

an algebraic change to the approximation of the momentum flux. This property of

the deferred correction approach makes it potentially viable for application codes,

since the existing code structure (the implementation of the predictor step) could be

leveraged quite heavily to implement the corrector step.

3.1.2 Reduction of numerical diffusion effects via defect cor-

rection

The general idea of defect correction and deferred correction methods for solving

partial differential equations has been known for a long time. For a survey, see [81].

Defect correction has been proven computationally attractive in fluid applications;

see, e.g., [25, 53, 64, 73, 100] and references therein. Initial approaches to using the

defect-deferred correction ideas for AOI were tested in [111, 112], where the method

was successfully applied to the Navier-Stokes equations in one domain ([111]) and

convection-diffusion equations in the two-domain setting (with the coupling condition

introduced as a linearized version of rigid lid) in [112]. The general idea of any defect

correction method (DCM) can be formulated as follows (see, e.g., [68, 81]). Given an
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operator G̃ to approximate Gx = 0, build an iterative procedure:

G̃x1 = 0, (3.1.12)

G̃xi+1 = G̃xi −Gxi, i ≥ 1.

The choice of a particular approximation G̃ determines the defect correction method

in use. In this chapter, the “defect” will represent numerical viscosity, which we

represent using the additional (constant) parameters Hi > 0 to obtain an effective

viscosity coefficient of νi + Hi, i = 1, 2. The operator G̃ in (3.1.12) may be inter-

preted as using the effective viscosity in the construction of the operator F̃i. Then

G represents a corresponding operator that does not use numerical viscosity. In the

deferred correction step (3.1.11), this translates to using the viscosity coefficient νi

alone in the construction of the operator Fi.

In summary, the combined defect-deferred correction (DDC) method is equivalent

to using the following viscous terms when constructing the operators in (3.1.9)
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and (3.1.11):

(νi +Hi)∆η
n+1
i ⇔ F̃i(η

n+1
i , ηni , η

n−1
i , ηnj , η

n−1
j )

(νi +Hi)∆φ
n+1
i ⇔ F̃i(φ

n+1
i , φni , φ

n−1
i , φnj , φ

n−1
j )

νi∆φ
j
i ⇔ Fi(t

j, φj1, φ
j
2), j = n, n+ 1.

The DDC method constitutes an easy way to enhance the deferred correction al-

gorithm by reducing the impact of artificial viscosity. This approach preserves an

important attribute of deferred correction: that the code structure used to imple-

ment the predictor step may be leveraged to implement the corrector step.

Constant-coefficient mixing-length models are used to some extent in codes, but a

number of more sophisticated parameterizations also exist. For sake of brevity, we re-

fer to the atmosphere and ocean components of the Community Earth Systems Model

(see [88, 110]) and focus on the dissipation of momentum. In the atmosphere code,

divergent modes in horizontal transport may be controlled with different options.

Harmonic mixing ∇·α∇ is one; another is to use the more scale-selective biharmonic

mixing like ∇·ν∇∆, again with constant coefficient in lower model layers for all cases.

In upper model layers, the constants are allowed monotonically-increasing values (up

to about four times the bulk value) due to the different dynamics near the top of the

atmosphere.

Vertical dynamics are time-split from the horizontal, and vertical viscosity is handled

using implicit, backward-Euler time stepping with a moist turbulence scheme. One
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calculates an eddy-diffusivity parameter K = l ·
√
e · S, with l a mixing length, e a

diagnostic turbulent kinetic energy, and S a stability parameter. The calculations of

these quantities are semi-implicit during the iteration required for the implicit-Euler

step, and dependent on many state variables.

The ocean model also provides a range of options for horizontal and vertical viscosity.

For horizontal dynamics, both harmonic and biharmonic damping operators may be

used, with spatially-varying coefficients. There is an option for anisotropic horizontal

viscosity, which is represented as the divergence of a viscous stress tensor that depends

linearly on the velocity gradient. The tensor coefficients may vary in space and time

in some prescribed way, or may be computed in terms of the strain-rates, nonlinearly,

in the manner of Smagorinsky. Vertical viscosity ∂zµ∂z can be implemented either

explicitly or implicitly, with a constant-coefficient option. Another option allows a

computation for µ as a function of the local Richardson number. Finally, µ can be

computed using the so-called K-profile parameterization (KPP); this is complex and

we refer the reader to [101] for details. The Richardson and KPP methods let µ

depend on various state variables.

In this chapter, only constant-coefficient harmonic diffusion is used to control the com-

plexity of our full numerical analysis. More sophisticated operators could be explored

by changing the definitions of the functions Fi, and various time-stepping approaches,

including operator-splitting. These extensions are left for future investigation.
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The remainder of this work is organized as follows: in Section 3.2, notation and

mathematical preliminaries are given and the two-step DDC method is introduced

(Algorithm 3.2.1) using a finite element discretization in space. The unconditional

stability of the proposed method and convergence results are proven in Section 3.3.

Computations are performed to illustrate the stability and accuracy predictions of the

theory in Section 3.4. In our computations we also observe that the corrector step

provides a significant improvement to accuracy at the largest tested scales of time step

and artificial viscosity parameters. This indicates a potential benefit in application,

where time step sizes and artificial viscosity (or diffusion) values are restricted by

computational resources. In Section 3.5 we conclude with a summary and discussion

of future work.

3.2 Method Description, Notation and Prelimi-

naries

This section presents the numerical schemes for (3.1.1)-(3.1.6), and provides the nec-

essary definitions and lemmas for the stability and convergence analysis. For D ⊂ Ω,

the Sobolev space Hk(D) = W k,2(D) is equipped with the usual norm ‖·‖Hk(D), and

semi-norm |·|Hk(D), for 1 ≤ k < ∞, e.g., Adams [74]. The L2 norm is denoted by

‖·‖D. For functions v(x, t) defined for almost every t ∈ (0, T ) on a function space
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V (D), we define the norms (1 ≤ p ≤ ∞)

‖v‖L∞(0,T ;V ) = ess sup
0<t<T

‖v(·, t)‖V and ‖v‖Lp(0,T ;V ) =

(∫ T

0

‖v‖pV dt
)1/p

.

The dual space of the Banach space V is denoted V ′.

For i = 1, 2, let

Xi := {vi ∈ H1(Ωi)
d : vi = 0 onΩi \ I, i = 1, 2, vi · n̂i = 0 on I}

be velocity spaces, with associated pressure spaces

Qi = {qi ∈ L2(Ωi)
d :

∫
Ωi

qidΩi = 0}.

We denote u = (u1, u2), f = (f1, f2) and X := {v = (v1, v2) : vi ∈ Xi, i = 1, 2} .

Similarly, we denote q = (q1, q2) and Q := {q = (q1, q2) : qi ∈ Qi, i = 1, 2}.

A natural subdomain variational formulation for (3.1.1)-(3.1.6), obtained by multi-

plying (3.1.1) by vi, integrating and applying the divergence theorem, is to find (for
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i, j = 1, 2, i 6= j) ui : [0, T ]→ Xi and pi : [0, T ]→ Qi satisfying

(ui,t, vi)Ωi + νi(∇ui,∇vi)Ωi + (ui · ∇ui, vi)Ωi − (pi,∇vi)

+

∫
I

κ(ui − uj)|ui − uj|vids = (fi, vi)Ωi , ∀ vi ∈ Xi,

(∇ · ui, qi) = 0, ∀ qi ∈ Qi.

(3.2.1)

The natural monolithic variational formulation for (3.1.1)-(3.1.6) is found by summing

(3.2.1) over i, j = 1, 2 and i 6= j and is to find u : [0, T ] → X and p : [0, T ] → Q

satisfying

(ut,v) + ν(∇u,∇v) + (u · ∇u,v)− (p,∇ · v) +

∫
I

κ|[u]|[u][v]ds = (f ,v),∀v ∈ X,

(∇ · u,q) = 0, ∀ q ∈ Q (3.2.2)

where [·] denotes the jump of the indicated quantity across the interface I, (·, ·) is the

L2(Ω1 ∪ Ω2) inner product and ν = νi in Ωi.

Comparing (3.2.2) and (3.2.1) we see that the monolithic problem (3.2.2) has a global

energy that is exactly conserved, (in the appropriate sense), (set v = u and q = p

in (3.2.2)). The subdomain sub-problems (3.2.1) do not possess a subdomain energy

which behaves similarly due to energy transfer back and forth across the interface

I. It is possible for decoupling strategies to become unstable due to the input of

non-physical energy as a numerical artifact; see [90, 91].
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Let the domain Ω ⊂ Rd (typically d = 2, 3) have convex, polygonal subdomains Ωi for

i = 1, 2 with ∂Ω1∩∂Ω2 = Ω1∩Ω2 = I. Let Γi denote the portion of ∂Ωi that is not on

I, i.e. Γi = ∂Ωi\I. For i = 1, 2, let Xi =
{
v ∈ H1(Ωi)

d | v|Γi = gi, v · n̂i = 0 on I
}

, let

(·, ·)Ωi denote the standard L2 inner product on Ωi, and let (·, ·)Xi denote the standard

H1 inner product on Ωi. Define X = X1 × X2 and L2(Ω) = L2(Ω1) × L2(Ω2). For

u,v ∈ X with u = [u1, u2]T and v = [v1, v2]T , define the L2 inner product

(u,v) =
∑
i=1,2

∫
Ωi

ui · vi dx ,

and H1 inner product

(u,v)X =
∑
i=1,2

(∫
Ωi

ui · vi dx+

∫
Ωi

∇ui : ∇vi dx
)
,

and the induced norms ‖v‖ = (v,v)1/2 and ‖v‖X = (v,v)X
1/2, respectively. The

case where gi = 0, i = 1, 2 will be considered here, and can be easily extended to the

case of nonhomogeneous Dirichlet conditions on ∂Ωi \ I.

The inf-sup stable pair of velocity-pressure spaces (Pm, Pm−1) will be chosen with

m ≥ 2.
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For functions u, v, w ∈ Xi, i = 1, 2 we define the expilicitly skew-symmetrized non-

linear form on Ωi by

ci(u; v, w) =
1

2
(u · ∇v, w)Ωi −

1

2
(u · ∇w, v)Ωi (3.2.3)

Lemma 16 (X, ‖·‖X) is a Hilbert space.

Proof 9 The choice of boundary conditions for X1 and X2 will ensure Xi ⊂ H1(Ωi),

i = 1, 2 are closed subspaces. Hence by the definitions of (·, ·)X and ‖·‖X , (X, ‖·‖X)

is a Hilbert space. �

The following discrete Gronwall’s lemma and its modified version from [70] will be

utilized in the subsequent analysis.

Lemma 17 (Gronwall’s lemma) Let k, M , and aµ, bµ, cµ, γµ, for integers µ > 0, be

nonnegative numbers such that

an + k
n∑
µ=0

bµ ≤ k
n∑
µ=0

γµaµ + k
n∑
µ=0

cµ +M for n ≥ 0. (3.2.4)

Suppose that kγµ < 1, for all µ, and set σµ ≡ (1− kγµ)−1. Then,

an + k
n∑
µ=0

bµ ≤ exp

(
k

n∑
µ=0

σµγµ

){
k

n∑
µ=0

cµ +M

}
for n ≥ 0. (3.2.5)
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Lemma 18 (Modified Gronwall’s lemma) Let k, M , and aµ, bµ, cµ, γµ,

for integers µ > 0, be nonnegative numbers such that

an + k
n∑
µ=0

bµ

≤ k
n−1∑
µ=0

γµaµ + k

n∑
µ=0

cµ +M for n ≥ 0. (3.2.6)

Then, with σµ ≡ (1− kγµ)−1,

an + k
n∑
µ=0

bµ

≤ exp

(
k
n−1∑
µ=0

σµγµ

){
k

n∑
µ=0

cµ +M

}
for n ≥ 0. (3.2.7)

Lemma 19 Let v ∈ H1
Ω. Then there exists C = C(Ω) > 0,

a finite constant such that

‖v‖L3(∂Ω) ≤ C(‖v‖1/4

L2(Ω)‖∇v‖
3/4

L2(Ω) + ‖v‖1/6

L2(Ω)‖∇v‖
5/6

L2(Ω)), (3.2.8)
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‖v‖L2(∂Ω) ≤ C‖v‖1/2

L2(Ω)‖∇v‖
1/2

L2(Ω), (3.2.9)

‖v‖L4(∂Ω) ≤ C‖∇v‖L2(Ω) (3.2.10)

Proof 10 See [72], Theorem II.4.1, pg. 63. �

Lemma 20 Let u, v, w ∈ H1(Ωi) for i = 1, 2. Then there exists C = C(Ωi) > 0, a

finite constant such that

ci(u; v, w) ≤ C‖u‖1/2
Ωi
‖∇u‖1/2

Ωi
‖∇v‖Ωi‖∇w‖Ωi (3.2.11)

Proof 11 The proof can be found in [91]. �

The following constants and assumptions on the problem data (written here as as-

sumptions on the true solution u) will be used in the proofs below.
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Definition 4 Let i = 1, 2.

Cu := ‖u(x, t)‖L∞(0,T ;L∞(Ω)) ,

Cui,t := ‖ui,t(x, t)‖L∞(0,T ;L∞(Ω)) ,

C∇ui,t := ‖∇ui,t(x, t)‖L∞(0,T ;L∞(Ω))

Assumption 1 ∃α > 0, such that α ≤ |[u( #»x , t)]|, ∀ #»x ∈ I, ∀t ∈ (0, T ].

Assumption 2 Let the true solution u satisfy

∣∣∣∣ ∂∂t(|ui(t)|)
∣∣∣∣ ≤ C∆t1/4, for i = 1, 2, 0 < t ≤ ∆t,∀ #»x ∈ I. (3.2.12)

3.2.1 Discrete Formulation

Let Ti be a triangulation of Ωi and Th = T1 ∪ T2. Take Xh
i ⊂ Xi to be conforming

finite element spaces for i = 1, 2, and define Xh = Xh
1 × Xh

2 ⊂ X. It follows that

Xh ⊂ X is a Hilbert space with corresponding inner product and induced norm. We

shall consider Xh
i to be spaces of continuous piecewise polynomials of degree m ≥ 2.
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For tk ∈ [0, T ], ûk, ũk will denote the discrete approximations (defect step and

correction step, respectively) to u(tk).

Every defect/deferred correction method is based on a lower-order accurate method,

which still possesses some desirable characteristics. In our case, it is the geometric

averaging-based data passing scheme from [91].

Let ∆t > 0, fi ∈ L2(Ωi). For each M ∈ N,M ≤ T
∆t

, given uni ∈ Xi,h and pni ∈ Qi,h,

n = 0, 1, 2, · · · ,M − 1, solve on each subdomain (for i, j = 1, 2, i 6= j) to find un+1
i ∈

Xi,h satisfying

(
un+1
i − uni

∆t
, vi

)
+ νi(∇un+1

i ,∇vi) + κ

∫
I

un+1
i |uni − unj |vi ds

− κ
∫
I

unj |uni − unj |1/2|un−1
i − un−1

j |1/2vi ds

+ ci(u
n+1
i ;un+1

i , vi)− (pn+1
i ,∇ · vi) = (fi(t

n+1), vi), ∀vi ∈ Xi,h .

(∇ · un+1
i , qi) = 0, ∀ qi ∈ Qi,h. (3.2.13)

This scheme was extensively studied in [91] and was proven to be unconditionally

stable and first order accurate. The variational formulation of the two-step DDC

method is obtained by combining the defect and deferred correction techniques, as

described in Sections 3.1.1-3.1.2.
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Algorithm 3.2.1 (Two Step DDC) Let ∆t > 0, M = T
∆t

, fi ∈ L2(Ωi). Given ûni ,

find ûn+1
i ∈ Xh

i , i, j = 1, 2, i 6= j, n = 0, 1, 2, · · · ,M − 1, satisfying

(
ûn+1
i − ûni

∆t
, vi

)
+ (νi +Hi)

(
∇ûn+1

i ,∇vi
)

+ κ

∫
I

|[ûn]|ûn+1
i vids

− κ
∫
I

ûnj |[ûn]|1/2|[ûn−1]|1/2vids

− (p̂n+1
i ,∇ · vi) + ci

(
ûn+1
i ; ûn+1

i , vi
)

=
(
fn+1
i , vi

)
, ∀vi ∈ Xi,h (3.2.14)

Then, given ûn+1
i and ũni , find ũn+1

i ∈ Xh
i satisfying

(
ũn+1
i − ũni

∆t
, vi

)
+(νi+Hi)

(
∇ũn+1

i ,∇vi
)
−κ
∫
I

ũnj |[ũn]|1/2|[ũn−1]|1/2vids−(p̃n+1
i ,∇·vi)

+ κ

∫
I

|[ũn]|ũn+1
i vids+ ci

(
ũn+1
i ; ũn+1

i , vi
)

=

(
fn+1
i + fni

2
, vi

)
+

∆t(νi +Hi)

2

(
∇(

ûn+1
i − ûni

∆t
),∇vi

)
+
κ

2
∆t

∫
I

|[ûn]|( û
n+1
i − ûni

∆t
)vids

− κ

2
∆t

∫
I

ûn+1
i (
|[ûn+1]| − |[ûn]|

∆t
)vids+Hi

(
∇(

ûn+1
i + ûni

2
),∇vi

)
− κ

∫
I

ûnj |[ûn]|1/2|[ûn−1]|1/2vids+
κ

2

∫
I

|[ûn+1]|ûn+1
j vids+

κ

2

∫
I

|[ûn]|ûnj vids

+
1

2
ci(û

n+1
i ; ûn+1

i , vi)−
1

2
ci(û

n
i ; ûni , vi)−

(
p̂n+1
i − p̂ni

2
,∇ · vi

)
, ∀vi ∈ Xi,h. (3.2.15)
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The structure of the left hand side (and therefore the matrix of the system) is iden-

tical for (3.2.14) and (3.2.15); thus, a simple and computationally cheap artificial

viscosity data-passing approximation is computed twice to achieve higher accuracy

while maintaining the unconditional stability.

3.3 Proof of Stability and Convergence analysis

In this section we prove the unconditional stability of both the defect step and the

correction step approximations. Also we show the accuracy of defect, correction and

time derivative steps.

Lemma 21 (Stability of Defect approximation) Let ûji ∈ Xi,h satisfy (3.2.14) for

each j ∈
{

0, 1, 2, · · · , T
∆t
− 1
}
, i = 1, 2. Then ∃C > 0 independent of h, ∆t such that

ûn+1 satisfies:

∥∥ûn+1
∥∥2

+
n∑
j=1

∥∥ûj+1 − ûj
∥∥2

+ ∆t
n∑
j=1

[
(ν1 +H1)‖∇uj+1

1 ‖2
Ω1

+ (ν2 +H2)‖∇uj+1
2 ‖2

Ω2

]

+ κ∆t

∫
I

|[ûn]|(|un+1
1 |2 + |un+1

2 |2)ds + κ∆t
n∑
j=1

∫
I

|uj+1
1 |[ûj]|1/2 − u

j
2|[ûj−1]|1/2|2ds

+ κ∆t
n∑
j=1

∫
I

|uj+1
2 |[ûj]|1/2 − u

j
1|ûj−1|1/2|2ds ≤ ‖u1‖2 + κ∆t

∫
I

|[u0]|(|u1
1|2 + |u1

2|2)ds

+
n∑
j=1

[
∆t

ν1 +H1

‖f j+1
1 ‖2

−1 +
∆t

ν2 +H2

‖f j+1
2 ‖2

−1

]
. (3.3.1)
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Proof 12 Replace ν1 and ν2 with ν1 + H1 and ν2 + H2, respectively, in the proof of

Lemma 3.1 in [91]. �

The accuracy result for the defect solution u is obtained in a manner very similar to

Theorem 3.2 in [91].

Theorem 22 (Accuracy of Defect Solution) Let ûki ∈ Xi,h satisfy (3.2.14) for each

k ∈ 2, · · · , n ≤ N − 1. Let ν̃ = max{ν−1
1 , ν−1

2 }, ν̂ = max{ν1, ν2}, and let Dn+1 =

ν̃3(1+κ4En+1+‖∇un+1‖4), where En+1 = maxj=0,1,··· ,n+1{‖uj‖4
I}.Assume ∆t ≤ 1

Dn+1 ,

and that (u,p) is a strong solution of the coupled NSE system (3.1.1)–(3.1.6) with

ut ∈ L2(0, T ;X) and utt ∈ L2(0, T ;L2(Ω)). Then the solution ûn+1 of (3.2.14)

satisfies:
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‖un+1 − ûn+1‖2 +
∆t

2

[
(ν1 +H1)

n∑
k=1

‖∇(uk+1
1 − ûk+1

1 )‖2
Ω1

+ (ν2 +H2)
n∑
k=1

‖∇(uk+1
2 − ûk+1

2 )‖2
Ω2

]

≤ Cexp

{
∆t

j∑
n=1

Dn+1

1−∆tDn+1

}[
‖u1 − û1‖2 + inf

v1∈Vh
‖u1 − v1‖2

+ ∆t(ν1 +H1)(‖∇(u1
1 − û1

1)‖2
Ω1

+
1

2
‖∇(u0

1 − û0
1)‖2

Ω1
+ inf

v11∈V1,h
‖∇(u1

1 − v1
1)‖2

Ω1
+

1

2
inf

v01∈V1,h
‖∇(u0

1 − v0
1)‖2

Ω1
)

+ ∆t(ν2 +H2)(‖∇(u1
2 − û1

2)‖2
Ω2

+
1

2
‖∇(u0

2 − û0
2)‖2

Ω2
+ inf

v12∈V2,h
‖∇(u1

2 − v1
2)‖2

Ω2

+
1

2
inf

v02∈V2,h
‖∇(u0

2 − v0
2)‖2

Ω2
) + ∆t2‖utt‖2

L2(0,T ;L2(Ω)) + inf
v∈Vh
‖(u− v)t‖2

L2(0,T ;L2(Ω))

+ inf
q∈Qh
‖p− q‖2

L2(0,T ;L2(Ω)) + κ2∆t2‖ut‖2
L2(0,T ;X)

+ T max
k=2,··· ,n+1

( inf
vk∈Vh

‖∇(uk − vk)‖2) +
H2

1

ν1 +H1

C2
∇u1 +

H2
2

ν2 +H2

C2
∇u2

]
(3.3.2)

where C has the following dependence on κ , ν1 and ν2: C = O(max{ν̃, ν̂, (1 +

∆tκ4)ν̃3, κ2}).

Proof 13 The proof can be found in [91], replacing ν1 and ν2 with ν1 +H1 and ν2 +

H2, respectively. The extra term Hi(∇un+1
i ,∇vi) is treated by applying the Cauchy-

Schwarz and Young’s inequalities to obtain the accuracy of O(H2
1 +H2

2 ) . �
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Corollary 3.3.1 Let the problem data be smooth enough; let the discrete velocity-

pressure spaces consist of continuous piecewise polynomials of degrees m and m− 1,

respectively (m ≥ 2). Then there exists a constant C independent of h,H,∆t, s.t.

‖un+1 − ûn+1‖2 +
∆t

2

[
(ν1 +H1)

n∑
k=1

‖∇(uk+1
1 − ûk+1

1 )‖2
Ω1

+(ν2 +H2)
n∑
k=1

‖∇(uk+1
2 − ûk+1

2 )‖2
Ω2

]
≤ C(h2m + ∆t2 +H2

1 +H2
2 ). (3.3.3)

In order to show the improved accuracy for the correction approximation, we will need

the following result; the proof will be given in full detail here, because typically the

most challenging part of proving the accuracy of the correction step of DDC methods

has to do with the theorem below. Consider eji = uji − û
j
i , i = 1, 2, j = 0, 1, 2, · · · ,M .

Theorem 23 (Accuracy of Time Derivative of the Error in the Defect Step) Let

ui(∆t) ∈ H2(Ωi), ∆u ∈ L2(0, T ;L2(Ω)) and utt,ut,u ∈ L2(0, T ;L2(Ω)). Let

min(h,∆t) < C(νi+hi
κ

).

Let also max(h,∆t,H1, H2) ≤ α

4
√
Cf

, where α is the constant introduced in Assump-

tion 1, and Cf is the constant from (3.3.3).
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Then ∃C > 0 independent of h,Hi, ∆t such that for any n ∈ {0, 1, 2, · · · ,M − 1 =

T
∆t
− 1} , the discrete time derivative of the error

en+1
i −eni

∆t
satisfies

‖e
n+1 − en

∆t
‖2+(ν1+H1)∆t

n∑
j=1

‖∇

(
ej+1

1 − ej1
∆t

)
‖2+(ν2+H2)∆t

n∑
j=1

‖∇

(
ej+1

2 − ej2
∆t

)
‖2

≤ C
(
h2m + (∆t)2 +H2

)
. (3.3.4)

Proof 14 Focusing on Ω1 first, write (3.2.1) at time tn+1 to obtain

(
un+1

1 − un1
∆t

, v1

)
+ (ν1 +H1)(∇un+1

1 ,∇v1) + c1(un+1
1 ;un+1

1 , v1)− (pn+1
1 ,∇ · v1)

+κ

∫
I

un+1
1 |[un+1]|v1ds− κ

∫
I

un+1
2 |[un+1]|1/2|[un+1]|1/2v1ds

= (fn+1
1 , v1) +H1(∇un+1

1 ,∇v1) +

(
un+1

1 − un1
∆t

− un+1
1,t , v1

)
(3.3.5)

Denote
un+1
1 −un1

∆t
− un+1

1,t ≡ ρn+1
1 . Subtract (3.2.14) from (3.3.5) to obtain the equation

for the error, en+1
i = un+1

i − ûn+1
i , i = 1, 2. For any v1 ∈ Xh

1

(
en+1

1 − en1
∆t

, v1

)
+ (ν1 +H1)(∇en+1

1 ,∇v1)

+c1(un+1
1 ;un+1

1 , v1)− c1(ûn+1
1 ; ûn+1

1 , v1)

−(pn+1
1 − p̂n+1

1 ,∇ · v1) + κ

∫
I

un+1
1 |[un+1]|v1ds− κ

∫
I

ûn+1
1 |[ûn]|v1ds

−κ
∫
I

un+1
2 |[un+1]|v1ds+ κ

∫
I

ûn2 |[ûn]|1/2|[ûn−1]|1/2v1ds

= H1(∇un+1
1 ,∇v1) + (ρn+1

1 , v1)

(3.3.6)
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Decompose ei1 = ui1− ûi1 = (ŭi1− ûi1)− (ŭi1−ui1) = φi1− ηi1, for some ŭi1 ∈ Xh
1 . Taking

v1 =
φn+1
1 −φn1

∆t
∈ X1,h in (3.3.6) leads to

(
en+1

1 − en1
∆t

,
φn+1

1 − φn1
∆t

)
+ (ν1 +H1)(∇en+1

1 ,∇φ
n+1
1 − φn1

∆t
)

+c1(un+1
1 ;un+1

1 ,
φn+1

1 − φn1
∆t

)− c1(un+1
1 ;un+1

1 ,
φn+1

1 − φn1
∆t

)

−(pn+1
1 − p̂n+1

1 ,∇ · φ
n+1
1 − φn1

∆t
) + κ

∫
I

un+1
1 |[un+1]|φ

n+1
1 − φn1

∆t
ds

−κ
∫
I

ûn+1
1 |[ûn]|φ

n+1
1 − φn1

∆t
ds− κ

∫
I

un+1
2 |[un+1]|φ

n+1
1 − φn1

∆t
ds

+κ

∫
I

ûn2 |[ûn]|1/2|[ûn−1]|1/2φ
n+1
1 − φn1

∆t
ds

= H1(∇un+1
1 ,∇φ

n+1
1 − φn1

∆t
) + (ρn+1

1 ,
φn+1

1 − φn1
∆t

)

(3.3.7)

Also, take v1 =
φn+1
1 −φn1

∆t
in (3.3.6) at the previous time level, and subtract the resulting

equation from (3.3.7). Denoting sn+1
1 ≡ φn+1

1 −φn1
∆t

,we obtain for n ≥ 1
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‖sn+1
1 ‖2 − (sn+1

1 , sn1 ) + (ν1 +H1)∆t‖∇sn+1
1 ‖2 + c1(un+1

1 ;un+1
1 , sn+1

1 )

−c1(un1 ;un1 , s
n+1
1 )− c1(ûn+1

1 ; ûn+1
1 , sn+1

1 ) + c1(ûn1 ; ûn1 , s
n+1
1 )

+∆t

(
pn+1

1 − pn1
∆t

− p̂n+1
1 − p̂n1

∆t
,∇ · sn+1

1

)
+ κ

∫
I

un+1
1 |[un+1]|sn+1

1 ds

−κ
∫
I

un1 |[un]|sn+1
1 ds− κ

∫
I

ûn+1
1 |[ûn]|sn+1

1 ds+ κ

∫
I

ûn1 |[ûn−1]|sn+1
1 ds

−κ
∫
I

un+1
2 |[un+1]|sn+1

1 ds+ κ

∫
I

un2 |[un]|sn+1
1 ds

+κ

∫
I

ûn2 |[ûn]|1/2|[ûn−1]|1/2sn+1
1 ds− κ

∫
I

ûn−1
2 |[ûn−1]|1/2|[ûn−2]|1/2sn+1

1 ds

= H1∆t

(
∇(

un+1
1 − un1

∆t
),∇sn+1

1

)
+ ∆t

(
ρn+1

1 − ρn1
∆t

, sn+1
1

)
+∆t

(
ηn+1

1 − 2ηn1 + ηn−1
1

(∆t)2
, sn+1

1

)
+ (ν1 +H1)∆t

(
∇(

ηn+1
1 − ηn1

∆t
),∇sn+1

1

)

(3.3.8)

Special treatment is required for the interface and nonlinear terms. Consider the

nonlinear terms

c1(un+1
1 ;un+1

1 , sn+1
1 )−c1(ûn+1

1 ; ûn+1
1 , sn+1

1 )−c1(un1 ;un1 , s
n+1
1 )+c1(ûn1 ; ûn1 , s

n+1
1 ). (3.3.9)

Add and subtract c1(un+1
1 ; ûn+1

1 , sn+1
1 ) for the first pair, c1(un1 ; ûn1 , s

n+1
1 ) for the second

pair:

c1(un+1
1 ; en+1

1 , sn+1
1 )−c1(un1 ; en1 , s

n+1
1 )−c1(en+1

1 ; ûn+1
1 , sn+1

1 )−c1(en1 ; ûn1 , s
n+1
1 ). (3.3.10)
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Again, add and subtract c1(un1 ; en+1
1 , sn+1

1 ) for the first pair, c1(en1 ; ûn+1
1 , sn+1

1 ) for the

second pair:

∆tc1(
un+1

1 − un1
∆t

; en+1
1 , sn+1

1 ) + ∆tc1(un1 ;
en+1

1 − en1
∆t

, sn+1
1 )

+ ∆tc1(
en+1

1 − en1
∆t

; ûn+1
1 , sn+1

1 ) + ∆tc1(en1 ;
ûn+1

1 − ûn1
∆t

, sn+1
1 ). (3.3.11)

After writing φi1 − ηi1 instead of ei1 we get

∆tc1(
un+1

1 − un1
∆t

;φn+1
1 , sn+1

1 )−∆tc1(
un+1

1 − un1
∆t

; ηn+1
1 , sn+1

1 )

+ ∆tc1(un1 ; sn+1
1 , sn+1

1 )−∆tc1(un1 ;
ηn+1

1 − ηn1
∆t

, sn+1
1 )

+ ∆tc1(sn+1
1 ; ûn+1

1 , sn+1
1 )−∆tc1(

ηn+1
1 − ηn1

∆t
; ûn+1

1 , sn+1
1 )

+ ∆tc1(φn1 ;
ûn+1

1 − ûn1
∆t

, sn+1
1 )−∆tc1(ηn1 ;

ûn+1
1 − ûn1

∆t
, sn+1

1 ). (3.3.12)

Note ∆tc1(un1 ; sn+1
1 , sn+1

1 ) = 0 (skew-symmetry). Replace all ûi1 terms with ui1 − ei1.

After that, bound them by applying the Cauchy-Schwarz and Young’s inequalities.

Consider the first 4 interface terms

κ

∫
I

un+1
1 |[un+1]|sn+1

1 ds− κ
∫
I

ûn+1
1 |[ûn]|sn+1

1 ds

−(κ

∫
I

un1 |[un]|sn+1
1 ds− κ

∫
I

ûn1 |[ûn−1]|sn+1
1 ds) = F1 − F2.
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Write F1 as

F1 = κ

∫
I

un+1
1 |[un+1]|sn+1

1 ds− κ
∫
I

ûn+1
1 |[un+1]|sn+1

1 ds

+κ

∫
I

ûn+1
1 |[un+1]|sn+1

1 ds− κ
∫
I

ûn+1
1 |[un]|sn+1

1 ds

+κ

∫
I

ûn+1
1 |[un]|sn+1

1 ds− κ
∫
I

ûn+1
1 |[ûn]|sn+1

1 ds

= κ

∫
I

en+1
1 |[un+1]|sn+1

1 ds+ κ

∫
I

ûn+1
1 (|[un+1]| − |[un]|)sn+1

1 ds

+κ

∫
I

ûn+1
1 |[en]|sn+1

1 ds = κ

∫
I

en+1
1 |[un+1]|sn+1

1 ds

+κ

∫
I

un+1
1 (|[un+1]| − |[un]|)sn+1

1 ds− κ
∫
I

en+1
1 (|[un+1]| − |[un]|)sn+1

1 ds

+κ

∫
I

un+1
1 |[en]|sn+1

1 ds− κ
∫
I

en+1
1 |[en]|sn+1

1 ds.

In order to treat the five terms above, apply the same arguments for F2 and subtract

the result from F1. Let F1−F2 = F12,1 +F12,2 +F12,3 +F12,4 +F12,5, defined as follows

F12,1 = κ

∫
I

(en+1
1 − en1 )|[un+1]|sn+1

1 ds+ κ

∫
I

en1 (|[un+1]| − |[un]|)sn+1
1 ds (3.3.13)

= κ∆t

∫
I

|[un+1]||sn+1
1 |2ds+ κ∆t

∫
I

en1
|[un+1]| − |[un]|

∆t
sn+1

1 ds

+κ∆t

∫
I

ηn+1
1 − ηn1

∆t
|[un+1]|sn+1

1 ds
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The term κ
∫
I

∆t|[un+1]||sn+1
1 |2ds is non-negative and it stays in the left hand side.

The Cauchy-Schwarz and Young’s inequalities are used to bound the two remaining

terms in the right hand side of (3.3.13).

The term

F12,2 = κ

∫
I

un+1
1 (|[un+1]| − |[un]|)sn+1

1 ds− κ
∫
I

un1 (|[un]| − |[un−1]|)sn+1
1 ds

= κ

∫
I

∆t
un+1

1 − un1
∆t

(|[un+1]| − |[un]|)sn+1
1 ds

+κ

∫
I

un1 (|[un+1]| − 2|[un]|+ |[un−1]|)sn+1
1 ds

is bounded by using Assumption 1 for the second integral in the right hand side and

then applying the Cauchy-Schwarz and Young’s inequalities.

Similarly, the Cauchy-Schwarz and Young’s inequalities are used to derive the O(H2+

H∆t+ ∆t2) bounds for F12,3, F12,4, F12,5.

−F12,3 = κ

∫
I

en+1
1 (|[un+1]| − |[un]|)sn+1

1 ds− κ
∫
I

en1 (|[un]| − |[un−1]|)sn+1
1 ds

= κ

∫
I

∆t(|[un+1]| − |[un]|)|sn+1
1 |2ds+ κ

∫
I

∆t
ηn+1

1 − ηn1
∆t

(|[un+1]| − |[un]|)sn+1
1 ds

+κ

∫
I

en1 (|[un+1]| − 2|[un]|+ |[un−1]|)sn+1
1 ds,
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F12,4 = κ

∫
I

un+1
1 |[en]|sn+1

1 ds− κ
∫
I

un1 |[en−1]|sn+1
1 ds

= κ

∫
I

un+1
1 − un1

∆t
∆t|[en]|sn+1

1 ds+ κ

∫
I

un1 (|[en]| − |[en−1]|)sn+1
1 ds,

and

−F12,5 = κ

∫
I

en+1
1 |[en]|sn+1

1 ds− κ
∫
I

en1 |[en−1]|sn+1
1 ds

= κ

∫
I

∆t|[en]||sn+1
1 |2ds+ κ

∫
I

∆t
ηn+1

1 − ηn1
∆t

|[en]|sn+1
1 ds

+κ

∫
I

en1 (|[en]| − |[en−1]|)sn+1
1 ds.

We now proceed with the bounds on the remainder of the interface terms.
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κ

∫
I

ûn2 |[ûn]|1/2|[ûn−1]|1/2sn+1
1 ds− κ

∫
I

un+1
2 |[un+1]|sn+1

1 ds

−(κ

∫
I

ûn−1
2 |[ûn−1]|1/2|[ûn−2]|1/2sn+1

1 ds− κ
∫
I

un2 |[un]|sn+1
1 ds) = B1 −B2.

For B1,

κ

∫
I

ûn2 (|[ûn]|1/2|[ûn−1]|1/2 − 1

2
(|[ûn]|+ |[ûn−1]|))sn+1

1 ds− κ
∫
I

un+1
2 |[un+1]|sn+1

1 ds

+
κ

2

∫
I

ûn2 (|[ûn]| − |[ûn−1]|)sn+1
1 ds+ κ

∫
I

ûn2 |[un+1]|sn+1
1 ds− κ

∫
I

ûn2 |[un+1]|sn+1
1 ds

= κ

∫
I

ûn2 (|[ûn]|1/2|[ûn−1]|1/2 − 1

2
(|[ûn]|+ |[ûn−1]|))sn+1

1 ds− κ
∫
I

en2 |[un+1]|sn+1
1 ds

+κ

∫
I

ûn2 (
|[ûn]|+ |[ûn−1]|

2
− |[un+1]|)sn+1

1 ds.

Treating B2 in the same way, we get
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B1 −B2 = κ

∫
I

ûn2 (|[ûn]|1/2|[ûn−1]|1/2

−1

2
(|[ûn]|+ |[ûn−1]|))sn+1

1 ds

−κ
∫
I

ûn−1
2 (|[ûn−1]|1/2|[ûn−2]|1/2 − 1

2
(|[ûn−1]|+ |[ûn−2]|))sn+1

1 ds

−κ
∫
I

en2 |[un+1]|sn+1
1 ds+ κ

∫
I

en−1
2 |[un]|sn+1

1 ds

+κ

∫
I

ûn2 (
|[ûn]|+ |[ûn−1]|

2
− |[un+1]|)sn+1

1 ds

−κ
∫
I

ûn−1
2 (
|[ûn−1]|+ |[ûn−2]|

2
− |[un]|)sn+1

1 ds.

Let

a = |[ûn]|1/2|[ûn−1]|1/2 − 1

2
(|[ûn]|+ |[ûn−1]|)

ap = |[ûn−1]|1/2|[ûn−2]|1/2 − 1

2
(|[ûn−1]|+ |[ûn−2]|).
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Denote

I1 = κ

∫
I

ûn2as
n+1
1 ds− κ

∫
I

ûn−1
2 aps

n+1
1 ds

I2 = −κ
∫
I

en2 |[un+1]|sn+1
1 ds+ κ

∫
I

en−1
2 |[un]|sn+1

1 ds

I3 = κ

∫
I

ûn2 (
|[ûn]|+ |[ûn−1]|

2
− |[un+1]|)sn+1

1 ds

−κ
∫
I

ûn−1
2 (
|[ûn−1]|+ |[ûn−2]|

2
− |[un]|)sn+1

1 ds.

.

The integrals in I1 are treated as follows

I1 = κ

∫
I

ûn2as
n+1
1 ds− κ

∫
I

ûn−1
2 aps

n+1
1 ds

= κ

∫
I

ûn2as
n+1
1 ds− κ

∫
I

un2as
n+1
1 ds

+κ

∫
I

un2as
n+1
1 ds− κ

∫
I

un−1
2 asn+1

1 ds

+κ

∫
I

un−1
2 aps

n+1
1 ds− κ

∫
I

un2aps
n+1
1 ds

+κ

∫
I

un−1
2 asn+1

1 ds− κ
∫
I

ûn−1
2 aps

n+1
1 ds.
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Denoting x = |[ûn]|1/2 and y = |[ûn−1]|1/2, we write

|a| = |xy − 1

2
(x2 + y2)| = | − 1

2
(−2xy + x2 + y2)| = | − 1

2
(x− y)2| (3.3.14)

≤ 1

2
|x− y|(x+ y) =

1

2
|x2 − y2| = 1

2
|[ûn − ûn−1]|.

Then

|a| ≤ 1

2
|[ûn − ûn−1]| ≤ 1

2
|[en − en−1]− [un − un−1]|

≤ 1

2
|[φn − φn−1]|+ 1

2
|[ηn − ηn−1]|+ ∆t

2

∣∣∣∣∣
[
un − un−1

∆t

]∣∣∣∣∣
≤ 1

2
∆t|sn1 |+

1

2
∆t|sn2 |+

1

2
∆t

∣∣∣∣∣
[
ηn − ηn−1

∆t

]∣∣∣∣∣+
1

2
∆t

∣∣∣∣∣
[
un − un−1

∆t

]∣∣∣∣∣ .

Since a is bounded, we can bound each line in I1:

κ

∫
I

ûn2as
n+1
1 ds− κ

∫
I

un2as
n+1
1 ds

≤ Cκ

∫
I

|en2 |∆t

[
|sn1 |+ |sn1 |+

∣∣∣∣∣ηn − ηn−1

∆t

∣∣∣∣∣+

∣∣∣∣∣[un − un−1

∆t
]

∣∣∣∣∣
]
|sn+1

1 |ds.
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κ

∫
I

un2as
n+1
1 ds− κ

∫
I

un−1
2 asn+1

1 ds ≤ Cκ

∫
I

∆t2

∣∣∣∣∣un2 − un−1
2

∆t

∣∣∣∣∣|a||sn+1
1 |ds.

κ

∫
I

un−1
2 aps

n+1
1 ds− κ

∫
I

ûn−1
2 aps

n+1
1 ds ≤ Cκ

∫
I

|en−1
2 |∆t|a||sn+1

1 |ds.

Instead of trying to show the second order of smallness of |a− ap|, we will show that

a (and therefore ap) is small enough. Each of the last two terms in I1, is bounded

using Assumption 1, as follows

|κ
∫
I

un2 (|[ûn]|1/2 − |[ûn−1]|1/2)2sn+1
1 ds|

≤ κ

∫
I

(un2/α)|[un]|(|[ûn]|1/2 − |[ûn−1]|1/2)2|sn+1
1 |ds = A.
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|[un]|(|[ûn]|1/2 − |[ûn−1]|1/2)2

=
1

4

[
4|[un]|−(|[ûn]|1/2 + |[ûn−1]|1/2)2 +(|[ûn]|1/2 + |[ûn−1]|1/2)2

]
(|[ûn]|1/2−|[ûn−1]|1/2)2

=
1

4

[
4|[un]|−2|[ûn]|−2|[ûn−1]|+(|[ûn]|1/2−|[ûn−1]|1/2)2+(|[ûn]|1/2+|[ûn−1]|1/2)2

]
(|[ûn]|1/2

−|[ûn−1]|1/2)2 =
1

4

[
2(|[un]|−|[ûn]|)+2(|[un]|−|[un−1]|)+2(|[un−1]|−|[ûn−1]|)

]
(|[ûn]|1/2

− |[ûn−1]|1/2)2 +
1

4
(|[ûn]|1/2 − |[ûn−1]|1/2)4 +

1

4
(|[ûn]| − |[ûn−1]|)2.

Thus,

A ≤ κ

∫
I

1

α
|un2 ||sn+1

1 |

[(
∆t

∣∣∣∣∣
[
un − un−1

∆t

]∣∣∣∣∣+ |[ηn]|+ |[φn]|

+ |[ηn−1]|+ |[φn−1]|

)[
∆t

∣∣∣∣∣
[
un − un−1

∆t

]∣∣∣∣∣
+ ∆t

∣∣∣∣∣
[
ηn − ηn−1

∆t

]∣∣∣∣∣+ ∆t|[sn]|

]
+ ∆t2

∣∣∣∣∣
[
un − un−1

∆t

]∣∣∣∣∣
2

+ ∆t2

∣∣∣∣∣
[
ηn − ηn−1

∆t

]∣∣∣∣∣
2

+ ∆t2|[sn]|2
]
ds. (3.3.15)
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We will now show how to bound the terms in the right hand side of (3.3.15).

κ

∫
I

1

α
|un2 ||sn+1

1 |∆t2
∣∣∣∣∣
[
ηn − ηn−1

∆t

]∣∣∣∣∣
2

ds ≤ C∆t2‖∇sn+1
1 ‖

∥∥∥∥∥
[
∇ηn −∇ηn−1

∆t

]∥∥∥∥∥
2

≤ ε(ν1 +H1)∆t‖∇sn+1
1 ‖2 + C∆t2∆t

∥∥∥∥∥
[
∇ηn −∇ηn−1

∆t

]∥∥∥∥∥
4

.

(3.3.16)

The following term is bounding in exactly the same manner as (3.3.16).

κ

∫
I

1

α
|un2 ||sn+1

1 |∆t2
∥∥∥∥∥
[
un − un−1

∆t

]∥∥∥∥∥
2

ds.

The next term is bounded in two different ways, depending on the relationship between

the mesh diameter and the time step.

κ

∫
I

1

α
|un2 ||sn+1

1 ||φn1 |∆t|sn1 |ds ≤ C∆t‖φn1‖1/2‖∇φn1‖1/2‖∇sn1‖‖∇sn+1
1 ‖

≤ ε(ν1 +H1)∆t‖∇sn+1
1 ‖2 +

C

ν1 +H1

∆t‖φn1‖‖∇φn1‖‖∇sn1‖2.

(3.3.17)

≤



ε(ν1 +H1)∆t‖∇sn+1
1 ‖2 + C

ν1+H1
∆th−1(h2 + ∆t2)‖∇sn1‖2 if ∆t < h

ε(ν1 +H1)∆t‖∇sn+1
1 ‖2 + C

ν1+H1
(h+ ∆t)∆t1/2(h+ ∆t)‖∇sn1‖2

≤ ε(ν1 +H1)∆t‖∇sn+1
1 ‖2 + C

ν1+H1
∆t3/2∆t‖∇sn1‖2 ifh < ∆t.
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Given that, max(h,∆t) ≤ ε(ν1+H1)2

C
, the terms in the right-hand side of (3.3.17) are

small enough to either be subsumed in the left-hand side, or to provide the necessary

accuracy.

Two more terms from the right hand side of (3.3.15) are bounded below.

κ

∫
I

1

α
|un2 ||sn+1

1 ||φn1 |∆t

∥∥∥∥∥
[
un − un−1

∆t

]∥∥∥∥∥
2

ds ≤ C∆t‖∇φn1‖‖∇sn+1
1 ‖2

≤ ε(ν1 +H1)∆t‖∇sn+1
1 ‖2 +

C

ν1 +H1

∆t‖∇φn1‖2. (3.3.18)

The next bound is obtained in a manner, similar to (3.3.17).

κ

∫
I

1

α
|un2 ||sn+1

1 |∆t2|sn1 |2ds ≤ C∆t2‖sn1‖1/2‖∇sn1‖3/2‖∇sn+1
1 ‖

≤ ε(ν1 +H1)∆t‖∇sn+1
1 ‖2 +

C

ν1 +H1

∆t3‖sn1‖‖∇sn1‖3

≤ ε(ν1 +H1)∆t‖∇sn+1
1 ‖2 +

C

ν1 +H1

‖φn1‖‖∇φn1‖∆t‖∇sn1‖2. (3.3.19)

The remainder of the terms in (3.3.15) are bounded, using the Cauchy-Schwarz and

Young’s inequalities, similar to (3.3.16)-(3.3.19).

Add and subtract κ
∫
en2 |[un]|sn+1

1 ds for I2 and κ
∫
ûn2 ( |[û

n−1]|+|[ûn−2]|
2

−|[un]|)sn+1
1 ds for

I3. The goal, as usual, is to get the second order of smallness in each of the interface
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terms; for most of them, applying the Cauchy-Schwarz and Young’s inequalities is

straightforward. The only problematic term is the one remaining from I3:

κ

∫
I

un2
(
|[ûn]| − |[ûn−1]| − |[un]|+ |[un−1]|

)
sn+1

1 ds. (3.3.20)

The second order of smallness for the interface term (3.3.20) is achieved as follows.

Notice that here lies the reason for us restricting the proof to the 2−D problems; the

rest of the proof of this theorem (and others) is also valid in 3−D.

|[ûn]| − |[ûn−1]| − |[un]|+ |[un−1]|

=
(

(|[ûn]|
1
2 − |[un−1]|

1
2 )2 − (|[un]|

1
2 − |[ûn−1]|

1
2 )2
)

+2
(
|[ûn]|

1
2 |[un−1]|

1
2 − |[un]|

1
2 |[ûn−1]|

1
2

)
= G+ 2L. (3.3.21)
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The second order of smallness of G follows from an argument given in (3.3.15). With

h+ ∆t ≤ Cα, we have

[ûn] = [un]− [en] => |[ûn]| ≥ |[un]| − |[en]| ≥ α

2
.

Then,

|L| ≤ 1

α
|L|
(
|[ûn]|

1
2 |[un−1]|

1
2 + |[un]|

1
2 |[ûn−1]|

1
2

)
(3.3.22)

≤ 1

α
||[ûn]||[un−1]| − |[un]||[ûn−1]|| = 1

α
|D|.

At the same time,
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|[ûn][un−1]− [un][ûn−1]| = |[un][un−1]− [en][un−1]− [un][un−1] + [un][en−1]|

≤ |[en]|∆t|un−un−1

∆t
|+ |un||[en]− [en−1]|. (3.3.23)

In 2−D: for any i, j = 1, 2, ûi · n = uj · n = 0 on I, therefore ûi||uj on I.

Thus, in 2−D

|[ûn]||[un−1]| = |[ûn][un−1]| and |[un]||[ûn−1]| = |[un][ûn−1]|.

Putting it together, it follows from (3.3.21)-(3.3.23) that

|L| ≤ 1

α
|D| ≤ 1

α
|[ûn]||[un−1]− [un]||[ûn−1]|(3.3.24)

≤ 1

α

(
∆t|[en]|| [u

n]− [un−1]

∆t
|+ ∆t|[un]|| [η

n]− [ηn−1]

∆t
|+ ∆t|[un]||[sn]|

)
.
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The last term in (3.3.24) will be dealt with by using the Gronwall’s lemma, and the

rest of the terms are O(∆t(h+ ∆t)).

Combining all the bounds together leads to

‖sn+1
1 ‖2 − ‖sn1‖2

2
+ (ν1 +H1)∆t‖∇sn+1

1 ‖2 ≤ ε∆t(ν1 +H1)‖∇sn+1
1 ‖2

+
d∆t

4ε(ν1 +H1)
inf
q1∈Qh1

‖p
n+1
1 − pn1

∆t
−q1‖2+

∆tH2
1

4ε(ν1 +H1)
C2
∇u1t+

∆t

4ε(ν1 +H1)
‖ρ

n+1
1 − ρn1

∆t
‖2
−1

∆tCPF
4ε(ν1 +H1)

‖η
n+1
1 − 2ηn1 + ηn−1

1

∆t2
‖2
−1 +

∆t(ν1 +H1)

4ε
‖∇(

ηn+1
1 − ηn1

∆t
)‖2

+
C2
∇u1t∆t

4ε(ν1 +H1)
‖∇φn+1

1 ‖2 +
C2
∇u1t∆t

4ε(ν1 +H1)
‖∇ηn+1

1 ‖2 +
C2
∇u1∆t

4ε(ν1 +H1)
‖∇(

ηn+1
1 − ηn1

∆t
)‖2

+ ∆t(
C2
∇u1t
2

+
C2
u1

16ε(ν1 +H1)
)‖sn+1

1 ‖2 +
4∆t

ε3(ν1 +H1)3
‖∇φn+1

1 ‖4‖sn+1
1 ‖2

+
4∆t

ε3(ν1 +H1)3
‖∇ηn+1

1 ‖4‖sn+1
1 ‖2 +

∆t

4ε(ν1 +H1)
‖∇ηn+1

1 ‖2‖∇(
ηn+1

1 − ηn1
∆t

)‖2

+
∆t

4ε(ν1 +H1)
‖∇φn+1

1 ‖2‖∇(
ηn+1

1 − ηn1
∆t

)‖2 + C
κ2

(ν1 +H1)
∆t‖∇en1‖2

+
Cκ2

(ν1 +H1)
∆t‖∇(

ηn+1
1 − ηn1

∆t
)‖2 +

Cκ2

(ν1 +H1)
∆t∆t2 + Cκ∆t2‖∇sn+1

1 ‖2

+
Cκ2

(ν1 +H1)
∆t∆t2‖∇(

ηn+1
1 − ηn1

∆t
)‖2 +

Cκ2

(ν1 +H1)
∆t∆t2‖∇ηn1 ‖2 +

Cκ2

(ν1 +H1)
∆t‖sn+1

1 ‖2

+ε∆t(ν1 +H1)‖∇sn1‖2 +ε∆t(ν1 +H1)‖∇sn2‖2 +
Cκ2

(ν1 +H1)
∆t‖sn1‖2 +

Cκ2

(ν1 +H1)
∆t‖sn2‖2

+
Cκ

(ν1 +H1)3
∆t‖∇en1‖4‖sn+1

1 ‖2 +
Cκ

(ν1 +H1)3
∆t‖∇en2‖4‖sn+1

1 ‖2

+
Cκ2

(ν1 +H1)
∆t‖∇en1‖2‖∇(

ηn+1
1 − ηn1

∆t
)‖2 +

Cκ2

(ν1 +H1)
∆t‖∇en2‖2‖∇(

ηn+1
1 − ηn1

∆t
)‖2

(to be continued on the next page)
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+
Cκ2

(ν1 +H1)
∆t‖∇en1‖2‖[∇(

ηn1 − ηn−1
1

∆t
)]‖2

+
Cκ2

(ν1 +H1)2
∆t‖en1‖‖∇en1‖‖∇sn1‖2(ν1 +H1)

+
Cκ2

(ν1 +H1)2
∆t‖en2‖‖∇en2‖‖∇sn1‖2(ν1 +H1)

+
Cκ2

(ν1 +H1)2
∆t‖en2‖‖∇en2‖‖∇sn2‖2(ν1 +H1)

+
C2
∇utκ

2

(ν1 +H1)
∆t‖∇en2‖2 +

Cκ2

(ν1 +H1)2
∆t‖en−1

2 ‖‖∇en−1
2 ‖‖∇sn1‖2(ν1 +H1)

+
Cκ2

(ν1 +H1)2
∆t‖en−1

2 ‖‖∇en−1
2 ‖‖∇sn2‖2(ν1 +H1) +

C2
∇utκ

2

(ν1 +H1)
∆t‖∇en−1

2 ‖2

+
C2
∇u2tκ

2

4ε(ν1 +H1)
∆t∆t2‖∇sn1‖2 +

C2
∇u2tκ

2

4ε(ν1 +H1)
∆t∆t2‖∇sn2‖2

+
C2
∇u2tκ

2

4ε(ν1 +H1)
∆t∆t2‖∇(

[ηn − ηn−1]

∆t
)‖2 +

C2
∇u2tκ

2

4ε(ν1 +H1)
∆t∆t2C2

∇ut

+ C∆t∆t2‖∇(
[ηn − ηn−1]

∆t
)‖4 +

C

(ν1 +H1)
∆t‖φn1‖‖∇φn1‖‖∇sn1‖2

+
C

ν1 +H1

∆t‖∇φn1‖2 +
C

ε(ν1 +H1)
∆t2∆t‖∇[sn]‖4 +

Cκ

ε(ν1 +H1)
∆t‖∇[sn]‖2‖∇[ηn]‖2

Summing over the time levels, multiplying both sides by 2, letting appropriate ε and

using the modified Gronwall’s lemma gives

‖sn+1
1 ‖2 + (ν1 +H1)∆t

n∑
j=1

‖∇sn+1
1 ‖2 ≤ C

(
‖s2

1‖2 +O(h2m + (∆t)2 +H2)
)
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In order to be able to finish the proof using the discrete Gronwall’s lemma, we will

need the following bound

‖s2
i ‖2 + ∆t‖∇s1

i ‖2 + ∆t‖∇s2
i ‖2 ≤ C(h2 + (∆t)2)

Notice that the method requires two initial conditions, so that we are given û0
i and

û1
i , i = 1, 2. Then we can take ũi

0 and ũi
1 to be the L2 projections of û0

i and û1
i ,

respectively, onto Xh. This gives:

φ0 = φ1 = s1 = 0, ‖η0
i ‖ ≤ Chm+1, ‖η1

i ‖ ≤ Chm+1, with C independent of h, ∆t.

In order to get a bound on the s2
i -terms, consider the error equation at n = 1; take

v = s2
1 in Ω1 and v = s2

2 in Ω2. In Ω1 this gives,

‖s2
1‖2 +

(
η2

1 − η1
1

∆t
, s2

1

)
+ (ν1 +H1)(∇φ2

1,∇s2
1)

+(ν1 +H1)(∇η2
1,∇s2

1) + c1(u2
1;u2

1, s
2
1)− c1(û2

1; û2
1, s

2
1)

−(p2
1 − q,∇ · s2

1) + κ

∫
I

[u2]|[u2]|s2
1ds

−κ
∫
I

û2
1|[û1]|s2

1ds+ κ

∫
I

û1
2|[û1]|1/2|[û0]|1/2s2

1ds

= H1(∇u2
1,∇s2

1) + (ρ2
1, s

2
1) (3.3.25)
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First, to bound the terms on the on the right hand side (RHS);

H1(∇u1
1,∇s2

1) +H1

(
∇(

u2
1 − u1

1

∆t
),∇s2

1

)
∆t+ (ρ2

1, s
2
1)

≤ 2ε‖s2
1‖2 + CH2

1‖∇u1
1‖2

+C‖ρ2
1‖2 + ε1(ν1 +H1)∆t‖∇s2

1‖2

+
C

ν1 +H1

∆tH2
1

∥∥∥∥∥∇(
u2

1 − u1
1

∆t
)

∥∥∥∥∥
2

For nonlinearity,

c1(u2
1;u2

1, s
2
1)− c1(û2

1;u2
1, s

2
1) + c1(û2

1;u2
1, s

2
1)− c1(û2

1; û2
1, s

2
1)

= c1(η2
1 + φ2

1, u
2
1, s

2
1) + c1(û2

1; η2
1, s

2
1)

= c1(η2
1;u2

1, s
2
1) + c1(φ2

1;u2
1, s

2
1) + c1(u2

1; η2
1, s

2
1)

−c1(η2
1; η2

1, s
2
1)− c1(φ2

1; η2
1, s

2
1)
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Let’s bound each of these five terms separately.

|c1(η2
1;u2

1, s
2
1)| ≤ C‖η2

1‖‖∇s2
1‖

|c1(φ2
1;u2

1, s
2
1)| ≤ C‖φ2

1‖‖∇s2
1‖ = C∆t‖s2

1‖‖∇s2
1‖

≤ ε‖s2
1‖2 + C∆t(ν1 +H1)−1(ν1 +H1)∆t‖∇s2

1‖2

|c1(u2
1; η2

1, s
2
1)| ≤ C‖∇η2

1‖‖s2
1‖ ≤ ε‖s2

1‖2 + C‖∇η2
1‖2

|c1(η2
1; η2

1, s
2
1)| ≤ ε‖∇s2

1‖2 + Ch−2‖∇η2
1‖4

|c1(φ2
1; η2

1, s
2
1)| ≤ C∆t‖s2

1‖1/2‖∇s2
1‖3/2‖∇η2

1‖

≤ ε‖s2
1‖2 + C‖∇η2

1‖4/3∆t1/2(ν1 +H1)−1∆t(ν1 +H1)‖∇s2
1‖2

The pressure term (if 2 ≤ m);

|(p2
1 − q,∇ · s2

1)| ≤ ε‖s2
1‖2 + C‖∇(p2

1 − q)‖2

Thus,

‖s2
1‖2 + (ν1 +H1)∆t‖∇s2

1‖2 ≤ O(h2 + ∆t2) + interface terms

For interface terms;
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A = κ

∫
I

u2
1|[u2]|s2

1ds− κ
∫
I

û2
1|[û1]|s2

1ds

B = κ

∫
I

u2
2|[u2]|s2

1ds− κ
∫
I

û1
2|[û1]|1/2|[û0]|1/2s2

1ds

Write A as A = A1 + A2 + A3, where

A1 = κ

∫
I

u2
1|[u2]|s2

1ds− κ
∫
I

u2
1|[u1]|s2

1ds

A2 = κ

∫
I

u2
1|[u1]|s2

1ds− κ
∫
I

û2
1|[u1]|s2

1ds

A3 = κ

∫
I

û2
1|[u1]|s2

1ds− κ
∫
I

û2
1|[û1]|s2

1ds

A1 is bounded by

|A1| ≤ κ

∫
I

|u2
1|||[u2]| − 2|[u1]|+ |[u0]|||s2

1|ds+κ

∫
I

|u2
1|||[u1]| − |[u0]|||s2

1|ds = A11 +A12

For a bound on S =

∣∣∣∣∣|[un]| − 2|[un−1]|+ |[un−2]|

∣∣∣∣∣, consider g( #»x , ti) = |[ui]|
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g( #»x , tn) = g( #»x , tn−1) + ∆tgt(
#»x , tn−1) + ∆t2gtt(

#»x , tn−1 + ξ1∆t), (3.3.26)

for some ξ1 ∈ (0, 1).

g( #»x , tn−2) = g( #»x , tn−1)−∆tgt(
#»x , tn−1) + ∆t2gtt(

#»x , tn−1 − ξ2∆t), (3.3.27)

for some ξ2 ∈ (0, 1).

S = g( #»x , tn)− 2g( #»x , tn−1) + g( #»x , tn−2) = ∆t2gtt(
#»x , tn−1) +O(∆t3) = O(∆t2),

provided that

|[u]| ≤ C

|[ut]| ≤ C

|[utt]| ≤ C.

(3.3.28)

Thus, under the assumptions of the theorem,

A11 ≤ C‖∇u2
1‖∆t2‖∇s2

1‖ ≤ ε(ν1 +H1)∆t‖∇s2
1‖2 + (ν1 +H1)−1∆tC∆t2
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For A12 use Assumption 2,

A12 ≤ C∆t5/4‖∇u2
1‖‖s2

1‖1/2‖∇s2
1‖1/2

≤ ε(ν1 +H1)∆t‖∇s2
1‖2 + C(ν1 +H1)−1/3∆t4/3‖∇u2

1‖4/3‖s2
1‖2/3

≤ ε(ν1 +H1)∆t‖∇s2
1‖2 + ε1‖s2

1‖2 + C(ν1 +H1)−1/2∆t2‖∇u2
1‖2

The terms A2 and A3 are bounded as

|A2| ≤ κ

∫
I

∆t|s2
1|2|[u1]|ds+ κ

∫
I

η2
1|[u1]|s2

1ds ≤ C∆t‖s2
1‖‖∇s2

1‖+ Ch−1‖η2
1‖‖s2

1‖

≤ ε‖s2
1‖2 + C(ν1 +H1)−1∆t∆t(ν1 +H1)‖∇s2

1‖2 + ε‖s2
1‖2 + Ch−2‖η2

1‖2

and

|A3| ≤ κ

∫
I

|û2
1||[η1]||s2

1|ds

≤ Ch−1‖[η1]‖‖s2
1‖+ C‖∇φ2

1‖h−3/2‖[η1]‖‖s2
1‖+ C‖∇η2

1‖h−3/2‖[η1]‖‖s2
1‖
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Write B as B = B1 +B2 +B3 +B4 , where

B1 = κ

∫
I

u2
2|[u2]|s2

1ds− κ
∫
I

u2
2

1

2
(|[u1]|+ |[u0]|)s2

1ds

B2 =
1

2
κ

∫
I

u2
2(|[u1]|+ |[u0]|)s2

1ds−
1

2
κ

∫
I

u2
2(|[û1]|+ |[û0]|)s2

1ds

B3 =
1

2
κ

∫
I

u2
2(|[û1]|+ |[û0]|)s2

1ds−
1

2
κ

∫
I

û1
2(|[û1]|+ |[û0]|)s2

1ds

B4 =
1

2
κ

∫
I

û1
2(|[û1]|1/2 − |[û0]|1/2)2s2

1ds

To bound B1;

B1 =
1

2
κ

∫
I

u2
2(|[u2]| − |[u1]|)s2

1ds+
1

2
κ

∫
I

u2
2(|[u2]| − |[u0]|)s2

1ds

=
1

2
κ

∫
I

u2
2(|[u2]|−|[u1]|)s2

1ds+
1

2
κ

∫
I

u2
2(|[u2]|−|[u1]|)s2

1ds+
1

2
κ

∫
I

u2
2(|[u1]|−|[û0]|)s2

1ds

bounded exactly as we treated A1.

To bound B2;

B2 =
1

2
κ

∫
I

u2
2(|[u1]| − |[û1]|)s2

1ds+
1

2
κ

∫
I

u2
2(|[u0]| − |[û0]|)s2

1ds

|B2| ≤
1

2
κ

∫
I

|u2
2||[u1 − û1]||s2

1|ds+
1

2
κ

∫
I

|u2
2||[u0 − û0]||s2

1|ds

≤ Ch−3/2‖∇u2
2‖‖η1‖‖s2

1‖+ Ch−3/2‖∇u2
2‖‖η0‖‖s2

1‖

≤ ε1‖s2
1‖2 + Ch−3(‖η1‖2 + ‖η0‖2)
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To bound B3;

B3 =
1

2
κ

∫
I

(u2
2 − u1

2)(|[û1]|+ |[û0]|)s2
1ds+

1

2
κ

∫
I

(u1
2 − û1

2)(|[û1]|+ |[û0]|)s2
1ds

= B31 +B32

Write

|[û1]|+ |[û0]| = |[u1 − η1]|+ |[u0 − η0]| ≤ |[u1]|+ |[u0]|+ |[η1]|+ |[η0]|, (3.3.29)

use u1
2− û1

2 = η1
2 and Assumption 2, to bound B3 similar to the bounds onA1 and B2.

For a bound on B4, use Assumption 1 and follow the way of bounding A interface

term.

Finally, using the results , the upper bound on ‖s2
1‖2 + ∆t‖∇s2

1‖2 follows from (14):

‖s2
1‖2 + (ν1 +H1)∆t‖∇s2

1‖2 ≤ C(∆t2 + h2m−2).

For 2 ≤ m, we get

‖s2
1‖2 + (ν1 +H1)∆t‖∇s2

1‖2 ≤ C(∆t2 + h2).
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Terms in domain 2 are treated in exactly the same way. After adding the inequalities

for domains 1 and 2 , use the discrete Gronwall’s lemma and the triangle inequality,

we obtain for eij = uij − ûij (j = 1, 2):

‖e
n+1 − en

∆t
‖2 + (ν1 +H1)∆t

n∑
j=1

‖∇

(
ej+1

1 − ej1
∆t

)
‖2

+(ν2 +H2)∆t
n∑
j=1

‖∇

(
ej+1

2 − ej2
∆t

)
‖2 ≤ C

(
h2 + (∆t)2 +H2

1 +H2
2

)
. �

We now proceed to show the stability and increased accuracy of the correction step

approximation ũ. The left hand sides of the equations satisfied by û and ũ are the

same, so parts of the proofs of stability and accuracy of the defect step approximation

can be reused here.

Theorem 24 (Stability of Correction Step of DDC) Let ũn+1 ∈ Xh satisfy

(3.2.15) for each n ∈
{

0, 1, 2, · · · , T
∆t
− 1
}

. Then ∃C > 0 independent of h, ∆t

such that ũn+1 satisfies:
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∥∥ũn+1
1

∥∥2
+
∥∥ũn+1

2

∥∥2
+ (ν1 +H1)∆t

n+1∑
k=1

∥∥∇ũk1∥∥2
+ (ν1 +H2)∆t

n+1∑
k=1

∥∥∇ũk2∥∥2

+κ∆t

∫
I

∣∣ũn+1
1 |[ũn]|1/2 − ũn2 |[ũn−1]|1/2

∣∣2 ds+κ∆t

∫
I

∣∣ũn+1
2 |[ũn]|1/2 − ũn1 |[ũn−1]|1/2

∣∣2 ds
≤ C∆t

ν1 +H1

n∑
j=1

[
‖∇ej+1

1 ‖2 + ‖ej2‖‖∇e
j
2‖‖∇e

j
i‖2

+ ‖∇ej+1
i ‖2 + ‖ej+1

1 ‖‖∇e
j+1
1 ‖‖∇e

j
i‖2 + ‖ej1‖‖∇e

j
1‖‖∇e

j
i‖2 + ‖∇ej2‖2

]

+
∆t

14(ν1 +H1)

n∑
j=1

(‖∇ej2‖2 + ‖ej2‖‖∇e
j
2‖‖∇e

j
i‖2)

+
8∆t(ν1 +H1)

19

n∑
j=1

{
∆t2‖∇(

ej+1
1 − ej1

∆t
)‖2 + ∆t2C2

∇ût)

}

+
8∆t(ν1 +H1)

19

n∑
j=1

[
∆t‖∇ûj+1

1 ‖2∆t‖∇(
ej+1

1 − ej1
∆t

)‖2

+ ∆t‖∇ûj+1
1 ‖2∆tC2

∇û1t + ∆t‖∇ûj1‖2∆t‖∇(
ej+1

1 − ej1
∆t

)‖2 + ∆t‖∇ûj1‖2∆tC2
∇û1t

]

+
19∆t

(ν1 +H1)

n∑
j=1

[
H2

1‖∇û
j+1
1 ‖2 + ‖f

j+1
1 + f j1

2
‖2
−1

]
+

∆tC∇un+1

ν1 +H1

n∑
j=1

[
1 + κ‖∇ej+1

i ‖2

]

+ ∆tC
n∑
j=1

(‖ej+1
1 ‖1/2‖∇ej+1

1 ‖1/2 + ‖ej+1
2 ‖1/2‖∇ej+1

2 ‖1/2)‖∇ej+1
i ‖2 (3.3.30)

Proof 15 Choosing v1 = ũn+1
1 in (3.2.15) gives
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(
ũn+1

1 − ũn1
∆t

, ũn+1
1

)
+ (ν1 +H1)

(
∇ũn+1

1 ,∇ũn+1
1

)
− κ

∫
I

ũn2 |[ũn]|1/2|[ũn−1]|1/2ũn+1
1 ds− (p̃n+1

1 ,∇ · ũn+1
1 )

+ κ

∫
I

|[ũn]|ũn+1
1 ũn+1

1 ds+ c1

(
ũn+1

1 ; ũn+1
1 , ũn+1

1

)
=

(
fn+1

1 + fn1
2

, ũn+1
1

)
+

∆t(ν1 +H1)

2

(
∇(

ûn+1
1 − ûn1

∆t
),∇ũn+1

1

)
− 1

2
c1(ûn1 ; ûn1 , ũ

n+1
1 )

+
κ

2
∆t

∫
I

|[ûn]|( û
n+1
1 − ûn1

∆t
)ũn+1

1 ds− κ

2
∆t

∫
I

ûn+1
1 (
|[ûn+1]| − |[ûn]|

∆t
)ũn+1

1 ds

+H1

(
∇(

ûn+1
1 + ûn1

2
),∇ũn+1

1

)
+

1

2
c1(ûn+1

1 ; ûn+1
1 , ũn+1

1 )

− κ
∫
I

ûn2 |[ûn]|1/2|[ûn−1]|1/2ũn+1
1 ds+

κ

2

∫
I

|[ûn+1]|ûn+1
2 ũn+1

1 ds

+
κ

2

∫
I

|[ûn]|ûn2 ũn+1
1 ds−

(
p̂n+1

1 − p̂n1
2

,∇ · ũn+1
1

)
, ∀v1 ∈ X1,h. (3.3.31)

We will be applying the Cauchy-Schwarz inequality and Young’s inequality to subsume

all the û1-terms, leading to the telescoping series in the left hand side of (3.3.31) - in

exactly the same way the stability of the defect step was proven in [91].

The nonlinear terms in the right hand side are treated as follows.
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1

2
c1(ûn+1

1 ; ûn+1
1 , ũn+1

1 )− 1

2
c1(ûn1 ; ûn1 , ũ

n+1
1 )

=
1

2
c1(ûn+1

1 ; ûn+1
1 , ũn+1

1 )− 1

2
c1(ûn1 ; ûn1 , ũ

n+1
1 ) +

1

2
c1(ûn+1

1 ; ûn1 , ũ
n+1
1 )− 1

2
c1(ûn+1

1 ; ûn1 , ũ
n+1
1 )

=
∆t

2
c1(ûn+1

1 ;
ûn+1

1 − ûn1
∆t

, ũn+1
1 ) +

∆t

2
c1(

ûn+1
1 − ûn1

∆t
; ûn1 , ũ

n+1
1 ) = A+B

A ≤ ∆t

2
‖∇ûn+1

1 ‖

∥∥∥∥∥∇
(
ûn+1

1 − ûn1
∆t

)∥∥∥∥∥ ‖∇ũn+1
1 ‖

≤ ε(ν1 +H1)‖∇ũn+1
1 ‖2 +

∆t2

16ε(ν1 +H1)
‖∇ûn+1

1 ‖2

∥∥∥∥∥∇
(
ûn+1

1 − ûn1
∆t

)∥∥∥∥∥
2

≤ ε(ν1 +H1)‖∇ũn+1
1 ‖2 +

2∆t

16ε(ν1 +H1)
‖∇ûn+1

1 ‖2∆t

∥∥∥∥∥∇
(
en+1

1 − en1
∆t

)∥∥∥∥∥
2

+
2∆t

16ε(ν1 +H1)
‖∇ûn+1

1 ‖2∆tC2
∇û1t

Similarly,

B ≤ ε(ν1 +H1)‖∇ũn+1
1 ‖2 +

2∆t

16ε(ν1 +H1)
‖∇ûn1‖2∆t

∥∥∥∥∥∇
(
en+1

1 − en1
∆t

)∥∥∥∥∥
2

+
2∆t

16ε(ν1 +H1)
‖∇ûn+1

1 ‖2∆tC2
∇û1t .

Note that ∆t‖∇ûn1‖2 ≤ ∆t
∑n

i=1‖∇ûi1‖2 and the stability bound for the defect step
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approximation can be utilized. The two interface terms on the left hand side of (3.3.31)

are treated in the same way as in the stability proof in [91] .

Replacing ûi with ui − ei leads to

κ

2

∫
I

|[ûn+1]|(ûn+1
2 − ûn+1

1 )ũn+1
1 ds

=
κ

2

∫
I

|[ûn+1]|(un+1
2 − un+1

1 )ũn+1
1 ds− κ

2

∫
I

|[ûn+1]|(en+1
2 − en+1

1 )ũn+1
1 ds

Repeating this replacement and applying the Cauchy-Schwarz and Young’s inequali-

ties, we obtain

κ

2

∫
I

|[ûn+1]|(ûn+1
2 − ûn+1

1 )ũn+1
1 ds

≤ κC∇un+1

2(ν1 +H1)
+

3ε(ν1 +H1)

2
‖∇ũn+1

1 ‖2 +
C

(ν1 +H1)
(‖∇en+1

1 ‖2 + ‖∇en+1
2 ‖2)

κC∇un+1

2(ν1 +H1)
(‖∇en+1

1 ‖2 + ‖∇en+1
2 ‖2) +

ε(ν1 +H1)

2
‖∇ũn+1

1 ‖2 + C(‖en+1
1 ‖1/2‖∇en+1

1 ‖1/2

+ ‖en+1
2 ‖1/2‖∇en+1

2 ‖1/2)(‖∇en+1
1 ‖2 + ‖∇en+1

2 ‖2)

Next, we bound the interface term W = κ
∫
I
ûn+1

1 |[ûn]|ũn+1
1 ds.

W = κ

∫
I

un+1
1 |[ûn]|ũn+1

1 ds− κ
∫
I

en+1
1 |[ûn]|ũn+1

1 ds

Since |a− b| ≤ |a|+ |b|, ‖∇[ûn]‖ ≤ ‖∇ûn1‖+ ‖∇ûn2‖. Thus,
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W ≤ C∇un+1

(ν1 +H1)
(‖∇ûn1‖2 + ‖∇ûn2‖2) + ε(ν1 +H1)‖∇ũn+1

1 ‖2 (3.3.32)

+C‖en+1
1 ‖1/2‖∇en+1

1 ‖1/2‖∇en1‖‖∇ũn+1
1 ‖

+C‖en+1
1 ‖1/2‖∇en+1

1 ‖1/2‖∇en2‖‖∇ũn+1
1 ‖

+C‖en+1
1 ‖1/2‖∇en+1

1 ‖1/2‖∇[u]n‖‖∇ũn+1
1 ‖

The last three summands in the right hand side of (3.3.32) are bounded by

C‖en+1
1 ‖1/2‖∇en+1

1 ‖1/2‖∇[u]n‖‖∇ũn+1
1 ‖ ≤ C

(ν1 +H1)
‖∇en+1

1 ‖2 + ε(ν1 +H1)‖∇ũn+1
1 ‖2,

and

C‖en+1
1 ‖1/2‖∇en+1

1 ‖1/2‖∇en1‖‖∇ũn+1
1 ‖+ C‖en+1

1 ‖1/2‖∇en+1
1 ‖1/2‖∇en2‖‖∇ũn+1

1 ‖

≤ 2ε(ν1 +H1)‖∇ũn+1
1 ‖2 +

C

(ν1 +H1)
‖en+1

1 ‖‖∇en+1
1 ‖(‖∇en1‖2 + ‖∇en2‖2). (3.3.33)

In order to bound the last summand in the right hand side of (3.3.33), choose one of

the two options below, depending on the relationship between the mesh diameter and
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the time step. Both of these upper bounds are of the required order of smallness.


C

(ν1+H1)
1
h
(h2 + ∆t2)(‖∇en1‖2 + ‖∇en2‖2) if ∆t < h

C
(ν1+H1)

[∆t(‖∇en1‖4 + ‖∇en2‖4) + ∆t‖∇en+1
1 ‖2] ifh < ∆t

The terms κ
2

∫
I
ûn1 |[ûn]|ũn+1

1 ds and κ
∫
I
ûn2 |[ûn]|ũn+1

1 ds are bounded in the same way as

the term W .

Since |[ûn]|1/2|[ûn−1]|1/2 ≤ |[ûn]|+|[ûn−1]|
2

, we get

κ

∫
I

|ûn2 ||[ûn]|1/2|[ûn−1]|1/2|ũn+1
1 |ds

=
κ

2

∫
I

|ûn2 ||[ûn]||ũn+1
1 |ds+

κ

2

∫
I

|ûn2 ||[ûn−1]||ũn+1
1 |ds = I + II (3.3.34)

Both the I and II terms are bounded similar to the bound on W . Terms in domain

2 are treated in exactly the same way and then the inequalities for domains 1 and 2

are added together. Finally, choosing ε = 1
38

allow us to subsume the ∇ũi-terms in

the LHS. Multiplying through by 2∆t and summing over the time levels gives us the

desired result. �

We now have all the intermediate results that are needed for proving the accuracy of
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the correction step solution ũ.

Theorem 25 (Accuracy of Correction Step) Let the assumptions of Theorems 22

and 23 be satisfied. Then ∃C > 0 independent of h, ∆t such that for any n ∈

{0, 1, 2, · · · ,M − 1 = T
∆t
− 1}, the solution ũn+1

i of (3.2.15) satisfies

‖un+1 − ũn+1‖2 + (ν +H1)∆t
n+1∑
j=1

‖∇(uj1 − ũ
j
1)‖2 + (ν +H2)∆t

n+1∑
j=1

‖∇(uj2 − ũ
j
2)‖2

≤ C
(
h4 + h2∆t2 +H4

1 +H2
1 ∆t2 +H4

2 +H2
2 ∆t2 + (∆t)4

)
(3.3.35)

Proof 16 First, sum (3.3.5) at time levels tn and tn+1 and divide by 2, to obtain in

Ω1:
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(
un+1

1 − un1
∆t

, v1

)
+ (ν1 +H1)(∇(

un+1
1 + un1

2
),∇v1)

+
1

2
c1(un+1

1 ;un+1
1 , v1) +

1

2
c1(un1 ;un1 , v1)

−
(
pn+1

1 + pn1
2

,∇ · v1

)
+
κ

2

∫
I

|[un+1]|(un+1
1 − un+1

2 )v1ds

+
κ

2

∫
I

|[un]|(un1 − un2 )v1ds

=

(
fn+1

1 + fn1
2

, v1

)
+H1

(
∇
(
un+1

1 + un1
2

)
,∇v1

)
−

(
un+1

1,t + un1,t
2

, v1

)
+

(
un+1

1 − un1
∆t

, v1

)
(3.3.36)

For the O(∆t2)-term introduce the notation
un+1
i −uni

∆t
− un+1

i,t +uni,t
2

≡ γn+1
i . Subtract the

correction step equation (3.2.15) from (3.3.36). Denoting cen+1
i = ui(tn+1)− ũn+1

i , i =

1, 2, we obtain
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(
cen+1

1 − cen1
∆t

, v1

)
+ (ν1 +H1)(∇cen+1

1 ,∇v1)

+ c1(un+1
1 ;un+1

1 , v1)− 1

2
c1(un+1

1 ;un+1
1 , v1)

− c1(ũn+1
1 ; ũn+1

1 , v1) +
1

2
c1(un1 ;un1 , v1) +

1

2
c1(ûn+1

1 ; ûn+1
1 , v1)− 1

2
c1(ûn1 ; ûn1 , v1)

−
(
pn+1

1 − p̃n+1
1 ,∇ · v1

)
+
κ

2

∫
I

(un+1
1 − un+1

2 )|[un+1]|v1ds− κ
∫
I

ũn+1
1 |[ũn]|v1ds

+ κ

∫
I

ũn2 |[ũn]|1/2|[ũn−1]|1/2v1ds+
κ

2

∫
I

(un1 − un2 )|[un]|v1ds

=
∆t(ν1 +H1)

2

(
∇(

en+1
1 − en1

∆t
),∇v1

)
+
H1∆t

2

(
∇(

un+1
1 − un1

∆t
),∇v1

)
+H1(∇en+1

1 ,∇v1) + (γn+1
1 , v1) +

∆t

2

(
pn+1

1 − pn1
∆t

− p̂n+1
1 − p̂n1

∆t
,∇ · v1

)
+ κ

∫
I

ûn2 |[ûn]|1/2|[ûn−1]|1/2v1ds− κ
∫
I

ûn+1
1 |[ûn]|v1ds

+
κ

2

∫
I

ûn+1
1 |[ûn+1]|v1ds+

κ

2

∫
I

ûn1 |[ûn]|v1ds

− κ

2

∫
I

ûn+1
2 |[ûn+1]|v1ds−

κ

2

∫
I

ûn2 |[ûn]|v1ds (3.3.37)

Similarly to the error decomposition in the case of the defect approximation, decom-

pose cen+1
1 = un+1

1 − ũn+1
1 = φn+1

1 − ηn+1
1 , φ1 ∈ X1,h. We now choose v1 = φn+1

1 ∈ X1,h

in (3.3.37).

Notice that after applying the Cauchy-Schwarz and Young’s inequalities, the first five

terms in the right hand side will provide the expected second order of smallness,

O(∆t(h+H1 + ∆t)). This follows from the results of Theorems 22 and 23.
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We now briefly introduce the approach to treating the twelve interface terms of

(3.3.37). After the proper pairing, the proof follows similarly to the treatment of

the interface terms in Theorem 23.

Combine −κ
2

∫
I
un+1

1 |[un+1]|φn+1
1 ds and −κ

2

∫
I
un1 |[un]|φn+1

1 ds with half of

κ
∫
I
ũn+1

1 |[ũn]|φn+1
1 ds term for each.

Similarly, pair κ
2

∫
I
un+1

2 |[un+1]|φn+1
1 ds and κ

2

∫
I
un2 |[un]|φn+1

1 ds with half of

−κ
∫
I
ũn2 |[ũn]|1/2|[ũn−1]|1/2φn+1

1 ds term for each.

Also, add and subtract I ≡ κ
∫
I
[un+1]|[un+1]|φn+1

1 ds from the rest of the interface

terms. Pair up I with −κ
∫
I
ûn+1

1 |[ûn]|φn+1
1 ds and κ

∫
I
ûn2 |[ûn]|1/2|[ûn−1]|1/2φn+1

1 ds.

Combine −I with the remainder of the interface terms. Then follow the proof of

Theorem 23 to obtain the corresponding bounds.

The nonlinear terms are treated as follows.
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c1(un+1
1 ;un+1

1 , φn+1
1 )− c1(ũn+1

1 ; ũn+1
1 , φn+1

1 )− 1

2
c1(un+1

1 ;un+1
1 , φn+1

1 )

+
1

2
c1(ûn+1

1 ; ûn+1
1 , φn+1

1 ) +
1

2
c1(un1 ;un1 , φ

n+1
1 )− 1

2
c1(ûn1 ; ûn1 , φ

n+1
1 )

= c1(un+1
1 ; cen+1

1 , φn+1
1 ) + c1(cen+1

1 ; ũn+1
1 , φn+1

1 )− 1

2
c1(un+1

1 ; en+1
1 , φn+1

1 )

−1

2
c1(en+1

1 ; ûn+1
1 , φn+1

1 ) +
1

2
c1(un1 ; en1 , φ

n+1
1 ) +

1

2
c1(en1 ; ûn1 , φ

n+1
1 )

Adding and subtracting more nonlinear terms and writing cen+1
1 = ηn+1

1 −φn+1
1 we get

−c1(un+1
1 ;φn+1

1 , φn+1
1 ) + c1(un+1

1 ; ηn+1
1 , φn+1

1 )− c1(φn+1
1 ; ũn+1

1 , φn+1
1 )

+c1(ηn+1
1 ; ũn+1

1 , φn+1
1 ) +

∆t

2
c1(

un+1
1 − un1

∆t
; en1 , φ

n+1
1 ) +

∆t

2
c1(un+1

1 ;
en+1

1 − en1
∆t

, φn+1
1 )

+
∆t

2
c1(en+1

1 ;
un+1

1 − un1
∆t

, φn+1
1 )− ∆t

2
c1(en+1

1 ;
en+1

1 − en1
∆t

, φn+1
1 )

+
∆t

2
c1(

en+1
1 − en1

∆t
; ûn1 , φ

n+1
1 ).

The first of these terms is identically zero; the third term is treated by using the sharper

bound (3.2.11) and then it is subsumed using the Gronwall’s lemma. The remainder
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of the nonlinear terms provide the necessary second order of smallness. Terms in

domain 2 are treated in exactly the same way. Finally, summing over i = 1, 2 and

using the Gronwall’s lemma completes the proof. �

3.4 Computational Testing

We use a manufactured solution test to illustrate the theoretical findings of this

chapter. An exact solution in the domain Ω = Ω1 ∪ Ω2 with Ω1 = [0, 1] × [0, 1] and

Ω2 = [0, 1]× [0,−1] is given by

u1,1 = aν1e
−tx2(1− x)2(1 + y) + ae−t/2x(1− x)ν1/

√
κa

u1,2 = aν1e
−txy(2 + y)(1− x)(2x− 1) + ae−t/2y(2x− 1)ν1/

√
κa

u2,1 = aν1e
−tx2(1− x)2(1 +

ν1

ν2

y)

u2,2 = aν1e
−txy(1− x)(2x− 1)(2 +

ν1

ν2

y),

where ui,j : Ωi → R, ∀i, j = 1, 2. Parameters are chosen as follows: a = 1, ν1 = 0.5,

ν2 = 0.1, κ = 1 and the final time T = 1. The solution has a vortex region in the

lower subdomain.

Pressures in both domains are set to zero (for simplicity only, not a requirement),

and the right hand side forcing terms, initial and boundary values are calculated
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accordingly. For simplicity, we have used the true solution for two initial values.

Instead, one could use one step of the Geometric Averaging Method as a starting

method to find the second initial value. In order to compute the convergence rates

easily, we have chosen the mesh size(h), time step(∆t), and both artificial viscosities

(Hi) equal to 1/N , where N is the number of mesh points on per unit line segment.

Taylor-Hood elements, piecewise quadratic polynomials for the velocity and piecewise

linear polynomials for the pressure, have been used in these computations.

Table 3.1
AV approximation û.

N ||u− û ||L2(0,T ;L2(Ω)) rate ||u− û ||L2(0,T ;H1(Ω)) rate

2 1.4798e-002 - 7.3869e-002 -

4 9.4941e-003 0.64 6.8654e-002 0.10

8 5.5097e-003 0.78 4.9680e-002 0.46

16 2.9407e-003 0.90 2.9957e-002 0.72

32 1.5262e-003 0.94 1.5786e-002 0.92

64 7.9193e-004 0.94 7.7512e-003 1.02

128 4.0867e-004 0.95 3.7515e-003 1.04
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Table 3.2
CS approximation ũ.

N ||u− ũ ||L2(0,T ;L2(Ω)) rate ||u− ũ ||L2(0,T ;H1(Ω)) rate

2 1.0087e-002 - 6.0656e-002 -

4 5.1671e-003 0.96 4.2536e-002 0.51

8 2.3203e-003 1.15 2.3754e-002 0.84

16 8.7794e-004 1.40 1.0149e-002 1.22

32 2.8166e-004 1.64 3.3514e-003 1.60

64 8.1197e-005 1.79 9.2868e-004 1.85

128 2.2172e-005 1.87 2.3908e-004 1.96

As seen in Table (3.1) and Table (3.2), the convergence rates of the artificial viscosity

(AV) approximation (3.2.14) in both the ||.||L2(0,T ;L2(Ω)) and ||.||L2(0,T ;H1(Ω)) norms are

1, whereas those of the correction step (CS) approximation (3.2.15) in both norms

are 2. These results are consistent with the theory developed in this report. We

note that the correct convergence rates require not just the improvement of the time

accuracy, but also the reduction of artificial viscosity effects on the solution. In terms

of qualitative assessment, consider Figure (3.1) and Figure (3.2).
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.

Figure 3.1: True Solution Figure 3.2: Computed Solution

It can be clearly seen that the computed solution successfully captures all the struc-

tures of the true solution, including the vortex in the second domain. Beyond the

theory, we note that the correction step improves the accuracy of the computed so-

lution even for large values of the time step, mesh and viscosity values outside of the

asymptotic regime. This is important for atmosphere-ocean applications, since dis-

cretization parameters for these simulations are not expected to lie in the asymptotic

regime.

154



3.5 Summary and future work

A method was proposed to reduce time-consistency errors and artificial viscosity

effects in computational simulations for a model of two coupled fluids. Our model was

chosen to roughly represent the numerical viscosity (or diffusion) and flux coupling

techniques used in many atmosphere-ocean interaction (AOI) simulations. The point

of the simplified model has been to illustrate the general algorithmic approach, but

also to provide a rigorous numerical analysis and testing to illustrate the theory, which

would have been too cumbersome for the full physics and numerics of an application

code. We believe that our analysis helps to begin filling in gaps in the literature; few

examples of numerical analysis exist that seek to address the AOI coupling problem

(see [91, 92, 95, 104, 116]).

The formal, global consistency in time was improved using deferred correction. The

deferred correction approach allowed the lower-order numerics to be employed for a

predictor-type calculation, which was then modified to create a corrector step with

a formal increase in the order of accuracy in time. This improvement applied to the

global time stepping method, but in particular the coupling consistency was lifted to

second order, which would typically be of first order in practice. Defect correction

was applied to mitigate artificial viscosity effects, which we demonstrated could be

implemented as a slight modification to the deferred correction step. We subsequently
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proved the unconditional stability and optimal convergence of the method, as well as

the formal reduction of numerical viscosity effects.

A numerical example was provided to illustrate the theory. A manufactured solution

was derived for the coupled fluid model, so that errors could be computed explicitly as

time step and artificial viscosity parameters were varied. In this way, the predictions of

the theory were demonstrated clearly. That is, the second-order convergence rate was

verified as the time step was decreased, as well as the improved accuracy using defect

correction to reduce the artificial viscosity effects. Beyond the theory, a significant

improvement was observed for the largest values of time step and artificial viscosity

parameters. This indicates the possibility of a benefit in application, where solutions

are marginally resolved due to turbulent behavior and a wide range of scales.

In this chapter we have provided an initial step toward numerical improvements for

AOI simulations, but some important issues remain to be considered in future work.

One is the extension of the methodology to account for the existence of additional

physics, more complex geometry and different numerical methods encountered in

application codes. We have explained in Sections 3.1.1-3.1.2 that the combined defect-

deferred correction (DDC) approach may, in principle, be applied to a broad class of

numerical methods. In this regard, the most important extension will be to consider

smaller time steps in the “atmosphere” fluid regime and incorporate a more general

class of flux coupling methods, such as in [95, 96]. This extension will illuminate

156



another benefit of the DDC approach: improvement of time consistency within each

fluid regime individually, not just for the coupling (as has been emphasized in this

chapter).

Another issue for future study is that new algorithmic approaches for AOI are not

practical unless they can be integrated into existing code structures. We believe

the implementation would be reasonable, since one may leverage the existing code

structure used for the base (predictor) step to a considerable degree for the corrector

calculation. Roughly speaking, this is because the corrector step is equivalent to a

second predictor step with additional source terms and an algebraic change in the

flux calculations.

Finally, code efficiency must be addressed, but this cannot be determined until testing

is performed using an application-level code. We have hope that the defect-deferred

correction approach would lead to an improvement in efficiency because of the signif-

icant improvement in accuracy observed in our test using parameter choices outside

of the regime of asymptotic convergence. The cost of the DDC method is around

3 to 4 times that of the base method; to achieve the same accuracy with the base

method alone (by decreasing the time step size, for example) may cost much more

than a factor of 3 to 4. Furthermore, reducing artificial viscosity effects in current,

coupled AOI simulations is not as simple as just reducing parameter values. The

defect correction approach may provide an efficient way to reduce these effects.
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Chapter 4

An Efficient Defect Correcting

Extrapolation Technique

4.1 Introduction

As of today, solving differential equations analytically is impossible for most of the

real-life problems. For this reason, practitioners use numerical techniques to approx-

imate their solutions. This idea follows with the choice of a discretization parameter

(possibly more than one), and continues with computing approximations as a function

of this parameter. Consistency of the approximation requires its convergence to the

true solution in the limiting case as the discretization parameter approaches 0. Even
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though the accuracy of computed approximation relies mostly on the choice of the

discretization parameter being close to zero, such values of these parameters either

result in a prohibitively high computational cost, or introduce extra errors due to

machine round-off. Therefore, users are limited in their choice of these discretization

parameters.

Around the beginning of the 20th century, mathematicians including Richardson no-

ticed that errors of many discretized approximations lead to asymptotic expansions

for discretization parameter. He then suggested a technique, which he called ”the

deferred approach to the limit”, that uses two different approximations of a true so-

lution in order to gain more accuracy by eliminating the dominating power term of

the discretization parameter in the error expansion. In his early work on what we

now call the Richardson extrapolation technique, he applied this method to vibration

of a stretched string of beads, Laplace’s equation in a square, vibration of a clamped

plate and stresses in a masonry dam [117],[118].

In another paper(1923), Richardson noted that at discontinuities error expansion

series may not converge, but commented ”there are, so to speak, in the mathematical

country, precipices and pit-shafts down which it would be possible to fall, but that

need not deter us from walking about.”[118].

In 1927, he examined the method in details and showed that it has many ap-

plications [119]. Since his frontier works, this technique has been widely used
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for various purposes and applications; increasing accuracy, obtaining grid indepen-

dent solutions, uncertainty quantification, computational fluid dynamics, and so on

[118],[120],[121],[122],[123],[124].

In addition to what has been done by employing Richardson extrapolation, as pro-

posed in this report, it can be used to correct the defect error caused by artificial

viscosity, conductivity, etc. added to an equation in order to regularize the system.

While doing this, it does not require a whole correction step, which mostly solves

the problem at least one more time doubling computational cost. Instead, the new

approach uses an approximation to artificially-diffused equation on a twice coarser

mesh with a twice large time step, which reduces the computational cost as it gives

the same or a better convergence rates than the existing two-step defect correction

methods.

The error introduced by an artificial quantity is only of order one alone for most of

the artificial quantity methods including [25],[100],[125],[126] which means that the

error function of artificial viscosity (AV) approximations looks like

E(h,∆t,H) = CH +O(hm + ∆tn).

Extrapolating once eliminates the error contribution of the artificial quantity H, and
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the new error looks like

Enew(h,∆t,H) = O(hm + ∆tn).

As a consequence of extrapolation, we will be able to remove the error effect of artifi-

cial quantity at all provided that the solution is smooth and discretization parameters

are small enough; a new approach for ”defect correction”. Moreover, if Euler time in-

tegrator is employed in the artificial quantity approximation, extrapolation increases

time accuracy as well.

E(h,∆t,H) = CH + C∆t+O(hm + ∆t2),

Enew(h,∆t,H) = O(hm + ∆t2).

In addition, the proposed defect correction method with extrapolation (DCE) can be

applied repeatedly with several other solutions on coarser meshes and time steps to

increase the accuracy even more with a very low extra computational time. While

this idea could be employed with various defect correction methods for various PDEs,

in this report we are going to focus on the Navier-Stokes Equations (NSE).
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The motion of incompressible fluid flow in the flow domain Ω = (0, L)d is governed by

the Navier-Stokes equations: find the velocity-pressure pair u : Ω× (0, T ]→ Rd, (d =

2, 3) and p : Ω× (0, T ]→ R satisfying

ut + u · ∇u− ν∆u+∇p = f, for x ∈ Ω, 0 < t ≤ T

∇ · u = 0, x ∈ Ω, for 0 ≤ t ≤ T,

u(x, 0) = u0(x), for x ∈ Ω.

(4.1.1)

Kolmogorov theory (K41) [66] states that turbulent flow is a continuum of scales, with

the smallest scales (in 3D flow) being of order O(Re−3/4), where Reynolds number

is inverse proportional to the viscosity coefficient ν. As a result, in order to capture

all the small scales in a turbulent flow, the number of mesh points in space for

each time step has to be O(Re9/4). It is common to have Re ∼ O(108) in real-life

problems. Hence, the direct numerical simulation (DNS) of 3D turbulent flow is not

computationally economic or even feasible. It is desired to use pre-existing codes

when it comes to turbulent flows in complex geometries. The DCE technique is used

(but is not limited) to correct the defect and boost convergence rate of a legacy code

given as AV Approximation of NSE in [25].
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(
uh,n+1 − uh,n

k
, vh) + (ν +H)(∇uh,n+1,∇vh)

+b∗(uh,n+1, uh,n+1, vh)− (ph,n+1,∇ · vh) = (f(tn+1), vh),∀vh ∈ Xh,

(∇ · uh,n+1, qh) = 0,∀qh ∈ Qh.

This report presents an analytical testing verifying convergence rates, two computa-

tional analysis and comparison of the proposed DCE method against various defect

correction methods applied to NSE; namely, defect correction with BDF2-3 (DC-

BDF2, DC-BDF3), Trapezoidal Rule (DC-Trap) and DDC given in [111]. Lastly, it

provides 2 and 3D qualitative testing of well-known benchmark problem fluid past

backward-facing step.

4.2 Notation and Preliminaries

Throughout this paper, the norm ||.|| denotes the usual L2(Ω) norm of scalars, vectors

and tensors, induced by the usual L2 inner-product, denoted by (·, ·). The space in

which velocity sought(at time t) is

X = H1
0 (Ω)d = {v ∈ L2(Ω)d : ∇v ∈ L2(Ω)dxd and v = 0 on ∂Ω}.
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with the norm ||v||X = ||∇v||. The space dual to X is

equipped with the norm

||f ||−1 = sup
v∈X

(f, v)

||∇v||
.

The space that pressure (at time t) belongs to is

Q = L2
0(Ω) = {q ∈ L2(Ω) :

∫
Ω

q(x)dx = 0}.

Introduce the space of weakly divergence-free functions

X ⊃ V = {v ∈ X : (∇ · v, q) = 0,∀q ∈ Q}.

For measurable v : [0, T ]→ X, we define

||v||Lp(0,T ;X) = (

∫ T

0

||v||PXdt)
1
p , 1 ≤ p <∞,

and

||v||L∞(0,T ;X) = ess sup
0≤t≤T

||v(t)||X .
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Define the trilinear form on X ×X ×X

b(u, v, w) =

∫
Ω

u · ∇v · wdx.

Throughout the paper, we shall assume that the velocity-pressure finite element spaces

Xh ⊂ X and Qh ⊂ Q are conforming, have typical approximation properties of finite

element spaces commonly in use, and satisfy the discrete inf-sup, or LBBh, condition

inf
qh∈Qh

sup
vh∈Xh

(qh,∇ · vh)
‖∇vh‖‖qh‖

≥ βh > 0, (4.2.1)

where βh is bounded away from zero uniformly in h. Examples of such spaces can

be found in [32]. We shall consider Xh ⊂ X, Qh ⊂ Q to be spaces of continuous

piecewise polynomials of degree m and m−1, respectively, with m ≥ 2 as we introduce

at least second order accuracy.

Theorem 26 (Richardson Extrapolation) Suppose φ∗ is the sought true solution

with a method φ(h) which depends on h, so that

φ(h) = φ∗ + Chk +O(hk+1).
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Define

R(h, α) :=
αkφ(h)− φ(αh)

αk − 1
, for some real α 6= 0, 1.

Then

R(h, α) = φ∗ +O(hk+1)

Proof 17 The well-know proof of this theorem is given as follows:

R(h, α)− φ∗ =
αkφ(h)− φ(αh)

αk − 1
− φ∗ =

αk(φ(h)− φ∗)− (φ(αh)− φ∗)
αk − 1

=
αk(Chk +O(hk+1))− (Cαkhk +O(hk+1))

αk − 1
= O(hk+1)
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4.3 Artificial Viscosity Algorithm of NSE and Its

Error Estimates

The motion of incompressible fluid flow in the flow domain Ω = (0, L)d is governed by

the Navier-Stokes equations: find the velocity-pressure pair u : Ω× (0, T ]→ Rd, (d =

2, 3) and p : Ω× (0, T ]→ R satisfying (4.1.1).

Algorithm 4.3.1 (AV approximation for NSE) Let ∆t > 0, N = T
∆t

, f ∈

L2(Ω). Given uh,n, find uh,n+1 ∈ Xh, n = 0, 1, 2, · · · , N − 1, satisfying

(
uh,n+1 − uh,n

k
, vh) + (ν +H)(∇uh,n+1,∇vh)

+b∗(uh,n+1, uh,n+1, vh)− (ph,n+1,∇ · vh) = (f(tn+1), vh),∀vh ∈ Xh,

(∇ · uh,n+1, qh) = 0,∀qh ∈ Qh.

Definition 3.1 Let

Cu := ||u(x, t)||L∞(0,T ;L∞(Ω)),

C∇u := ||∇u(x, t)||L∞(0,T ;L∞(Ω)),

C̃u := ||u(x, t)||L∞(0,T ;L2(Ω)),
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C̃∇u := ||∇u(x, t)||L∞(0,T ;L2(Ω)),

and introduce C̃, satisfying

inf
v∈V h
||∇(u− v)|| ≤ C1 inf

v∈Xh
||∇(u− v)|| ≤ C2h

m||u||Hm+1 ≤ C̃hm

Also, using the constant C(Ω) from Lemma 2.3, we define C̄ := 1728C4(Ω).

Theorem 27 (Error Estimate of AV Approximation to NSE) Let

f ∈ L2(0, T ;H−1), let uh,i satisfy the algorithm (4.3.1)

for all i = 0, 1, 2, · · · , N − 1,

∆t ≤ ν +H

4C2
u + 2(ν +H)C∇u + 2C̄C̃4(ν +H)−2h4m

,

u ∈ L2(0, T ;Hm+1(Ω)) ∩ L∞(0, T ;L∞(Ω)),∇u ∈ L∞(0, T, L∞(Ω)),

ut ∈ L2(0, T ;Hm+1(Ω)), utt ∈ L2(0, T ;L2(Ω)), p ∈ L2(0, T ;Hm(Ω)).

Then there exist a constant C = C(Ω, T, u, p, f, ν +H), such that
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max
1≤i≤N

||u(ti)− uh,i||+
(

∆t
n+1∑
i=1

(H + ν)||∇(u(ti)− uh,i)||2
)1/2

≤ C(hm +H + ∆t)

Proof 18 Can be found in [25]

In order to observe what the error estimate looks like after extrapolation, we need to

see the pattern of the error function. To this end, let us first prove extended error

estimate of AV approximation.

Theorem 28 (Extended Error Estimate of AV Approximation to NSE)

Let the assumptions of Theorem (27) be satisfied, and

uttt ∈ L2(0, T ;L2(Ω)),

Then there exist a constant C = C(Ω, T, u, p, f, ν +H), such that

max
1≤i≤N

||u(ti)−uh,i||+
(

∆t
n+1∑
i=1

(H+ν)||∇(u(ti)−uh,i)||2
)1/2

≤ C(H+∆t)+O(∆t2+hm)
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Proof 19 By Taylor expansion, u(tn+1)−u(tn)
∆t

= ut(tn+1) − ∆tρn+1 + ∆t2σn+1, where

ρn+1 = utt(tn+1) and σn+1 = uttt(tn+θ), for some θ ∈ [0, 1].

Follow the same steps starting with the equation (4.4) in [25] with an additional

term ∆t2(σn+1, v). Replace v with φh,n+1 as is done in the reference report. By the

definition of ‖ · ‖−1 and Young’s inequality

∆t2(σn+1, φh,n+1) ≤ ∆t2‖σn+1‖−1‖∇φh,n+1‖

≤ 1

4ε(H + ν)
∆t4‖σn+1‖2

−1 + ε(H + ν)‖∇φh,n+1
1 ‖2. (4.3.1)

Choosing an appropriate ε, the following inequality can be found.
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‖φh,n+1
1 ‖2 − ‖φh,n1 ‖2

2∆t
+
H + ν

2
‖∇φh,n+1

1 ‖2

≤ C

H + ν
‖η

n+1
1 − ηn1

∆t
‖2
−1

+C(H + ν)‖∇ηn+1
1 ‖2

+
C

H + ν
inf

qh∈Qh
‖p(tn+1)− qh,n+1‖2

+
C

H + ν
H2‖∇u(tn+1)‖2 +

C

H + ν
∆t2‖ρn+1‖2

−1

+
C

H + ν
∆t4‖σn+1‖2

−1 +
C

H + ν
(‖∇ηn+1

1 ‖2 + ‖∇ηn+1
1 ‖4)

+(
1

2
C∇u +

C2
u

H + ν
+

C̄

(H + ν)3
‖∇ηn+1

1 ‖4)‖φh,n+1
1 ‖2.

In addition to the assumptions of 27, it follows from the new regularity assumptions

of the theorem that

∆t
n∑
i=0

‖ρi+1‖2
−1 ≤ C∆t

n∑
i=0

‖ρi+1‖2 ≤ C,
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∆t
n∑
i=0

‖σi+1‖2
−1 ≤ C∆t

n∑
i=0

‖σi+1‖2 ≤ C.

Summing (4.3.2) over all time levels and multiply by 2∆t gives equation (4.18) in

[25] with the following extra term on the right hand side,

1

H + ν
∆t

n∑
i=0

C∆t4.

Keeping this extra term on the right hand side and treating exactly the same way that

[25] treats to the term with ∆t2 gives the desired result.

The same idea can be employed to notice the fact that, when sufficiently enough

time derivatives are provided, the time error in AV approximation of NSE has a

tail of errors C1∆t, C2∆t2, C3∆t3, and so on; in other words, it has an asymptotic

error expansion. This property allows us to gain accuracy in time while correcting the

defect due to the artificial viscosity, and even lets us to achieve higher time accuracies

with repeated extrapolation.
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4.4 Defect Correcting Extrapolation Technique

The theoretical reasoning of this defect correction approach is very similar to Richard-

son extrapolation. While it deals with approximations of only one size parameter with

a tail of increasing orders such as ∆t, ∆t2, ∆t3 and so on, we extend its usage to

more than one size parameters, namely, artificial quantity H and the time step size

∆t. Having only of order 1 error contribution due to the artificial quantity H allows

us to use this approach as a defect corrector, which removes H from the error func-

tion after a simple extrapolation in contrast to other defect correction methods which

gives O(H2) accuracy with a correction step.

Next, we are going to discuss how the technique works with algorithm 4.3.1. Although

we consider only NSE, it can be generelized for other artificial quantity methods with

the same or similar error pattern.

Algorithm 4.4.1 (2nd order Defect Correcting Extrapolation (DCE2))

Let uh(∆t,H, T ) and uh(α∆t, αH, T ) be two different outputs of the AV approxima-

tions given in algorithm 4.3.1 at the final time T with a sufficient space accuracy.

Let not α be too close to 0 or 1. Find
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ũh2(∆t,H, T ) :=
αuh(∆t,H, T )− uh(α∆t, αH, T )

α− 1
. (4.4.1)

Algorithm 4.4.2 (kth Order Defect Correcting Extrapolation (DCEk))

For k ≥ 3, let ũhk−1(∆t,H, T ) and ũhk−1(α∆t, αH, T ) be two outputs of algorithm

(DCE(k-1)) at the final time T with a sufficient space accuracy. Find

ũhk(∆t,H, T ) :=
αk−1ũhk−1(∆t,H, T )− ũhk−1(α∆t, αH, T )

αk−1 − 1
. (4.4.2)

Extrapolation techniques rely on error coefficients to be constants. For this reason,

smoothness criteria for error estimates are very crucial. The choice of α is up to

the user; however, we have to make sure that it does not get too close to 1 so that

machine precision does not ruin algorithm.

We expect a second order of accuracy upon DCE2 as it does the main correction

for the defect caused by artificial viscosity. Extra extrapolations beyond this point

increases the order of accuracy by 1. Therefore, we expect a kth order of accuracy in

general when DCEk applied.
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4.5 Testing the Model

In this section, we are going to present testing results for our model. First, we give

results for an analytical testing with a well-known solution of Navier Stokes equation,

namely, Green-Taylor vortex decay problem. A computational testing with both

quantitative and qualitative results come next.

4.5.1 Analytical Test

We consider first the Green-Taylor vortex decay problem [129], [130], which is an

exact solution of the NSE with no forcing and periodic boundary conditions. In

Ω = (0, 1)× (0, 1), solutions take the form:

u1(x, y, t) = − cos(nπx) sin(nπy)e−2n2π2νt,

u2(x, y, t) = sin(nπx) cos(nπy)e−2n2π2νt,

p(x, y, t) = −1

4

(
cos(2nπx) + sin(2nπy)

)
e−4n2π2νt,
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where n can be chosen as any positive integer. This exact NSE solution is made of

an n × n array of oppositely signed vortices that decay as t → ∞. It has been used

as a numerical test in [131], [132], and [133], and many other papers. It also has been

used as an analytical test in [134].

For simplicity, we rescale the domain, and choose n = 1 so that the solution yields

the following form:

u1(x, y, t) = − cos(x) sin(y)e−2νt

u2(x, y, t) = sin(x) cos(y)e−2νt

p(x, y, t) = −1

4

(
cos(2x) + sin(2y)

)
e−4νt.

The solution above is easily extended to an exact solution of the NSE with an artificial

viscosity h given by
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u1(x, y, t) = − cos(x) sin(y)e−2(ν+h)t

u2(x, y, t) = sin(x) cos(y)e−2(ν+h)t

p(x, y, t) = −1

4

(
cos(2x) + sin(2y)

)
e−4(ν+h)t.

Similar solutions for the artificial viscosities 2h and 4h can be obtained easily.

Since sinusoidal terms are the same for all of the solutions, ignoring them and Taylor

expanding exponential terms give

e−2(ν+h)t = e−2νt
(
1− 2th+ 2t2h2 +O(h3)

)
, (4.5.1)

e−2(ν+2h)t = e−2νt
(
1− 4th+ 8t2h2 +O(h3)

)
, (4.5.2)

e−2(ν+4h)t = e−2νt
(
1− 8th+ 32t2h2 +O(h3)

)
. (4.5.3)
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Comparing these results with the true solution e−2νt, we can easily observe first order

accuracy with each AV approximation provided h is sufficiently small.

After the first time extrapolation (DCE2) of 4.5.1 and 4.5.2, and also 4.5.2 and 4.5.3,

solutions take the following form:

2e−2(ν+h)t − e−2(ν+2h)t = e−2νt
(
1− 4t2h2 +O(h3)

)
, (4.5.4)

2e−2(ν+2h)t − e−2(ν+4h)t = e−2νt
(
1− 16t2h2 +O(h3)

)
. (4.5.5)

These results clearly show that both analytical solutions are second order accurate in

terms of h.

Continuing this process (DCE3) with 4.5.4 and 4.5.5 similarly yields third order ac-

curacy. One can continue applying the DCEk algorithm to gain even more accuracy.

We have to note that even though each extrapolation increases error constant, the

common factor e−2νt decreases exponentially fast for our accuracies’ favor.
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4.5.2 Computational Tests

4.5.2.1 Quantitative Testing

In this subsection, we are going to present various convergence and computational

time results of DCE and its comparison with existing methods; DC-BDF2, DC-BDF3,

DC-Trap and DDC methods. Through this section, α has chosen to be 2, and all the

sizes(∆t,H and h) are chosen to be equal and refined together. Solutions(with exist-

ing defect correction methods and DCE) at final time in coarse meshes transformed

onto the finest mesh by Freefem++[127] interpolation matrix in order to compute

error norms. Final time has been chosen to be T = 1 for all of the computations.

Forcing functions and initial and boundary conditions are calculated to comply with

given true solutions. Ni refers to the number of mesh points on a unit line segment,

thus h = ∆t = H = 1/Ni. Ni − Nj values in the table refers to the computed so-

lutions with once extrapolation DCE2 with the corresponding N values. Similarly,

Ni −Nj −Nk means twice extrapolation DCE3, and so on.

Before we present computational results, we need to draw your attention to a point

that even if the computations are not done with the most efficient ways, existing

correction methods and DCE are both threated the same. In this regard, compu-

tational times should be read as rates in sequential computation instead of actual
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computational time.

Start with NSE with a given true solution in Ω = [0, 1]2:

u1(x, y, t) = e−t(x+ y3),

u2(x, y, t) = −e−t(x3 + y),

p(x, y, t) = 0.

In order to numerically verify that expected convergence rates are achieved, we per-

form a convergence analysis with P3-P2 finite elements; piecewise cubic polynomials

for velocity and quadratic polynomials for pressure. Tables (4.1) - (4.2) show com-

putational results for ν = 1. As observed from tables, DCE2 makes the correction as

proposed, and we gain an additional order of accuracy with each extrapolation.
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Table 4.1
Once extrapolated DCE2, ν = 1, P3-P2.

N ||u(T )− ũh(T ) ||L2(Ω) rate ||u(T )− ũh(T ) ||H1(Ω) rate

2-4 0.00096183 - 0.0102855 -

4-8 0.000273098 1.82 0.00223319 2.20

8-16 8.01382e-005 1.77 0.000614004 1.86

16-32 2.18876e-005 1.87 0.000166776 1.88

32-64 5.72887e-006 1.93 4.36288e-005 1.93

64-128 1.4661e-006 1.97 1.11646e-005 1.97

Table 4.2
Twice extrapolated DCE3, ν = 1, P3-P2.

N ||u(T )− ũh(T ) ||L2(Ω) rate ||u(T )− ũh(T ) ||H1(Ω) rate

2-4-8 0.000123665 - 0.00263579 -

4-8-16 1.71684e-005 2.85 0.000294023 3.16

8-16-32 2.48723e-006 2.79 2.95468e-005 3.31

16-32-64 3.429e-007 2.86 3.29008e-006 3.17

32-64-128 4.51888e-008 2.92 3.84695e-007 3.10

The rest of the computational part is dedicated to comparison of various methods.

182



Tables (4.3) - (4.11) show computational results with Taylor-Hood finite elements

—quadratics(P2) for velocity and piecewise linears(P1) for pressure. As seen in tables

(4.4) and (4.7), DC-BDF2 and DC-BDF3 give very similar results as error due to

defect dominates all other error contributions(space and time). In order to expect

a better accuracy from a defect correction with BDF integrator, one has to add one

more correction step(which increases computational time by half (1.5x)). In spite of

the fact that employing BDF3 instead of BDF2 does not produce any better results,

fortunately, this argument does not apply to DCE methods.

Keeping above argument in mind, the comparison of DCE2 and BDF2 shows that

the latter gives twice better accuracy, but requires almost twice as much time needed

for DCE2. As suggested by tables (4.3), (4.5) and (4.6), lost accuracy can be re-

gained with further extrapolations (DCE3 and DCE4) with an additional 1% extra

computational time for each.

183



Table 4.3
Once extrapolated DCE2, ν = 0.1, P2-P1.

N || e(T ) ||L2(Ω) rate || e(T ) ||H1(Ω) rate Comp. Time

2-4 0.0086303 - 0.0812381 - 0.3

4-8 0.00557602 0.63 0.0454532 0.83 2

8-16 0.00302498 0.88 0.0235575 0.94 14

16-32 0.00130627 1.21 0.0102259 1.20 124

32-64 0.000456872 1.51 0.00362236 1.49 959

64-128 0.000137902 1.72 0.00110496 1.71 9116

Table 4.4
Defect Correction with BDF2, ν = 0.1, P2-P1.

N || e(T ) ||L2(Ω) rate || e(T ) ||H1(Ω) rate Comp. Time

2 0.00850592 - 0.0688755 - 0.3

4 0.00640781 0.40 0.0492258 0.48 0.5

8 0.00399222 0.68 0.0305899 0.68 4

16 0.00196225 1.02 0.0152057 1.00 26

32 0.000753834 1.38 0.00592989 1.35 220

64 0.000240861 1.64 0.00191929 1.62 1859

128 6.86871e-005 1.81 0.000552079 1.79 15347
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Table 4.5
Twice extrapolated DCE3, ν = 0.1, P2-P1.

N || e(T ) ||L2(Ω) rate || e(T ) ||H1(Ω) rate Comp. Time

2-4-8 0.00485526 - 0.0456883 - 2

4-8-16 0.00219288 1.14 0.0181232 1.33 14

8-16-32 0.000737836 1.57 0.00603343 1.58 123

16-32-64 0.000175409 2.07 0.00147149 2.04 971

32-64-128 3.20009e-005 2.45 0.000277792 2.41 9225

Table 4.6
Three times extrapolated DCE4, ν = 0.1, P2-P1.

N || e(T ) ||L2(Ω) rate || e(T ) ||H1(Ω) rate Comp. Time

2-4-8-16 0.00185997 - 0.0178279 - 14

4-8-16-32 0.000534314 1.79 0.00489538 1.86 123

8-16-32-64 9.59466e-005 2.48 0.000938427 2.38 974

16-32-64-128 1.16833e-005 3.03 0.000141862 2.73 9238
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Table 4.7
Defect Correction with BDF3, ν = 0.1, P2-P1.

N || e(T ) ||L2(Ω) rate || e(T ) ||H1(Ω) rate Comp. Time

2 0.0101987 - 0.0810543 - 0.2

4 0.00639727 0.67 0.0491753 0.72 0.8

8 0.00396871 0.68 0.0304718 0.69 4

16 0.00198013 1.00 0.0153461 0.99 26

32 0.000759157 1.38 0.00597128 1.36 227

64 0.00024228 1.65 0.00193031 1.63 1854

128 6.90473e-005 1.81 0.000554875 1.80 18507

Above comparisons have been done between DCE and DC-BDF because tables (4.4),

(4.8) and (4.9) suggest that DC-BDF2 gives very similar error results with that of

DC-Trap and DDC in a slightly better computational time.
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Table 4.8
Defect Correction with Trapezoidal Rule, ν = 0.1, P2-P1.

N || e(T ) ||L2(Ω) rate || e(T ) ||H1(Ω) rate Comp. Time

2 0.0377949 - 0.290277 - 0.2

4 0.0134339 1.49 0.146063 0.99 0.8

8 0.00402036 1.74 0.0461772 1.66 6

16 0.00188649 1.09 0.0167081 1.47 48

32 0.000721738 1.38 0.00593077 1.49 410

64 0.000230334 1.65 0.0018682 1.67 4285

128 6.56533e-005 1.81 0.000532486 1.81 26518
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Table 4.9
Defect-Deferred Correction, ν = 0.1, P2-P1.

N || e(T ) ||L2(Ω) rate || e(T ) ||H1(Ω) rate Comp. Time

2 0.00872515 - 0.0705203 - 0.2

4 0.00647898 0.42 0.0500251 0.50 0.8

8 0.00409903 0.66 0.0315381 0.66 6

16 0.00200472 1.03 0.015602 1.02 46

32 0.000768792 1.38 0.0060734 1.36 371

64 0.000245749 1.65 0.00196635 1.62 3420

128 7.01289e-005 1.81 0.000565952 1.80 22334

Convergence rates in defect correction methods, in general, suffer a lot with small

viscosity coefficient. Results for ν = 0.0001 clearly show that DCE4 and DC-BDF2

give comparable errors as seen in the tables (4.10) and (4.11). On the other hand,

DCE4 needs only half of the computational time that is required for DC-BDF2 to

produce similar results.
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Table 4.10
Defect Correction with BDF2, ν = 0.0001, P2-P1.

N || e(T ) ||L2(Ω) rate || e(T ) ||H1(Ω) rate Comp. Time

2 0.0122554 - 0.0962342 - 0.1

4 0.0132328 -0.11 0.101209 -0.07 0.6

8 0.0134072 -0.02 0.10585 -0.06 4

16 0.0108925 0.29 0.0975906 0.11 26

32 0.00656881 0.72 0.0754153 0.37 205

64 0.0031415 1.06 0.0522411 0.53 1703

128 0.00131784 1.25 0.0355434 0.56 14297

Table 4.11
Three times extrapolated DCE4, ν = 0.0001, P2-P1.

N || e(T ) ||L2(Ω) rate || e(T ) ||H1(Ω) rate Comp. Time

2-4-8-16 0.0123562 - 0.109878 - 15

4-8-16-32 0.0073926 0.74 0.0872938 0.33 115

8-16-32-64 0.00323392 1.19 0.0608015 0.52 962

16-32-64-128 0.00125093 1.37 0.0413493 0.56 8333
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4.5.2.2 Qualitative Testing

In this subsection, we are going to present qualitative results with both 2D and 3D

fluid past backward-facing step problem; see e.g. [135]. Through this subsection, α

has chosen to be 2. Final times and diffusion coefficients are T = 15 and ν = 0.001

for both cases. Parabolic inflows with maximum inlet equals 2, no-slip boundary

conditions on the walls and steps and ”do nothing” boundary conditions for outflow

have been enforced. Right hand side forcing functions are set to be zero. Compu-

tations performed with deal.II — a general-purpose object-oriented finite element

library [128]. For simplicity, computations were performed on the same mesh, even

though this is not necessary.

Start with 2D case: qualitative results with 2×2 backward-facing step on the domain

Ω = [0, 16] × [0, 4] are given for DCE1 (AV approximation), DCE2, DCE3, DCE4

and DDC. Initial values have been chosen to be zero. The finest mesh size is fixed

h = 1/8 for all of the computations. The figure (4.1) clearly demonstrate that each

extrapolation fosters overall accuracy of 2D model problem.

As seen in the figures (4.1) and (4.2), DCE4 and DDC give reasonably same qualitative

properties that are consistent with [135] both in terms of reattachment length and

capturing top vortex while DNS fails to converge.
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(a) DCE1, ∆t = H = 1/32

(b) DCE2, ∆t = H = 1/32, 1/16

(c) DCE3, ∆t = H = 1/32, 1/16, 1/8

(d) DCE4, ∆t = H = 1/32, 1/16, 1/8, 1/4

Figure 4.1: 2D flow past backward-facing step with DCEk streamlines,
T = 15, ν = 0.001

(a) DDC, ∆t = H = 1/32

Figure 4.2: 2D flow past backward-facing step with DDC streamlines,
T = 15, ν = 0.001

3D case: qualitative results with 2 × 2 × 2 backward-facing step on the domain

Ω = [0, 16] × [0, 4] × [0, 2] are given for DCE1, DCE2, DCE3, DCE4 and DDC.

191



In order to increase computational speed, initial values have been chosen to be the

solution of DCE1 at T=10 started with zero initial values, and H = ∆t = 1. The

mesh size is fixed h = 1/2 for all of the computations.

Figure (4.3) suggests that each extrapolation contribute overall accuracy of the 3D

model problem as well.

As seen in the figures (4.3) and (4.4), DCE4 gives a slightly better result than DDC

while DNS fails to converge. In addition, qualitative results look consistent with the

literature in terms of reattachment length. On the other hand, one can extend the

length of the domain and solve with finer mesh in order to observe the top vortex. As

a result, even though the mesh sizes have been chosen very coarse, qualitative results

demonstrate that DCE methods provide reliable simulations.

Briefly, DCE methods perform very well on NSE: as it increases accuracy dramatically

with each additional extrapolation, computational time remains the same. Comparing

with other existing defect correction methods, DCE performs reasonably better both

in terms of computational cost(time/memory) and accuracy.

192



(a) DCE1, ∆t = H = 1/32

(b) DCE2, ∆t = H = 1/32, 1/16

(c) DCE3, ∆t = H = 1/32, 1/16, 1/8

(d) DCE4, ∆t = H = 1/32, 1/16, 1/8, 1/4

Figure 4.3: 3D flow past backward-facing step streamlines, T = 15, ν =
0.001
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(a) DDC, ∆t = H = 1/32

Figure 4.4: 3D flow past backward-facing step with DDC streamlines,
T = 15, ν = 0.001
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Conclusion

Methods for solving nearly singular, time-dependent problems are presented. Those

presented in the first three chapters combine both deferred correction method for the

time derivative and the defect correction method for the spatial operator. Methods

are applied to the Navier-Stokes equations, and the stability and the error estimate

results for velocity are given. As observed in both theoretical and numerical results,

all methods are high accurate in both time and space. In the fourth chapter, a new

technique for defect correction is employed and shown to be performing as proposed

earlier.

195



References

[1] N.A. Adams and S. Stolz, Deconvolution methods for subgrid-scale approxi-

mation in large-eddy simulation, in: Modern Simulation Strategies for Turbulent

Flow, 2001, B. Geurts (editor), pp. 21-41, R. T. Edwards.

[2] S. Stolz, N. A. Adams and L. Kleiser, The Approximate Deconvolution

Model for Compressible Flows: Isotropic Turbulence and Shock-Boundary-Layer

Interaction , in: Fluid Mechanics and Its Applications. Advances in LES of

Complex Flows, vol. 65, 2006, pp. 33-47, Springer Netherlands.

[3] C. Cardoso Manica and S. K. Merdan, Finite element error analysis of

a zeroth order approximate deconvolution model based on a mixed formulation,

JMAA, Vol. 331, No. 1, pp. 669-685, 2007.

[4] W. Layton and R. Lewandowski, Residual stress of approximate decon-

volution models of turbulence, Journal of Turbulence, Vol. 7, Issue 46, p. 1-21,

2006.

196



[5] A. Labovsky, C. Trenchea, Large Eddy Simulation for Turbulent Magne-

tohydrodynamic Flows, Journal of Mathematical Analysis and Applications, 377

(2011), pp.516-533.

[6] A. Labovsky, C. Trenchea, A family of Approximate Deconvolution Mod-

els for MagnetoHydroDynamic Turbulence, Numerical Functional Analysis and

Optimization, vol.31(12), pp.1362-1385, 2010.

[7] A. Labovsky, W.J. Layton, C.C. Manica, M. Neda, L.G. Rebholz, The

stabilized extrapolated trapezoidal finite-element method for the Navier-Stokes

equations, Computer Methods in Applied Mechanics and Engineering, vol. 198,

Issues 9-12, 2009, pp. 958-974.

[8] A. Dunca and Y. Epshteyn, On the Stolz-Adams deconvolution model for

the large eddy simulation of turbulent flows, SIAM J. Math. Anal., Vol. 37(6),

pp. 1890-1902, 2006.

[9] K. Bohmer, P. W. Hemker, H. J. Stetter, The defect correction ap-

proach, in: K. Bohmer, H. J. Stetter (Eds.),Defect Correction Methods. Theory

and Applications, Springer Verlag, 1984, pp. 1–32.

[10] P. W. Hemker, Mixed defect correction iteration for the accurate solution

of the convection diffusion equation, pp. 485-501 in: Multigrid Methods, L.N.M.

vol. 960, (W. Hackbusch and U. Trottenberg, eds.) Springer Verlag, Berlin 1982.

197



[11] P. W. Hemker, The use of defect correction for the solution of a singularly

perturbed o.d.e., preprint, Mathematisch Centrum. Numerieke Wiskunde ; NW

139/82

[12] O. Axelsson and W. Layton, Defect correction methods for convection dom-

inated, convection-diffusion equations, RAIRO J. Numer. Anal. 24 (1990) pp.

423-455.

[13] O. Axelsson and W. Layton, Optimal interior estimates for the defect-

correction, finite element approach to 2-D convection-diffusion problems, ICMA

report 88-116, Univ. of Pittsburgh, 1988.

[14] A. Bouaricha, Tensor-Krylov methods for Large Nonlinear Equations, Com-

putational Optimization and Appl., 5 (1996), pp. 207-232.

[15] X.-C. Cai, Scalable nonlinear iterative methods for partial differential equa-

tions, LLNL report, Livermore, CA, 2000.

[16] W. Layton, H. K. Lee, J. Peterson, A defect-correction method for the in-

compressible Navier–Stokes equations, Applied Mathematics and Computation,

Vol. 129, Issue 1, 2002, pp. 1-19.

[17] V. Ervin and W. Layton, High resolution minimal storage algorithms for

convection dominated, convection diffusion equations, pp. 1173-1201 in: Trans.

of the Fourth Army Conf. on Appl. Math. and Comp., U.S. Army Res. Office,

1987.

198



[18] V. Ervin and W. Layton, An analysis of a defect correction method for a

model convection diffusion equation, SIAM J. Numer. Anal., 26 (1989), 169-179.

[19] V. Ervin, W. Layton, J. Maubach, Adaptive defect correction methods

for viscous incompressible flow problems, SIAM J. Numer. Anal., 37 (2000), pp.

1165-1185.

[20] H. Elman, Y.-T. Shih, Iterative methods for stabilized discrete convection-

diffusion problems, IMA J. Numer. Anal., 20 (2000), pp. 333-358.

[21] W. Heinrichs, Defect correction for convection dominated flow, SIAM J. Sci.

Comput., 17 (1996), 1082-1091

[22] P. Hemker, An accurate method without directional bias for the numerical

solution of a 2-D elliptic singular perturbation problem, pp. 192-206 in: Theory

And Applications Of Singular Perturbations, Lecture Notes in Math. 942, W.

Eckhaus and E.M. de Jaeger, eds., Sprienger-Verlag, Berlin, 1982

[23] W. Layton, Introduction to the Numerical Analysis of Incompressible Viscous

Flows, SIAM publications (Computational Science and Engineering Series), 2008,

ISBN: 978-0-898716-57-3.

[24] M. Gunzburger, Finite element methods for viscous incompressible flows: A

guide to theory, practice, and algorithms, Academic Press, Boston, 1989.

199



[25] A. Labovsky, A Defect Correction Method for the Time-Dependent Navier-

Stokes Equations, Numerical Methods for Partial Differential Equations,

vol.25(1), pp.1-25, 2008.

[26] W. Layton, L. Rebholz, C. Trenchea, Modular Nonlinear Filter Stabiliza-

tion of Methods for Higher Reynolds Numbers Flow, University of Pittsburgh,

technical report, 2010.

[27] J. Heywood, R. Rannacher, Finite-element approximations of the nonsta-

tionary Navier-Stokes problem. Part 4: Error analysis for second-order time

discretization, SIAM J. Numer. Anal., Vol. 27, No. 2, pp.353-384 (1990)

[28] B. Koren, Multigrid and Defect-Correction for the Steady Navier-Stokes Equa-

tions, Applications to Aerodynamics, C. W. I. Tract 74, Centrum voor Wiskunde

en Informatica, Amsterdam, 1991.

[29] M.-H. Lallemand, B. Koren, Iterative defect correction and multigrid ac-

celerated explicit time stepping schemes for the steady Euler equations, SIAM

Journal on Scientific Computing, vol. 14, issue 4, 1993.

[30] V. J. Ervin, H. K. Lee, Defect correction method for viscoelastic fluid flows at

high Weissenberg number, Numerical Methods for Partial Differential Equations,

Volume 22, Issue 1, pp. 145 - 164, 2006.

[31] P. W. Hemker, G. I. Shishkin, L. P. Shishkina, High-order time-accurate

schemes for singularly perturbed parabolic convection-diffusion problems with

200



Robin boundary conditions, Computational Methods in Applied Mathematics,

Vol. 2 (2002), No. 1, pp. 3-25.

[32] V. Girault, P.A. Raviart, Finite element approximation of the Navier-Stokes

equations, Lecture notes in mathematics, no. 749, Springer-Verlag, 1979.

[33] J. H. Mathews, K. D. Fink, Numerical methods using MATLAB, Pearson

Prentice Hall, 2004.

[34] M. L. Minion, Semi-Implicit Projection Methods for Incompressible Flow based

on Spectral Deferred Corrections, Appl. Numer. Math., 48(3-4), 369-387, 2004

[35] M. L. Minion, Semi-Implicit Projection Methods for Ordinary Differential

Equations, Comm. Math. Sci., 1(3), 471–500, 2003.

[36] A. Bourlioux, A. T. Layton, M. L. Minion, High-Order Multi-Implicit

Spectral Deferred Correction Methods for Problems of Reactive Flows, Journal

of Computational Physics, Vol. 189, No. 2, pp. 651-675, 2003.

[37] W. Kress, B. Gustafsson, Deferred Correction Methods for Initial Boundary

Value Problems, Journal of Scientific Computing, Springer Netherlands, Vol. 17,

No. 1-4, 2002.

[38] M. Aggul, J. Connors, D. Erkmen and A. Labovsky, A Defect-Deferred

Correction Method for Fluid-Fluid Interaction, submitted, 2017.

201



[39] A. Dutt, L. Greengard, V. Rokhlin, Spectral deferred correction methods

for ordinary differential equations, BIT 40 (2), pp. 241-266, 2000.

[40] Y. Saad, Iterative Methods for Sparse Linear Systems. Second edition, pub-

lished by SIAM, 2003.

[41] Sagaut, P., Large eddy simulation for incompressible flows,Scientific Compu-

tation, Springer Verlag, 2006.

[42] John, V., Large eddy simulation of turbulent incompressible flows,Lecture

Notes in Computational Science and Engineering, Springer Verlag, 2004.

[43] Berselli, L.C. and Iliescu, T. and Layton, W.J., Mathematics of large

eddy simulation of turbulent flows,Scientific Computation, Springer Verlag, 2006.

[44] J. Borggaard and T. Iliescu, Approximate deconvolution boundary con-

ditions for large eddy simulation, APPLIED MATHEMATICS LETTERS, vol.

19(8), 2006, pp. 735-740.

[45] P. Moin and M. Wang, Wall modeling for large-eddy simulation of turbulent

boundary layers, IUTAM Symposium on One Hundred Years of Boundary Layer

Research, Solid Mechanics and Its Applications, 2006, Volume 129, Session 5,

269-278.

202



[46] S.Y. Kadioglu, R. Klein and M.L. Minion, A fourth-order auxiliary vari-

able projection method for zero-Mach number gas dynamics, J. Comp. Physics,

2008, Volume 227, 2012-2043.

[47] J.F. Gibson, J. Halcrow and P. Cvitanovic, Equilibrium and traveling-

wave solutions of plane Couette flow, J. Fluid Mech., Vol. 638, pp. 243 - 266,

2009; arXiv:0808.3375v2.

[48] K. Bohmer, P. W. Hemker, H. J. Stetter, The defect correction ap-

proach, in: K. Bohmer, H. J. Stetter (Eds.),Defect Correction Methods. Theory

and Applications, Springer Verlag, 1984, pp. 1–32.

[49] P. W. Hemker, Mixed defect correction iteration for the accurate solution

of the convection diffusion equation, pp. 485-501 in: Multigrid Methods, L.N.M.

vol. 960, (W. Hackbusch and U. Trottenberg, eds.) Springer Verlag, Berlin 1982.

[50] P. W. Hemker, The use of defect correction for the solution of a singularly

perturbed o.d.e., preprint, Mathematisch Centrum. Numerieke Wiskunde ; NW

139/82

[51] O. Axelsson and W. Layton, Defect correction methods for convection dom-

inated, convection-diffusion equations, RAIRO J. Numer. Anal. 24 (1990) pp.

423-455.

203



[52] O. Axelsson and W. Layton, Optimal interior estimates for the defect-

correction, finite element approach to 2-D convection-diffusion problems, ICMA

report 88-116, Univ. of Pittsburgh, 1988.

[53] W. Layton, H. K. Lee, J. Peterson, A defect-correction method for the in-

compressible Navier–Stokes equations, Applied Mathematics and Computation,

Vol. 129, Issue 1, 2002, pp. 1-19.

[54] V. Ervin and W. Layton, High resolution minimal storage algorithms for

convection dominated, convection diffusion equations, pp. 1173-1201 in: Trans.

of the Fourth Army Conf. on Appl. Math. and Comp., U.S. Army Res. Office,

1987.

[55] V. Ervin and W. Layton, An analysis of a defect correction method for a

model convection diffusion equation, SIAM J. Numer. Anal., 26 (1989), 169-179.

[56] V. Ervin, W. Layton, J. Maubach, Adaptive defect correction methods

for viscous incompressible flow problems, SIAM J. Numer. Anal., 37 (2000), pp.

1165-1185.

[57] H. Elman, Y.-T. Shih, Iterative methods for stabilized discrete convection-

diffusion problems, IMA J. Numer. Anal., 20 (2000), pp. 333-358.

[58] W. Heinrichs, Defect correction for convection dominated flow, SIAM J. Sci.

Comput., 17 (1996), 1082-1091

204



[59] P. Hemker, An accurate method without directional bias for the numerical

solution of a 2-D elliptic singular perturbation problem, pp. 192-206 in: Theory

And Applications Of Singular Perturbations, Lecture Notes in Math. 942, W.

Eckhaus and E.M. de Jaeger, eds., Sprienger-Verlag, Berlin, 1982

[60] W. Layton, Introduction to the Numerical Analysis of Incompressible Viscous

Flows, SIAM publications (Computational Science and Engineering Series), 2008,

ISBN: 978-0-898716-57-3.

[61] M. Gunzburger, Finite element methods for viscous incompressible flows: A

guide to theory, practice, and algorithms, Academic Press, Boston, 1989.

[62] B. Koren, Multigrid and Defect-Correction for the Steady Navier-Stokes Equa-

tions, Applications to Aerodynamics, C. W. I. Tract 74, Centrum voor Wiskunde

en Informatica, Amsterdam, 1991.

[63] M.-H. Lallemand, B. Koren, Iterative defect correction and multigrid ac-

celerated explicit time stepping schemes for the steady Euler equations, SIAM

Journal on Scientific Computing, vol. 14, issue 4, 1993.

[64] V. J. Ervin, H. K. Lee, Defect correction method for viscoelastic fluid flows at

high Weissenberg number, Numerical Methods for Partial Differential Equations,

Volume 22, Issue 1, pp. 145 - 164, 2006.

205



[65] W. Kress, B. Gustafsson, Deferred Correction Methods for Initial Boundary

Value Problems, Journal of Scientific Computing, Springer Netherlands, Vol. 17,

No. 1-4, 2002.

[66] A. N. Kolmogorov, The local structure of turbulence in incompressible vis-

cous fluid for very large Reynolds numbers, Doklady Akademii Nauk SSSR, vol

30, p.913, 1941.

[67] J.F. Gibson, J. Halcrow and P. Cvitanovic, Equilibrium and traveling-

wave solutions of plane Couette flow, J. Fluid Mech., Vol. 638, pp. 243 - 266,

2009; arXiv:0808.3375v2.

[68] H. J. Stetter, The defect correction principle and discretization methods,

Numerische Mathematik, vol. 29(4), pp. 425-443, 1978.

[69] R. Frank, W. Ueberhuber, Iterated Defect Correction for the Efficient Solution

of Stiff Systems of Ordinary Differential Equations, BIT 17, 1977, pp. 146-159.

[70] J. Heywood, R. Rannacher, Finite-element approximations of the nonsta-

tionary Navier-Stokes problem. Part 4: Error analysis for second-order time

discretization, SIAM J. Numer. Anal., 2 (1990)

[71] M. Gunzburger, A. Labovsky, High Accuracy Method for Turbulent Flow

Problems, M3AS: Mathematical Models and Methods in Applied Sciences, vol.

22 (6), 2012.

206



[72] G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes

Equations, Springer Tracts in Natural Philosophy, Volume I, Springer-Verlag,

New York, 1994.

[73] O. Axelsson and W. Layton, Optimal interior estimates for the defect-

correction, finite element approach to 2-D convection-diffusion problems, ICMA

report 88-116, Univ. of Pittsburgh, 1988.

[74] R.A. Adams and J.J.F. Fournier, Sobolev Spaces, vol. 140 of Pure and Applied

Mathematics, Academic Press, 2003.

[75] U. M. Ascher, S. J. Ruuth and B. T. R. Wetton, Implicit-explicit methods for

time-dependent partial differential equations, SIAM J. Num. Anal. 32(3), 1995.

[76] J.-W. Bao, J. M. Wilczak, J.-K. Choi and L. H. Kantha, Numerical simulations

of air-sea interaction under high wind conditions using a coupled model: A study

fo hurricane development , Monthly Weather Review, Vol. 128 (2000), pp. 2190-

2210.

[77] G. Bellon, A. H. Sobel and J. Vialard, Ocean-atmospere coupling in the monsoon

intraseasonal oscillation: A simple model study , Journal of Climate, Vol. 21,

2008, pp. 5254-5270.

[78] D. Bresch and J. Koko, Operator-splitting and Lagrange multiplier domain de-

composition methods for numerical simulation of two coupled Navier-Stokes flu-

ids , Int. J. Appl. Math. Comput. Sci., Vol. 16(4), 2006, pp. 419–429.

207



[79] C. Bernardi, T. Chacon-Rebello M. Gomez, R. Lewandowski, F. Murat, A model

of two coupled turbulent fluids, Part II: Numerical approximations by spectral

discretization, SIAM Jour. Num. Analysis, Vol. 40, No. 6, pp. 2368-2394, 2002.

[80] H. Blum, S. Lisky and R. Rannacher, A Domain Splitting Algorithm for

Parabolic Problems, Computing 49, 11-23, 1992.
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[96] F. Lemarié, P. Marchesiello, L. Debreu and E. Blayo, Sensitivity of ocean-

atmosphere coupled models to the coupling method: example of tropical cyclone

Erica, Doctoral dissertation, INRIA Grenoble; INRIA, 2014.

[97] F. Hecht, A. LeHyaric and O. Pironneau. Freefem++ version 2.24-1, 2008.

http://www.freefem.org/ff++.

[98] Randall, D.A., R.A. Wood, S. Bony, R. Colman, T. Fichefet, J. Fyfe, V. Kattsov,

A. Pitman, J. Shukla, J. Srinivasan, R.J. Stouffer, A. Sumi and K.E. Taylor, 2007:

Climate Models and Their Evaluation. In: Climate Change 2007: The Physical

Science Basis. Contribution of Working Group I to the Fourth Assessment Report

of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M.

Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller (eds.)].

210



Cambridge University Press, Cambridge, United Kingdom and New York, NY,

USA.

[99] M. Jochum, G. Danabasoglu, M. Holland, Y.-O. Kwon and W. G. Large, Ocean

viscosity and climate, Journal of Geophysical Research, Vol. 113, C06017, 2008,

pp. 1-24.

[100] A. Labovsky, A Defect Correction Method for the Evolutionary Convection

Diffusion Problem with Increased Time Accuracy, Computational Methods in

Applied Mathematics, Vol. 9, No. 2, 2009, pp. 154-164.

[101] Large, W.G., McWilliams, J.C. and Doney, S.C., Oceanic vertical mixing: A

review and a model with a nonlocal boundary layer , Reviews of Geophysics, Vol.

32 (1994), pp. 363-403.
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