84,023 research outputs found

    Deep learning from crowds

    Get PDF
    Over the last few years, deep learning has revolutionized the field of machine learning by dramatically improving the state-of-the-art in various domains. However, as the size of supervised artificial neural networks grows, typically so does the need for larger labeled datasets. Recently, crowdsourcing has established itself as an efficient and cost-effective solution for labeling large sets of data in a scalable manner, but it often requires aggregating labels from multiple noisy contributors with different levels of expertise. In this paper, we address the problem of learning deep neural networks from crowds. We begin by describing an EM algorithm for jointly learning the parameters of the network and the reliabilities of the annotators. Then, a novel general-purpose crowd layer is proposed, which allows us to train deep neural networks end-to-end, directly from the noisy labels of multiple annotators, using only backpropagation. We empirically show that the proposed approach is able to internally capture the reliability and biases of different annotators and achieve new state-of-the-art results for various crowdsourced datasets across different settings, namely classification, regression and sequence labeling.Comment: 10 pages, The Thirty-Second AAAI Conference on Artificial Intelligence (AAAI), 201

    Leveraging Crowdsourcing Data For Deep Active Learning - An Application: Learning Intents in Alexa

    Full text link
    This paper presents a generic Bayesian framework that enables any deep learning model to actively learn from targeted crowds. Our framework inherits from recent advances in Bayesian deep learning, and extends existing work by considering the targeted crowdsourcing approach, where multiple annotators with unknown expertise contribute an uncontrolled amount (often limited) of annotations. Our framework leverages the low-rank structure in annotations to learn individual annotator expertise, which then helps to infer the true labels from noisy and sparse annotations. It provides a unified Bayesian model to simultaneously infer the true labels and train the deep learning model in order to reach an optimal learning efficacy. Finally, our framework exploits the uncertainty of the deep learning model during prediction as well as the annotators' estimated expertise to minimize the number of required annotations and annotators for optimally training the deep learning model. We evaluate the effectiveness of our framework for intent classification in Alexa (Amazon's personal assistant), using both synthetic and real-world datasets. Experiments show that our framework can accurately learn annotator expertise, infer true labels, and effectively reduce the amount of annotations in model training as compared to state-of-the-art approaches. We further discuss the potential of our proposed framework in bridging machine learning and crowdsourcing towards improved human-in-the-loop systems

    Label Selection Approach to Learning from Crowds

    Full text link
    Supervised learning, especially supervised deep learning, requires large amounts of labeled data. One approach to collect large amounts of labeled data is by using a crowdsourcing platform where numerous workers perform the annotation tasks. However, the annotation results often contain label noise, as the annotation skills vary depending on the crowd workers and their ability to complete the task correctly. Learning from Crowds is a framework which directly trains the models using noisy labeled data from crowd workers. In this study, we propose a novel Learning from Crowds model, inspired by SelectiveNet proposed for the selective prediction problem. The proposed method called Label Selection Layer trains a prediction model by automatically determining whether to use a worker's label for training using a selector network. A major advantage of the proposed method is that it can be applied to almost all variants of supervised learning problems by simply adding a selector network and changing the objective function for existing models, without explicitly assuming a model of the noise in crowd annotations. The experimental results show that the performance of the proposed method is almost equivalent to or better than the Crowd Layer, which is one of the state-of-the-art methods for Deep Learning from Crowds, except for the regression problem case.Comment: 15 pages, 1 figur
    • …
    corecore