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Abstract

Over the last few years, deep learning has revolutionized the
field of machine learning by dramatically improving the state-
of-the-art in various domains. However, as the size of super-
vised artificial neural networks grows, typically so does the
need for larger labeled datasets. Recently, crowdsourcing has
established itself as an efficient and cost-effective solution for
labeling large sets of data in a scalable manner, but it often
requires aggregating labels from multiple noisy contributors
with different levels of expertise. In this paper, we address the
problem of learning deep neural networks from crowds. We
begin by describing an EM algorithm for jointly learning the
parameters of the network and the reliabilities of the annota-
tors. Then, a novel general-purpose crowd layer is proposed,
which allows us to train deep neural networks end-to-end, di-
rectly from the noisy labels of multiple annotators, using only
backpropagation. We empirically show that the proposed ap-
proach is able to internally capture the reliability and biases of
different annotators and achieve new state-of-the-art results
for various crowdsourced datasets across different settings,
namely classification, regression and sequence labeling.

Introduction
In the last decade, deep learning has made major advances in
solving artificial intelligence problems in different domains
such as speech recognition, visual object recognition, object
detection and machine translation (Schmidhuber 2015). This
success is often attributed to its ability to discover intricate
structures in high-dimensional data (LeCun, Bengio, and
Hinton 2015), thereby making it particularly well suited for
tackling complex tasks that are often regarded as character-
istic of humans, such as vision, speech and natural language
understanding. However, typically, a key requirement for
learning deep representations of complex high-dimensional
data is large sets of labeled data. Unfortunately, in many sit-
uations this data is not readily available, and humans are re-
quired to manually label large collections of data.

On the other hand, in recent years, crowdsourcing has es-
tablished itself as a reliable solution to annotate large collec-
tions of data. Indeed, crowdsourcing platforms like Amazon
Mechanical Turk1 and Crowdflower2 have proven to be an

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1http://www.mturk.com
2http://crowdflower.com

efficient and cost-effective way for obtaining labeled data
(Snow et al. 2008; Buhrmester, Kwang, and Gosling 2011),
especially for the kind of human-like tasks, such as vision,
speech and natural language understanding, for which deep
learning methods have been shown to excel. Even in fields
like medical imaging, crowdsourcing is being used to col-
lect the large sets of labeled data that modern data-savvy
deep learning methods enjoy (Greenspan, van Ginneken,
and Summers 2016; Albarqouni et al. 2016; Guan et al.
2017). However, while crowdsourcing is scalable enough
to allow labeling datasets that would otherwise be imprac-
tical for a single annotator to handle, it is well known that
the noise associated with the labels provided by the various
annotators can compromise practical applications that make
use of such type of data (Sheng, Provost, and Ipeirotis 2008;
Donmez and Carbonell 2008). Thus, it is not surprising that
a large body of the recent machine learning literature is ded-
icated to mitigating the effects of the noise and biases in-
herent to such heterogeneous sources of data (e.g. Yan et al.
(2014); Albarqouni et al. (2016); Guan et al. (2017)).

When learning deep neural networks from the labels of
multiple annotators, typical approaches rely on some sort of
label aggregation mechanisms prior to training. In classifi-
cation settings, the simplest and most common approach is
to use majority voting, which naively assumes that all anno-
tators are equally reliable. More advanced approaches, such
as the one proposed in (Dawid and Skene 1979) and other
variants (e.g. Ipeirotis, Provost, and Wang (2010); Whitehill
et al. (2009)) jointly model the unknown biases of the an-
notators and their answers as noisy versions of some latent
ground truth. Despite their improved ground truth estimates
over majority voting, recent works have shown that jointly
learning the classifier model and the annotators noise model
using EM-style algorithms generally leads to improved re-
sults (Raykar et al. 2010; Albarqouni et al. 2016).

In this paper, we begin by describing an EM algorithm for
learning deep neural networks from crowds in multi-class
classification settings, highlighting its limitations. Then, a
novel crowd layer is proposed, which allows us to train neu-
ral networks end-to-end, directly from the noisy labels of
multiple annotators, using only backpropagation. This alter-
native approach not only allows us to avoid the additional
computational overhead of EM, but also leads to a general-
purpose framework that generalizes trivially beyond classi-
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fication settings. Empirically, the proposed crowd layer is
shown to be able to automatically distinguish the good from
the unreliable annotators and capture their individual biases,
thus achieving new state-of-the-art results in real data from
Amazon Mechanical Turk for image classification, text re-
gression and named entity recognition. As our experiments
show, when compared to the more complex EM-based ap-
proaches and other approaches from the state of the art, the
crowd layer is able to achieve comparable or, in many cases,
significantly superior results.

Related work
The increasing popularity of crowdsourcing as a way to label
large collections of data in an inexpensive and scalable man-
ner has led to much interest of the machine learning commu-
nity in developing methods to address the noise and trust-
worthiness issues associated with it. In this direction, one of
the key early contributions is the work of Dawid and Skene
(1979), who proposed an EM algorithm to obtain point es-
timates of the error rates of patients given repeated but con-
flicting responses to medical questions. This work was the
basis for many other variants for aggregating labels from
multiple annotators with different levels of expertise, such as
the one proposed in (Whitehill et al. 2009), which further ex-
tends Dawid and Skene’s model by also accounting for item
difficulty in the context of image classification. Similarly,
Ipeirotis et al. (2010) propose using Dawid and Skene’s ap-
proach to extract a single quality score for each worker that
allows to prune low-quality workers. The approach proposed
in our paper contrast with this line of work, by allowing neu-
ral networks to be trained directly on the noisy labels of mul-
tiple annotators, thereby avoiding the need to resort to prior
label aggregation schemes.

Despite the generality of label aggregation approaches de-
scribed above, which can be used in combination with any
type of machine learning algorithm, they are sub-optimal
when compared to approaches that also jointly learn the clas-
sifier itself. One of the most prominent works in this direc-
tion is the one of Raykar et al. (2010), who proposed an
EM algorithm for jointly learning the levels of expertise of
different annotators and the parameters of a logistic regres-
sion classifier, by modeling the ground truth labels as la-
tent variables. This idea was later extended to other types
of models such as Gaussian process classifiers (Rodrigues,
Pereira, and Ribeiro 2014), supervised latent Dirichlet al-
location (Rodrigues et al. 2017) and, recently, to convolu-
tional neural networks with softmax outputs (Albarqouni et
al. 2016). In this paper, we begin by describing a generaliza-
tion of the approach in (Albarqouni et al. 2016) to multi-
class settings, highlighting some of the technical difficul-
ties associated with it. Then, a novel type of neural network
layer is proposed, which allows the training of deep neural
networks directly from the noisy labels of multiple annota-
tors using pure backpropagation. This contrasts with most of
works in the literature, which rely on more complex iterative
procedures based on EM. Furthermore, the simplicity of the
proposed approach allows for straightforward extensions to
regression and structured prediction problems.

Recently, Guan et al. (2017) also proposed an approach

for training deep neural networks that exploits information
about the annotators. The idea is to model the multiple ex-
perts individually in the neural network and then, while
keeping their predictions fixed, independently learning av-
eraging weights for combining them using backpropaga-
tion. Like our proposed approach, this two-stage procedure
does not require an EM algorithm to estimate the annota-
tors weights. However, while our approach has the ability
to capture the biases of the different annotators (e.g. con-
fusing class 2 with class 4) and correct them, the approach
in (Guan et al. 2017) only learns how to combine the pre-
dicted answers of multiple annotators by weighting them
differently. Moreover, its two-stage learning procedure in-
creases the computation complexity of training, whereas in
our proposed approach is kept the same. Lastly, while the
work in (Guan et al. 2017) focuses only on classification,
we consider regression and structured prediction problems
as well.

Regarding applications areas for multiple-annotator learn-
ing, some of the most popular ones are: image classification
(Smyth et al. 1995; Welinder et al. 2010), computer-aided di-
agnosis/radiology (Raykar et al. 2010; Greenspan, van Gin-
neken, and Summers 2016), object detection (Su, Deng, and
Fei-Fei 2012), text classification (Rodrigues et al. 2017),
natural language processing (Snow et al. 2008) and speech-
related tasks (Parent and Eskenazi 2011). In this paper, we
will use data from some of these areas to evaluate different
approaches. Given that these are precisely some of the areas
that have seen the most dramatic improvements due to recent
contributions in deep learning (LeCun, Bengio, and Hinton
2015; Schmidhuber 2015), developing novel efficient algo-
rithms for learning deep neural networks from crowds is of
great importance to the field.

EM algorithm for deep learning from crowds

Let D = {xn, yn}Nn=1 be a dataset of size N , where for
each input vector xn ∈ R

D we are given a vector of crowd-
sourced labels yn = {yrn}Rr=1, with yrn representing the label
provided by the rth annotator in a set of R annotators. Fol-
lowing the ideas in (Raykar et al. 2010; Yan et al. 2014), we
shall assume the existence of a latent true class zn whose
value is, in this particular case, determined by a softmax
output layer of a deep neural network parameterized by Θ,
and that each annotator then provides a noisy version of zn
according to p(yrn|zn,Πr) = Multinomial(yrn|πr

zn). This
formulation corresponds to keeping a per-annotator confu-
sion matrix Πr = (πr

1, . . . ,π
r
C) to model their expertise,

where C denotes the number of classes. Further assuming
that annotators provide labels independently of each other,
we can write the complete-data likelihood as

p(D, z|Θ, {Πr}Rr=1) =
N∏

n=1

p(zn|xn,Θ)
R∏

r=1

p(yrn|zn,Πr).

Based on this formulation, we can derive an Expectation-
Maximization (EM) algorithm for jointly learning the relia-
bilities of the annotators Πr and the parameters of the neural
network Θ. The expected-value of the complete-data log-
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likelihood under a current estimate of the posterior distribu-
tion over latent variables q(zn) is given by

E

[
ln p(D, z|Θ,Π1, . . . ,ΠR)

]
=

N∑
n=1

∑
zn

q(zn) ln

(
p(zn|xn,Θ)

R∏
r=1

p(yrn|zn,Πr)

)
, (1)

where the posterior q(zn) is obtained by making use of
Bayes’ theorem given the previous estimate of the model
parameters {Θold,Π

1
old, . . . ,Π

R
old}, yielding

q(zn = c) ∝ p(zn = c|xn,Θold)
R∏

r=1

p(yrn|zn = c,Πr
old).

This corresponds to the E-step of EM. In the M-step, we find
the new maximum likelihood for the model parameters. The
update for the annotators’ reliability parameters is given by

πr
c,l =

∑N
n=1 q(zn = c) I(yrn = l)∑N

n=1 q(zn = c)
,

where I(yrn = l) is an indicator function that takes the value
1 when yrn = l, and zero otherwise. In practice, since crowd
annotators typically only label a small portion of the data, it
is particularly important to carefully impose Dirichlet priors
on each πr

c and compute MAP estimates instead, in order to
avoid numerical issues.

As for estimating the parameters of the deep neural net-
work Θ, we follow the approach in (Albarqouni et al. 2016)
and use the noise-adjusted ground-truth estimates q(zn) to
backpropagate the error through the network using stan-
dard stochastic optimization techniques such as stochastic
gradient descent (SGD) or Adam (Kingma and Ba 2014).
Kindly notice how this raises the important question of how
to schedule the EM steps. If we perform one EM iteration
per mini-batch, we risk not having enough evidence to es-
timate the annotators reliabilities. On the other hand, if we
run SGD or Adam until convergence, then the computational
overhead of EM becomes very large. In practice, we found
that, typically, one EM iteration per training epoch provides
good computational efficiency without compromising accu-
racy. However, this seems to vary among different datasets,
thus making it hard to tune in practice.

One key fundamental aspect for the development of this
EM approach was the probabilistic interpretation of the soft-
max output layer of deep neural networks for classification.
Unfortunately, such probabilistic interpretation is typically
not available when considering, for example, continuous
output variables, thereby making it more difficult to gen-
eralize this approach to regression problems. Furthermore,
notice that if the target variable is a sequence (or any other
structured prediction output), then the marginalization over
the latent variables in (1) quickly become intractable, as the
number of possible label sequences to sum over grows ex-
ponentially with the length of the sequence.

Crowd layer
In this section, we propose the crowd layer: a special type
of network layer that allows us to train deep neural net-
works directly from the noisy labels of multiple annotators,

thereby avoiding some of the aforementioned limitations of
EM-based approaches for learning from crowds. The intu-
ition is rather simple. The crowd layer takes as input what
would normally be the output layer of a deep neural network
(e.g. softmax for classification, or linear for regression), and
learns an annotator-specific mapping from the output layer
to the labels of the different annotators in the crowd that
captures the annotator reliabilities and biases. In this way,
the former output layer becomes a bottleneck layer that is
shared among the different annotators. Figure 1 illustrates
this bottleneck structure in the context of a simple convo-
lutional neural network for classification problems with 4
classes and R annotators.

Figure 1: Bottleneck structure for a CNN for classification
with 4 classes and R annotators.

The idea is then that when using the labels of a given
annotator to propagate errors through the whole neural net-
work, the crowd layer adjusts the gradients coming from the
labels of that annotator according to his/her reliability by
scaling them and adjusting their bias. In doing so, the bot-
tleneck layer of the network now receives adjusted gradients
from the different annotators’ labels, which it aggregates and
backpropagates further through the rest of the network. As it
turns out, through this crowd layer, the network is able to ac-
count for unreliable annotators and even correct systematic
biases in their labeling. Moreover, all of that can be done
naturally within the backpropagation framework.

Formally, let σ be the output of a deep neural network
with an arbitrary structure. Without loss of generality, we
shall assume the vector σ to correspond to the output of
a softmax layer, such that σc corresponds to the probabil-
ity of the input instance belonging to class c. The activation
of the crowd layer for each annotator r is then defined as
ar = fr(σ), where fr is an annotator-specific function, and
the output of the crowd layer simply as the softmax of the
activations orc = ea

r
c/

∑C
l=1 e

ar
l .

The question is then how to define the function map-
ping fr(σ). In the experiments section, we study differ-
ent alternatives. For classification problems a reasonable as-
sumption is to consider a matrix transformation, such that
fr(σ) = Wrσ, where Wr is an annotator-specific matrix.
Given a cost function E(or, yr) between the expected output
of the rth annotator and its actual label yr, we can compute
the gradients ∂E/∂ar at the activation ar for each annotator

1613



and backpropagate them to the bottleneck layer, leading to

∂E

∂σ
=

R∑
r=1

Wr ∂E

∂ar
.

The gradient vector at the bottleneck layer then naturally be-
comes a weighted sum of gradients according to the labels of
the different annotators. Moreover, if the annotator is likely
to mislabel class c as class l (annotation bias), then the ma-
trix Wr can actually adjust the gradients accordingly. The
problem of missing labels from some of the annotators can
be easily addressed by setting their gradient contributions
to zero. As for estimating the annotator weights {Wr}Rr=1,
since they parameterize the mapping from the output of the
bottleneck layer σ to the annotators labels {or}Rr=1, they can
be estimated using standard stochastic optimization tech-
niques such as SGD or Adam (Kingma and Ba 2014). Once
the network is trained, the crowd layer can be removed, thus
exposing the output of bottleneck layer σ, which can readily
be used to make predictions for unseen instances.

An obvious concern with the approach described above
is identifiability. Therefore, it is important to not over-
parametrize fr(σ), since adding parameters beyond neces-
sary can make the output of the bottleneck layer σ lose its
interpretability as a shared estimated ground truth. Another
important aspect is parameter initialization. In our experi-
ments, we found that the best practice is to initialize the
crowd layer with identities, i.e. zeros for additive parame-
ters, ones for scalar parameters, identity matrix for multi-
plicative matrices, etc. An alternative solution is to use reg-
ularization to force the parameters of the crowd layer to be
close to identities. However, in some cases this might be an
undesirable property. For example, if we consider a very bi-
ased annotator, then we do not wish to force the matrix Wr

to be close to the identity matrix. Based on our experiments,
the initialization alternative provides the best results. Lastly,
it should be noted that, as with EM-based approaches, there
is an implicit assumption that random or adversarial annota-
tors do not constitute a vast majority (which generally holds
in practice), in which case the crowd layer would not per-
form better than a random predictor.

A particularly important aspect to note, is that the frame-
work described above is quite general. For example, it can
be straightforwardly applied to sequence labeling problems
without further changes, or be adapted to regression prob-
lems by considering univariate scalar and bias parameters
per annotator in the crowd layer.

Experiments

The proposed crowd layer (CL) was implemented as a new
type of layer in Keras (Chollet 2015), so that using it in
practice requires only a single line of code. Source code,
datasets and demos for all experiments are provided at:
http://www.fprodrigues.com/.

Image classification

We begin by evaluating the proposed crowd layer in a more
controlled setting, by using simulated annotators with dif-
ferent levels of expertise on a large image classification

dataset consisting of 25000 images of dogs and cats from
(Kaggle 2013), where the goal is to distinguish between the
two species. Let the dog and cat classes be represented by
1 and 0, respectively. Since this is a binary classification
task, we can easily simulate annotators with different lev-
els of expertise by assigning them individual sensitivities
αr and specificities βr, and sampling their answers from
a Bernoulli distribution with parameter αr if the true label
is 1, and from a Bernoulli distribution with parameter βr

otherwise. Using this procedure, we simulated a challenging
scenario with 5 annotators with the following values of αr =
[0.6, 0.9, 0.5, 0.9, 0.9] and βr = [0.7, 0.8, 0.5, 0.2, 0.9].

For this particular problem we used a fairly standard CNN
architecture with 4 convolutional layers with 3x3 patches,
2x2 max pooling and ReLU activations. The output of the
convolutional layers is then fed to a fully-connected (FC)
layer with 128 ReLU units and finally goes to an output
layer with a softmax activation. We use batch normaliza-
tion (Ioffe and Szegedy 2015) and apply 50% dropout be-
tween the FC and output layers. The proposed approach fur-
ther adds a crowd layer on top of the softmax output layer
during training. The base architecture was selected from a
set of possible configurations using the true labels by opti-
mizing the accuracy on a validation set (consisting of 20%
of the train set) through random search. It is important to
note that it is supposed to be representative of a set of typi-
cal approaches for image classification rather than being the
single best possible architecture in the literature for this par-
ticular dataset. Furthermore, our main interest in this paper
is the contribution of the crowd layer to the training of the
neural network.

The proposed CNN with a crowd layer (referred to as
“DL-CL”) is compared with: the multi-annotator approach
from (Rodrigues et al. 2017) based on supervised latent
Dirichlet allocation - “MA-sLDA”; a CNN trained on the
result of (hard) majority voting - “DL-MV”; a CNN trained
on the output of the label aggregation approach proposed
by Dawid and Skene (1979) - “DL-DS”; a CNN using the
EM approach described earlier - “DL-EM”; a CNN using
the “Doctor Net” approach from (Guan et al. 2017) - “DL-
DN”, which consists on training a CNN to predict the labels
of the multiple annotators and then combining their predic-
tions using majority voting; and, lastly, a CNN using the
“Weighted Doctor Net” approach from (Guan et al. 2017)
- “DL-WDN”, which is the best performing variant accord-
ing to the original paper. This approach is similar to “DL-
DN” but additionally learns how to weight the predictions
of the different annotators. Kindly see (Guan et al. 2017)
for further details. As a reference point, we also compare
with a CNN trained on true labels - “DL-TRUE”. We con-
sider 3 variants of the proposed crowd layer (CL) with dif-
ferent annotator-specific functions fr with increasing num-
ber of parameters: a vector of per-class weights wr, such that
fr(σ) = wr�σ (referred to as “VW”); a vector of per-class
biases br, such that fr(σ) = σ + br (“VB”); and a ver-
sion with a matrix of weights Wr, such that fr(σ) = Wrσ
(“MW”). In our experiments, we found that for approaches
with more parameters than MW, such as fr(σ) = Wrσ+br,
identifiability issues start to occur.
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Table 1: Accuracy results for classification datasets: Dogs vs. Cats and LabelMe.

Method Dogs vs. Cats LabelMe (MTurk)

MA-sLDAc (Rodrigues et al. 2017) - 78.120 (± 0.397)
DL-MV 71.377 (± 1.123) 76.744 (± 1.208)
DL-DS (Dawid and Skene 1979) 76.750 (± 1.282) 80.792 (± 1.066)
DL-EM (Albarqouni et al. 2016) 80.184 (± 1.454) 82.677 (± 0.981)
DL-DN (Guan et al. 2017) 79.005 (± 1.347) 81.888 (± 1.114)
DL-WDN (Guan et al. 2017) 76.822 (± 2.838) 82.410 (± 0.783)

DL-CL (VW) 79.534 (± 1.064) 81.051 (± 0.899)
DL-CL (VW+B) 79.688 (± 1.406) 81.886 (± 0.893)
DL-CL (MW) 80.265 (± 1.230) 83.151 (± 0.877)

DL-TRUE 84.912 (± 1.248) 90.038 (± 0.652)

Table 2: Results for MovieReviews (MTurk) dataset.

Method MAE RMSE R2

MA-sLDAr (Rodrigues et al. 2017) - - 35.553 (± 1.282)
DL-MEAN 1.215 (± 0.048) 1.498 (± 0.050) 31.496 (± 4.690)
DL-EM 1.201 (± 0.046) 1.482 (± 0.048) 32.974 (± 4.457)
DL-DN (Guan et al. 2017) 1.270 (± 0.021) 1.549 (± 0.022) 26.775 (± 2.102)
DL-WDN (Guan et al. 2017) 1.261 (± 0.016) 1.541 (± 0.018) 27.597 (± 1.763)

DL-CL (S) 1.228 (± 0.041) 1.508 (± 0.044) 30.560 (± 4.101)
DL-CL (S+B) 1.163 (± 0.031) 1.440 (± 0.033) 37.086 (± 2.407)
DL-CL (B) 1.130 (± 0.025) 1.411 (± 0.028) 39.276 (± 2.374)

DL-TRUE 1.050 (± 0.029) 1.330 (± 0.036) 45.983 (± 2.895)
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Figure 2: Comparison between the true sensitivities and
specificities of the annotators and the diagonal elements of
their weight matrices Wr for the Dogs vs. Cats dataset.

Of the 25000 images in the Dogs vs Cats dataset, 50%
were used for training and the remaining for testing the dif-
ferent approaches. In order to account for the effect of the
random initialization that is used for most of the param-
eters in the network, we performed 30 executions of all
approaches and report their average accuracies in Table 1.
We can immediately verify that both the EM-based and the
crowd layer (CL) approaches significantly outperform the
majority voting (DL-MV) and Dawid & Skene (DL-DS)
baselines, thus demonstrating the gain of learning from the
answers of multiple annotators directly rather than relying
on aggregation schemes prior to training. As for the DL-

DN and DL-WDN approaches from (Guan et al. 2017), we
can observe that, although they also outperform the DL-MV
and DL-DS baselines, their accuracy is inferior to that of
the proposed DL-CL, which can be explained by the fact
that DL-DN and DL-WDN are unable to correct the an-
notators’ biases (e.g. confusing class 2 with class 4). Fur-
thermore, it important to recall that due to two-stage pro-
cedure of DL-WDN, its computational time can be signifi-
cantly higher than DL-CL. Regarding the different variants
of the proposed crowd layer, we can verify that the MW ap-
proach is the one that gives the best average accuracy. In
order to better understand what the MW approach is doing,
we inspected the weight matrices Wr of each annotator r.
Figure 2 shows the relationship between the diagonal ele-
ments of Wr and the true sensitivities and specificities of the
corresponding annotators, highlighting the strong linear cor-
relation between the two. This evidences that the proposed
crowd layer is able to internally represent the reliabilities of
the annotators.

Having verified that the crowd layer was performing well
for simulated annotators, we then moved on to evaluating
it in real data from Amazon Mechanical Turk (AMT). For
this purpose, we used the image classification dataset from
(Rodrigues et al. 2017) adapted from part of the LabelMe
data (Russell et al. 2008), whose goal is to classify images
according to 8 classes: “highway”, “inside city”, “tall build-
ing”, “street”, “forest”, “coast”, “mountain” or “open coun-
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Figure 3: Comparison between the learned weight matrices Wr and the corresponding true confusion matrices.

try”. It consists of a total of 2688 images, where 1000 of
them were used to obtain labels from multiple annotators
from Amazon Mechanical Turk. Each image was labeled
by an average of 2.547 workers, with a mean accuracy of
69.2%. The remaining 1688 images were using for evaluat-
ing the different approaches.

Since the training set is rather small, we use the pre-
trained CNN layers of the VGG-16 deep neural network
(Simonyan and Zisserman 2014) and apply only one FC
layer (with 128 units and ReLU activations) and one output
layer on top, using 50% dropout. The last column of Table 1
shows the obtained results. We can once more verify that
DL-EM, DL-WDN and DL-CL approaches outperform the
majority voting and Dawid & Skene baselines, and also the
probabilistic approaches proposed in (Rodrigues et al. 2017)
based on supervised latent Dirichlet allocation (sLDA), be-
ing the proposed crowd layer (DL-CL) the approach that
again gives the best results. However, unlike for the Dogs
vs. Cats dataset, the differences between the different func-
tion mappings fr for the crowd layer (CL) become more
evident. This can be justified by the ability of the MW ver-
sion to be able to model the biases of the annotators. Indeed,
if we compare the learned weight matrices Wr with the re-
spective true confusion matrices of the annotators, we can
notice how they resemble each other. Figure 3 shows this
comparison for 6 annotators, where the color intensity of
the cells increases with the relative magnitude of the value,
thus demonstrating that the crowd layer is able to learn the
labeling patterns of the annotators.

Text regression

As previously mentioned, one of the key advantages of
the proposed crowd layer is its straightforward extension
to other types of target variables. In this section, we con-
sider a regression problem based on the dataset also intro-
duced in (Rodrigues et al. 2017). This dataset consists of
5006 movie reviews, where the goal is to predict the rat-
ing given to the movie (on a scale of 1 to 10) based on
the text of the review. Using AMT, the authors collected
an average of 4.96 answers from a pool of 137 workers

for 1500 movie reviews. The remaining 3506 reviews were
used for testing. Letting the (continuous) output of the bot-
tleneck layer be denoted μ, we considered 3 variants of
the proposed crowd layer with different annotator-specific
functions fr: a per-annotator scale parameter sr, such that
fr(μ) = srμ (referred to as “S”); a per-annotator bias pa-
rameter br, such that fr(μ) = μ + br (“B”); and a version
with both: fr(μ) = srμ+ br (“S+B”). The base neural net-
work architecture used for this problem consists of a 3x3
convolutional layer with 128 features and 5x5 max pooling,
a 5x5 convolutional layer with 128 features and 5x5 max
pooling, and a FC layer with 32 hidden units. All layers, ex-
cept for the output one, use ReLU activations.

The proposed DL-CL is compared with: a neural network
trained on the mean answer of the annotators (DL-MEAN)
and the approach from (Rodrigues et al. 2017) based on su-
pervised LDA. In order to make the baselines even more
competitive, we further propose a new variant of the EM
algorithm described earlier that follows the same approach
as the extension proposed in (Raykar et al. 2010) for re-
gression problems. This approach assumes the following
model for the annotators answers given the ground truth:
p(yrn|zn) = N (yrn|zn, 1/λr). Although the formulation in
(Raykar et al. 2010) relies on the probabilistic interpretation
of the linear regression model to develop an EM algorithm
for learning, we can nevertheless adapt the resultant EM al-
gorithm by replacing the linear regression model with a deep
neural network. The final iterative procedure then alternates
between computing the adjusted ground truth (E-step) and
re-estimating the neural network and the annotators’ param-
eters (M-step). Finally, although Guan et al. (2017) do not
discuss extensions to regression, we also developed variants
of DL-DN and DL-WDN for continuous output variables.
For the DL-WDN approach, we considered different weight-
ing functions for combining the answers of the multiple an-
notators, namely: a single weight per annotator, a single bias,
or both. We experimented with the different alternatives and
found that using a per-annotator bias for combining the an-
swers of the multiple annotators gives the best results.

Table 2 shows the obtained results for 30 runs of the dif-
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Table 3: Results for CoNLL-2003 NER (MTurk) dataset.

Method Precision Recall F1

CRF-MA (Rodrigues, Pereira, and Ribeiro 2013) 0.494 0.856 0.626
DL-MV 0.664 (± 0.017) 0.464 (± 0.021) 0.546 (± 0.014)
DL-EM 0.679 (± 0.012) 0.499 (± 0.010) 0.575 (± 0.008)
DL-DN (Guan et al. 2017) 0.723 (± 0.009) 0.459 (± 0.014) 0.562 (± 0.012)
DL-WDN (Guan et al. 2017) 0.611 (± 0.063) 0.480 (± 0.058) 0.534 (± 0.042)

DL-CL (VW) 0.709 (± 0.013) 0.472 (± 0.020) 0.566 (± 0.016)
DL-CL (VW+B) 0.603 (± 0.013) 0.609 (± 0.012) 0.606 (± 0.007)
DL-CL (MW) 0.660 (± 0.018) 0.593 (± 0.013) 0.624 (± 0.010)

DL-TRUE 0.711 (± 0.013) 0.740 (± 0.009) 0.725 (± 0.008)

−2 −1 0 1 2

True bias

−1.0

−0.5

0.0

0.5

1.0

E
s
ti

m
a
te

d
 b

ia
s
 p

a
ra

m
e
te

r

corrcoef=0.873

Figure 4: Relationship between the learned br parameters
and the true biases of the annotators.

ferent approaches, where we verify that the proposed crowd
layer, particularly the “B” variant, significantly outperforms
all the other methods. In order to better understand what the
crowd layer in the “B” variant is doing, we plotted learned br

values in comparison with the true biases of the annotators,
computed as the average difference between their answers
and the ground truth. Figure 4 shows this comparison, in
which we can verify that the learned values of br are highly
correlated with the true biases of the annotators, thus show-
ing that crowd layer is able to account for annotator bias
when learning from the noisy labels of multiple annotators.

Named entity recognition

Lastly, we evaluated the proposed crowd layer on a named
entity recognition (NER) task. For this purpose, we used the
AMT dataset introduced in (Rodrigues, Pereira, and Ribeiro
2013) which is based on the 2003 CoNLL shared NER task
(Sang and Meulder 2003), where the goal is to identify the
named entities in the sentence and classify them as persons,
locations, organizations or miscellaneous. The dataset con-
sists of 5985 labeled sentences using a pool of 47 work-
ers. The remaining 3250 sentences of the original dataset
were used for testing. The neural network architecture used
for this problem consists of a layer of 300-dimensional
word embeddings initialized with the pre-trained weights of
GloVe (Pennington, Socher, and Manning 2014), followed
by a 5x5 convolutional layer with 512 features, whose out-
put is then fed to a GRU cell with a 50-dimensional hid-
den state. The individual hidden states of the GRU are then

passed to a FC layer with a softmax activation. The crowd
layer uses the same annotator function mappings fr used for
image classification.

The proposed crowd layer is compared with same base-
lines considered for the classification problems. As previ-
ously explained, the EM approach is hard to generalize to
sequence labelling problems due to marginalization over the
latent ground truth sequences in Eq. (1). In order to make
this marginalization tractable, we assume a fully factorized
distribution of the posterior approximation q(zn), such that
q(zn) =

∏T
t=1 q(znt), where T denotes the length of the se-

quence.3 Although the focus of this paper is on deep learn-
ing approaches, for the sake of completeness, we also com-
pare with the results of the multi-annotator approach from
(Rodrigues, Pereira, and Ribeiro 2013) based on conditional
random fields (CRF-MA). Table 3 shows the obtained aver-
age results, which clearly demonstrate that the proposed ap-
proach significantly outperforms all the other methods, and
provides similar results to those of CRF-MA, while reduc-
ing the training time by at least one order of magnitude when
compared to the latter (minutes instead of several hours on a
Core i7 with 32GB of RAM and a NVIDIA GTX 1070).

Conclusion

This paper proposed the crowd layer - a novel neural net-
work layer that enables us to train deep neural networks
end-to-end, directly from the labels of multiple annotators
and crowds, using backpropagation. Despite its simplicity,
the crowd layer is able to capture the reliabilities and bi-
ases of the different annotators and adjust the error gradients
that are backpropagated during training accordingly. As our
empirical evaluation shows, the proposed approach outper-
forms other approaches that rely on the aggregation of the
annotators’ answers prior to training, as well as other meth-
ods from the state-of-the-art which often rely on more com-
plex, harder to setup and more computationally demand-
ing EM-based approaches. Furthermore, unlike the latter,
the crowd layer is trivial to generalize beyond classifica-
tion problems, which we empirically demonstrate using real

3Please note that, while this makes EM tractable, the computa-
tional complexity of the E-step is now increased to O(NTR).
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data from Amazon Mechanical Turk for text regression and
named entity recognition tasks.
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