20,665 research outputs found

    Heart Rate Variability: A possible machine learning biomarker for mechanical circulatory device complications and heart recovery

    Get PDF
    Cardiovascular disease continues to be the number one cause of death in the United States, with heart failure patients expected to increase to \u3e8 million by 2030. Mechanical circulatory support (MCS) devices are now better able to manage acute and chronic heart failure refractory to medical therapy, both as bridge to transplant or as bridge to destination. Despite significant advances in MCS device design and surgical implantation technique, it remains difficult to predict response to device therapy. Heart rate variability (HRV), measuring the variation in time interval between adjacent heartbeats, is an objective device diagnostic regularly recorded by various MCS devices that has been shown to have significant prognostic value for both sudden cardiac death as well as all-cause mortality in congestive heart failure (CHF) patients. Limited studies have examined HRV indices as promising risk factors and predictors of complication and recovery from left ventricular assist device therapy in end-stage CHF patients. If paired with new advances in machine learning utilization in medicine, HRV represents a potential dynamic biomarker for monitoring and predicting patient status as more patients enter the mechanotrope era of MCS devices for destination therapy

    Prostate Cancer Nodal Staging: Using Deep Learning to Predict 68Ga-PSMA-Positivity from CT Imaging Alone

    Get PDF
    Lymphatic spread determines treatment decisions in prostate cancer (PCa) patients. 68Ga-PSMA-PET/CT can be performed, although cost remains high and availability is limited. Therefore, computed tomography (CT) continues to be the most used modality for PCa staging. We assessed if convolutional neural networks (CNNs) can be trained to determine 68Ga-PSMA-PET/CT-lymph node status from CT alone. In 549 patients with 68Ga-PSMA PET/CT imaging, 2616 lymph nodes were segmented. Using PET as a reference standard, three CNNs were trained. Training sets balanced for infiltration status, lymph node location and additionally, masked images, were used for training. CNNs were evaluated using a separate test set and performance was compared to radiologists' assessments and random forest classifiers. Heatmaps maps were used to identify the performance determining image regions. The CNNs performed with an Area-Under-the-Curve of 0.95 (status balanced) and 0.86 (location balanced, masked), compared to an AUC of 0.81 of experienced radiologists. Interestingly, CNNs used anatomical surroundings to increase their performance, "learning" the infiltration probabilities of anatomical locations. In conclusion, CNNs have the potential to build a well performing CT-based biomarker for lymph node metastases in PCa, with different types of class balancing strongly affecting CNN performance

    Learning Tasks for Multitask Learning: Heterogenous Patient Populations in the ICU

    Full text link
    Machine learning approaches have been effective in predicting adverse outcomes in different clinical settings. These models are often developed and evaluated on datasets with heterogeneous patient populations. However, good predictive performance on the aggregate population does not imply good performance for specific groups. In this work, we present a two-step framework to 1) learn relevant patient subgroups, and 2) predict an outcome for separate patient populations in a multi-task framework, where each population is a separate task. We demonstrate how to discover relevant groups in an unsupervised way with a sequence-to-sequence autoencoder. We show that using these groups in a multi-task framework leads to better predictive performance of in-hospital mortality both across groups and overall. We also highlight the need for more granular evaluation of performance when dealing with heterogeneous populations.Comment: KDD 201

    Machine Learning Algorithms for Breast Cancer Diagnosis: Challenges, Prospects and Future Research Directions

    Get PDF
    Early diagnosis of breast cancer does not only increase the chances of survival but also control the diffusion of cancerous cells in the body. Previously, researchers have developed machine learning algorithms in breast cancer diagnosis such as Support Vector Machine, K-Nearest Neighbor, Convolutional Neural Network, K-means, Fuzzy C-means, Neural Network, Principle Component Analysis (PCA) and Naive Bayes. Unfortunately these algorithms fall short in one way or another due to high levels of computational complexities. For instance, support vector machine employs feature elimination scheme for eradicating data ambiguity and detecting tumors at initial stage. However this scheme is expensive in terms of execution time. On its part, k-means algorithm employs Euclidean distance to determine the distance between cluster centers and data points. However this scheme does not guarantee high accuracy when executed in different iterations. Although the K-nearest Neighbor algorithm employs feature reduction, principle component analysis and 10 fold cross validation methods for enhancing classification accuracy, it is not efficient in terms of processing time. On the other hand, fuzzy c-means algorithm employs fuzziness value and termination criteria to determine the execution time on datasets. However, it proves to be extensive in terms of computational time due to several iterations and fuzzy measure calculations involved. Similarly, convolutional neural network employed back propagation and classification method but the scheme proves to be slow due to frequent retraining. In addition, the neural network achieves low accuracy in its predictions. Since all these algorithms seem to be expensive and time consuming, it necessary to integrate quantum computing principles with conventional machine learning algorithms. This is because quantum computing has the potential to accelerate computations by simultaneously carrying out calculation on many inputs. In this paper, a review of the current machine learning algorithms for breast cancer prediction is provided. Based on the observed shortcomings, a quantum machine learning based classifier is recommended. The proposed working mechanisms of this classifier are elaborated towards the end of this paper

    Diagnosis of Cervical Cancer and Pre-Cancerous Lesions by Artificial Intelligence: A Systematic Review

    Get PDF
    The likelihood of timely treatment for cervical cancer increases with timely detection of abnormal cervical cells. Automated methods of detecting abnormal cervical cells were established because manual identification requires skilled pathologists and is time consuming and prone to error. The purpose of this systematic review is to evaluate the diagnostic performance of artificial intelligence (AI) technologies for the prediction, screening, and diagnosis of cervical cancer and pre-cancerous lesions
    • …
    corecore