11 research outputs found

    A Low-Cost Machine Learning Based Network Intrusion Detection System With Data Privacy Preservation

    Get PDF
    Network intrusion is a well-studied area of cyber security. Current machine learning-based network intrusion detection systems (NIDSs) monitor network data and the patterns within those data but at the cost of presenting significant issues in terms of privacy violations which may threaten end-user privacy. Therefore, to mitigate risk and preserve a balance between security and privacy, it is imperative to protect user privacy with respect to intrusion data. Moreover, cost is a driver of a machine learning-based NIDS because such systems are increasingly being deployed on resource-limited edge devices. To solve these issues, in this paper we propose a NIDS called PCC-LSM-NIDS that is composed of a Pearson Correlation Coefficient (PCC) based feature selection algorithm and a Least Square Method (LSM) based privacy-preserving algorithm to achieve low-cost intrusion detection while providing privacy preservation for sensitive data. The proposed PCC-LSM-NIDS is tested on the benchmark intrusion database UNSW-NB15, using five popular classifiers. The experimental results show that the proposed PCC-LSM-NIDS offers advantages in terms of less computational time, while offering an appropriate degree of privacy protection

    A Low-Cost Machine Learning Based Network Intrusion Detection System with Data Privacy Preservation

    Get PDF
    Network intrusion is a well-studied area of cyber security. Current machine learning-based network intrusion detection systems (NIDSs) monitor network data and the patterns within those data but at the cost of presenting significant issues in terms of privacy violations which may threaten end-user privacy. Therefore, to mitigate risk and preserve a balance between security and privacy, it is imperative to protect user privacy with respect to intrusion data. Moreover, cost is a driver of a machine learning-based NIDS because such systems are increasingly being deployed on resource-limited edge devices. To solve these issues, in this paper we propose a NIDS called PCC-LSM-NIDS that is composed of a Pearson Correlation Coefficient (PCC) based feature selection algorithm and a Least Square Method (LSM) based privacy-preserving algorithm to achieve low-cost intrusion detection while providing privacy preservation for sensitive data. The proposed PCC-LSM-NIDS is tested on the benchmark intrusion database UNSW-NB15, using five popular classifiers. The experimental results show that the proposed PCC-LSM-NIDS offers advantages in terms of less computational time, while offering an appropriate degree of privacy protection.Comment: 14 page

    Predicting class-imbalanced business risk using resampling, regularization, and model ensembling algorithms

    Get PDF
    We aim at developing and improving the imbalanced business risk modeling via jointly using proper evaluation criteria, resampling, cross-validation, classifier regularization, and ensembling techniques. Area Under the Receiver Operating Characteristic Curve (AUC of ROC) is used for model comparison based on 10-fold cross-validation. Two undersampling strategies including random undersampling (RUS) and cluster centroid undersampling (CCUS), as well as two oversampling methods including random oversampling (ROS) and Synthetic Minority Oversampling Technique (SMOTE), are applied. Three highly interpretable classifiers, including logistic regression without regularization (LR), L1-regularized LR (L1LR), and decision tree (DT) are implemented. Two ensembling techniques, including Bagging and Boosting, are applied to the DT classifier for further model improvement. The results show that Boosting on DT by using the oversampled data containing 50% positives via SMOTE is the optimal model and it can achieve AUC, recall, and F1 score valued 0.8633, 0.9260, and 0.8907, respectively

    Malware Detection in Internet of Things (IoT) Devices Using Deep Learning

    Get PDF
    Internet of Things (IoT) devices usage is increasing exponentially with the spread of the internet. With the increasing capacity of data on IoT devices, these devices are becoming venerable to malware attacks; therefore, malware detection becomes an important issue in IoT devices. An effective, reliable, and time-efficient mechanism is required for the identification of sophisticated malware. Researchers have proposed multiple methods for malware detection in recent years, however, accurate detection remains a challenge. We propose a deep learning-based ensemble classification method for the detection of malware in IoT devices. It uses a three steps approach; in the first step, data is preprocessed using scaling, normalization, and de-noising, whereas in the second step, features are selected and one hot encoding is applied followed by the ensemble classifier based on CNN and LSTM outputs for detection of malware. We have compared results with the state-of-the-art methods and our proposed method outperforms the existing methods on standard datasets with an average accuracy of 99.5%.publishedVersio
    corecore