6 research outputs found

    Vec2SPARQL:integrating SPARQL queries and knowledge graph embeddings

    Get PDF
    <div>Recent developments in machine learning have led to a rise of large</div><div>number of methods for extracting features from structured data. The features</div><div>are represented as vectors and may encode for some semantic aspects of data.</div><div>They can be used in a machine learning models for different tasks or to com-</div><div>pute similarities between the entities of the data. SPARQL is a query language</div><div>for structured data originally developed for querying Resource Description Frame-</div><div>work (RDF) data. It has been in use for over a decade as a standardized NoSQL</div><div>query language. Many different tools have been developed to enable data shar-</div><div>ing with SPARQL. For example, SPARQL endpoints make your data interopera-</div><div>ble and available to the world. SPARQL queries can be executed across multi-</div><div>ple endpoints. We have developed a Vec2SPARQL, which is a general frame-</div><div>work for integrating structured data and their vector space representations.</div><div>Vec2SPARQL allows jointly querying vector functions such as computing sim-</div><div>ilarities (cosine, correlations) or classifications with machine learning models</div><div>within a single SPARQL query. We demonstrate applications of our approach</div><div>for biomedical and clinical use cases. Our source code is freely available at</div><div>https://github.com/bio-ontology-research-group/vec2sparql and we make a</div><div>Vec2SPARQL endpoint available at http://sparql.bio2vec.net/</div

    A Survey on Deep Learning in Medical Image Analysis

    Full text link
    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks and provide concise overviews of studies per application area. Open challenges and directions for future research are discussed.Comment: Revised survey includes expanded discussion section and reworked introductory section on common deep architectures. Added missed papers from before Feb 1st 201
    corecore