5,037 research outputs found

    RISK ASSESSMENT OF MALICIOUS ATTACKS AGAINST POWER SYSTEMS

    Get PDF
    The new scenarios of malicious attack prompt for their deeper consideration and mainly when critical systems are at stake. In this framework, infrastructural systems, including power systems, represent a possible target due to the huge impact they can have on society. Malicious attacks are different in their nature from other more traditional cause of threats to power system, since they embed a strategic interaction between the attacker and the defender (characteristics that cannot be found in natural events or systemic failures). This difference has not been systematically analyzed by the existent literature. In this respect, new approaches and tools are needed. This paper presents a mixed-strategy game-theory model able to capture the strategic interactions between malicious agents that may be willing to attack power systems and the system operators, with its related bodies, that are in charge of defending them. At the game equilibrium, the different strategies of the two players, in terms of attacking/protecting the critical elements of the systems, can be obtained. The information about the attack probability to various elements can be used to assess the risk associated with each of them, and the efficiency of defense resource allocation is evidenced in terms of the corresponding risk. Reference defense plans related to the online defense action and the defense action with a time delay can be obtained according to their respective various time constraints. Moreover, risk sensitivity to the defense/attack-resource variation is also analyzed. The model is applied to a standard IEEE RTS-96 test system for illustrative purpose and, on the basis of that system, some peculiar aspects of the malicious attacks are pointed ou

    Defending Against Firmware Cyber Attacks on Safety-Critical Systems

    Get PDF
    In the past, it was not possible to update the underlying software in many industrial control devices. Engineering teams had to ‘rip and replace’ obsolete components. However, the ability to make firmware updates has provided significant benefits to the companies who use Programmable Logic Controllers (PLCs), switches, gateways and bridges as well as an array of smart sensor/actuators. These updates include security patches when vulnerabilities are identified in existing devices; they can be distributed by physical media but are increasingly downloaded over Internet connections. These mechanisms pose a growing threat to the cyber security of safety-critical applications, which are illustrated by recent attacks on safety-related infrastructures across the Ukraine. Subsequent sections explain how malware can be distributed within firmware updates. Even when attackers cannot reverse engineer the code necessary to disguise their attack, they can undermine a device by forcing it into a constant upload cycle where the firmware installation never terminates. In this paper, we present means of mitigating the risks of firmware attack on safety-critical systems as part of wider initiatives to secure national critical infrastructures. Technical solutions, including firmware hashing, must be augmented by organizational measures to secure the supply chain within individual plants, across companies and throughout safety-related industries

    A New Role for Human Resource Managers: Social Engineering Defense

    Get PDF
    [Excerpt] The general risk of social engineering attacks to organizations has increased with the rise of digital computing and communications, while for an attacker the risk has decreased. In order to counter the increased risk, organizations should recognize that human resources (HR) professionals have just as much responsibility and capability in preventing this risk as information technology (IT) professionals. Part I of this paper begins by defining social engineering in context and with a brief history pre-digital age attacks. It concludes by showing the intersection of HR and IT through examples of operational attack vectors. In part II, the discussion moves to a series of measures that can be taken to help prevent social engineering attacks

    Applying Lessons from Cyber Attacks on Ukrainian Infrastructures to Secure Gateways onto the Industrial Internet of Things

    Get PDF
    Previous generations of safety-related industrial control systems were ‘air gapped’. In other words, process control components including Programmable Logic Controllers (PLCs) and smart sensor/actuators were disconnected and isolated from local or wide area networks. This provided a degree of protection; attackers needed physical access to compromise control systems components. Over time this ‘air gap’ has gradually been eroded. Switches and gateways have subsequently interfaced industrial protocols, including Profibus and Modbus, so that data can be drawn from safety-related Operational Technology into enterprise information systems using TCP/IP. Senior management uses these links to monitor production processes and inform strategic planning. The Industrial Internet of Things represents another step in this evolution – enabling the coordination of physically distributed resources from a centralized location. The growing range and sophistication of these interconnections create additional security concerns for the operation and management of safety-critical systems. This paper uses lessons learned from recent attacks on Ukrainian critical infrastructures to guide a forensic analysis of an IIoT switch. The intention is to identify and mitigate vulnerabilities that would enable similar attacks to be replicated across Europe and North America

    Cybersecurity: mapping the ethical terrain

    Get PDF
    This edited collection examines the ethical trade-offs involved in cybersecurity: between security and privacy; individual rights and the good of a society; and between the types of burdens placed on particular groups in order to protect others. Foreword Governments and society are increasingly reliant on cyber systems. Yet the more reliant we are upon cyber systems, the more vulnerable we are to serious harm should these systems be attacked or used in an attack. This problem of reliance and vulnerability is driving a concern with securing cyberspace. For example, a ‘cybersecurity’ team now forms part of the US Secret Service. Its job is to respond to cyber-attacks in specific environments such as elevators in a building that hosts politically vulnerable individuals, for example, state representatives. Cybersecurity aims to protect cyberinfrastructure from cyber-attacks; the concerning aspect of the threat from cyber-attack is the potential for serious harm that damage to cyber-infrastructure presents to resources and people. These types of threats to cybersecurity might simply target information and communication systems: a distributed denial of service (DDoS) attack on a government website does not harm a website in any direct way, but prevents its normal use by stifling the ability of users to connect to the site. Alternatively, cyber-attacks might disrupt physical devices or resources, such as the Stuxnet virus, which caused the malfunction and destruction of Iranian nuclear centrifuges. Cyber-attacks might also enhance activities that are enabled through cyberspace, such as the use of online media by extremists to recruit members and promote radicalisation. Cyber-attacks are diverse: as a result, cybersecurity requires a comparable diversity of approaches. Cyber-attacks can have powerful impacts on people’s lives, and so—in liberal democratic societies at least—governments have a duty to ensure cybersecurity in order to protect the inhabitants within their own jurisdiction and, arguably, the people of other nations. But, as recent events following the revelations of Edward Snowden have demonstrated, there is a risk that the governmental pursuit of cybersecurity might overstep the mark and subvert fundamental privacy rights. Popular comment on these episodes advocates transparency of government processes, yet given that cybersecurity risks represent major challenges to national security, it is unlikely that simple transparency will suffice. Managing the risks of cybersecurity involves trade-offs: between security and privacy; individual rights and the good of a society; and types of burdens placed on particular groups in order to protect others. These trade-offs are often ethical trade-offs, involving questions of how we act, what values we should aim to promote, and what means of anticipating and responding to the risks are reasonably—and publicly—justifiable. This Occasional Paper (prepared for the National Security College) provides a brief conceptual analysis of cybersecurity, demonstrates the relevance of ethics to cybersecurity and outlines various ways in which to approach ethical decision-making when responding to cyber-attacks

    Artificial intelligence in the cyber domain: Offense and defense

    Get PDF
    Artificial intelligence techniques have grown rapidly in recent years, and their applications in practice can be seen in many fields, ranging from facial recognition to image analysis. In the cybersecurity domain, AI-based techniques can provide better cyber defense tools and help adversaries improve methods of attack. However, malicious actors are aware of the new prospects too and will probably attempt to use them for nefarious purposes. This survey paper aims at providing an overview of how artificial intelligence can be used in the context of cybersecurity in both offense and defense.Web of Science123art. no. 41

    Stealthy Deception Attacks Against SCADA Systems

    Full text link
    SCADA protocols for Industrial Control Systems (ICS) are vulnerable to network attacks such as session hijacking. Hence, research focuses on network anomaly detection based on meta--data (message sizes, timing, command sequence), or on the state values of the physical process. In this work we present a class of semantic network-based attacks against SCADA systems that are undetectable by the above mentioned anomaly detection. After hijacking the communication channels between the Human Machine Interface (HMI) and Programmable Logic Controllers (PLCs), our attacks cause the HMI to present a fake view of the industrial process, deceiving the human operator into taking manual actions. Our most advanced attack also manipulates the messages generated by the operator's actions, reversing their semantic meaning while causing the HMI to present a view that is consistent with the attempted human actions. The attacks are totaly stealthy because the message sizes and timing, the command sequences, and the data values of the ICS's state all remain legitimate. We implemented and tested several attack scenarios in the test lab of our local electric company, against a real HMI and real PLCs, separated by a commercial-grade firewall. We developed a real-time security assessment tool, that can simultaneously manipulate the communication to multiple PLCs and cause the HMI to display a coherent system--wide fake view. Our tool is configured with message-manipulating rules written in an ICS Attack Markup Language (IAML) we designed, which may be of independent interest. Our semantic attacks all successfully fooled the operator and brought the system to states of blackout and possible equipment damage
    corecore