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Yan Wang1, Xuelei Sherry Ni2 

1Graduate College, Kennesaw State University, Kennesaw, USA 
2Department of Statistics and Analytical Sciences, Kennesaw State University, 

Kennesaw, USA 
 

ABSTRACT 
 

We aim at developing and improving the imbalanced business risk modeling via jointly using proper 

evaluation criteria, resampling, cross-validation, classifier regularization, and ensembling techniques. 

Area Under the Receiver Operating Characteristic Curve (AUC of ROC) is used for model comparison 

based on 10-fold cross validation. Two undersampling strategies including random undersampling (RUS) 

and cluster centroid undersampling (CCUS), as well as two oversampling methods including random 
oversampling (ROS) and Synthetic Minority Oversampling Technique (SMOTE), are applied. Three highly 

interpretable classifiers, including logistic regression without regularization (LR), L1-regularized LR 

(L1LR), and decision tree (DT) are implemented. Two ensembling techniques, including Bagging and 

Boosting, are applied on the DT classifier for further model improvement. The results show that, Boosting 

on DT by using the oversampled data containing 50% positives via SMOTE is the optimal model and it can 

achieve AUC, recall, and F1 score valued 0.8633, 0.9260, and 0.8907, respectively. 
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1. INTRODUCTION 
 

Risk modeling can discriminate the risky business from the non-risky companies, thus 
can guide the financial institutions to make decisions when processing loan or credit 

applications [1] [2]. Logistic regression (LR) is a frequently used technique for risk 

classifications since it is conceptually simple and explainable and has been demonstrated 

to be powerful in many studies [3] [4] [5]. Decision tree (DT) is also widely used as it 
has strong interpretability and relatively straightforward structures compared to 

complicated models such as neural networks [6].  
 

However, in real-life applications of risk models, many data are imbalanced.  That is, the 
distributions in each class are not uniform [7]. Imbalanced data result in several 

problems and challenges to existing algorithms that have been shown to be effective on 

the balanced data [8] [9] [10]. The problems arising from modeling imbalanced data 
mainly contain the following three categories: (1) the usage of improper model 

evaluation metric; (2) data rarity due to the lack of observations in the rare class; and (3) 

the usage of weak classifiers or classifiers without regularization [11] [12] [13]. To 

handle the problems mentioned above, researchers have proposed several effective 
methodogies, including using more appropriate evaluate metrics, resampling 

(oversampling or undersampling) with different ratios between positives and negatives, 
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using cross validation in the right way, classifier regularization such as L1-regularized 
Logistic Regression (L1LR) and model ensembling [14] [15] [16] [17]. 
 

Motivated by previous research, we design a modeling work flow in this study, aiming at 

developing a good model for imbalanced risk classifications by using the aforementioned 
class-imbalance-handling methods simultaneously. The utilization of the above-

mentioned algorithms jointly is a major strength of this study, since there are few 

previous research focusing on using these techniques in one modeling design.  The 
details of the modeling flow are described in Figure 3.   
 

This paper is structured as follows. The relevant techniques used for handling class 

imbalance are reviewed in Section 2. Section 3 describes the experimental design. 
Experimental results are discussed in Section 4. Section 5 addresses the conclusions.  
 

2. METHODOLOGIES FOR HANDLING CLASS IMBALANCE 
 

In this section, the methodologies used in this study for classifying imbalanced targets 

are reviewed. 
 

2.1. Selection of the proper evaluation metrics 
 

Classification accuracy is generally considered the optimal measure for binary classification. 
However, it is no longer a good evaluation metric for models built on imbalanced data 

because accuracy will bias towards the majority class. Instead, Area Under the Receiver 

Operating Characteristic Curve (AUC of ROC) is more appropriate since it does not place 

more emphasis on one class over another and it is not biased against the minority class [7] 
[18] [19]. Moreover, ROC curve is independent of the positive-negative ratio in target, 

making AUC a suitable measure for comparing different classifiers when the positive-

negative ratio varies [16]. Let P and N represent the total number of positive cases (i.e., risky 
business) and negatives cases (i.e., non-risky business), respectively. Let True Positive (TP) 

and False Positive (FP) denote those identified as risky business correctly or wrongly, 

respectively. Similarly, we denote True Negative (TN) and False Negative (FN) as those 
identified as non-risky business correctly or wrongly, respectively. Then recall (shown in 

Equation 1) measures the fraction of risky business correctly classified and precision 

(described in Equation 2) measures the fraction of objects classified as risky business that are 

truly risky. Considering that a FN error may signify the loss, recall is used as the secondary 
evaluation criterion in this study and precision is weighted less. Besides, F1 score (described 

in Equation 3) is utilized as the third evaluation metric as it represents the harmonic mean of 

precision and recall [20]. 
 

Recall =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (1) 

 

Precision =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2) 

 

F1 score =  
2 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 (3) 
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2.2. Resampling methods 
 

Resampling, aiming at eliminating or minimizing the rarity by altering the distribution of 

training samples, is a widely used while effective technique in the rare event prediction [21] 
[22]. The resampling technique mainly includes two approaches: undersampling and 

oversampling. The undersampling means removing observations in the majority class while 

in oversampling, we duplicate the records in the minority class [18]. Figure 1 illustrates the 

graphical representations of the above-mentioned two approaches. Both could balance the 
class distribution, thus make the binary classifiers more robust. Although undersampling is 

often used when the size of data is sufficient while oversampling is preferred when the data 

is relatively small, there is no absolute advantage of one resampling method over another. 
Application of oversampling or undersampling algorithms depends on different research 

cases and dataset used [23]. 
 

 

Figure 1.  Graphical representation of the undersampling and oversampling algorithms 

 

In this paper, two undersampling techniques -- random undersampling (RUS) and cluster 

centroid undersampling (CCUS) -- are implemented. RUS eliminates the examples in the 

majority class (usually defined as the negatives in risk modeling) randomly and uniformly 
while keeping all the observations from the minority class (usually defined as the positives in 

risk modeling) to reach a desired positive percentage [23]. In CCUS, all observations in the 

minority class of the original data are kept. Then, the clusters of the majority class are found 

using K-means algorithms and only the K cluster centroids are kept for replacing the points 
from the majority class [24]. The K in CCUS is set to the value that can reach the desired 

percentage of positives. 
 

In addition, two oversampling methods -- random oversampling (ROS) and Synthetic 
Minority Oversampling Technique (SMOTE) -- are applied. Based on the similar idea as in 

RUS, in ROS, the observations in the minority class are duplicated randomly and uniformly 

while all the examples from the majority class are kept to reach the desired positive ratio 
[25]. On the other hand, SMOTE does not duplicate the records in the minority class. 

Instead, SMOTE could add newly synthesized instances (belonging to the minority class) to 

the original data. And these newly generated examples should be similar to the positives 

from the original data with respect to Euclidean distance. Figure 2 shows the details of the 
SMOTE algorithm. In subplot (1) of Figure 2, the originally imbalanced data is represented 

with a majority of negatives (blue points) and a minority of positives (orange points). In 

subplot (2), we randomly select a positive instance (green point) and then find its k-nearest 

Positives	(P)Negatives	(N)

Original imbalanced data with positive percentage P/(P+N)

Positives	(P)Negatives	(N’) Positives	(P’)Negatives	(N)

Eliminates N to N’ to reach 

the desired positive 

percentage P/(P+N’)

Duplicates P to P’ to reach the desired positive 

percentage P’/(P’+N)

Undersample Oversample

 Electronic copy available at: https://ssrn.com/abstract=3366806 



International Journal of Managing Information Technology (IJMIT) Vol.11, No.1, February 2019 
 
 

4 

 

neighbours among all the positives. In our study, we set k to be five and these neighbours are 
denoted by the block dots marked with numbers. Next, in subplot (3), among the five 

neighbours, one neighbour is randomly selected. The figure shows the illustrative case when 

neighbour numbered 3 is selected. Then a new data point (denoted by the red dot) is 
generated along the straight line connecting the neighbour numbered 3 and the green point. 

Finally, this newly synthesized instance is labelled as positive and added to the original 

dataset [26]. The procedure repeated for the positives to get the data with the desired positive 

percentage. 
 

2.3. Resampling to reach different positive percentages 
 

During the resampling algorithm, one hyper-parameter we need to tune is the ratio between 
positives and negatives (or, equivalently, the positive percentage in the training data). It is 

shown by previous research that the best ratio (or, the best positive percentage) heavily 

depends on the data and the models that are used, making it worth trying different 
percentages and selecting the optimal one rather than training models using the same positive 

percentage [27]. In this study, we use the resampling methods to obtain a series of training 

datasets containing the positive percentages ranging from 10% to 90% with a step of 10%. 
 

2.4. Using cross-validation in the proper way 
 

Similar as comparing performance of classifiers on the balanced data, k-fold cross validation 

is also frequently used when evaluating performance of models on class-imbalanced data. 
The most important thing worthy to be emphasized is that k-fold cross validation should 

always be done before, rather than after performing resampling strategies on the training data 

(see details in Figure 3). If k-fold cross validation is applied after resampling, it will cause 
the overlap of the training sets as well as leading to the over-fitting issue. On the contrary, if 

we perform k-fold cross-validation before resampling, randomness can be introduced into the 

dataset and the over-fitting problem can be reduced [28]. In our study, we set the value of k 
to be 10 since many studies have shown that 10-fold cross validation can obtain efficiently 

computational time while good model performance. 
 

2.5. Regularization on logistic regression 
 

It is shown that classic LR is not so robust without weighting and regularization when 

being used on rare event data [29]. L1-regularized LR (L1LR), which is one of the 

widely used regularized versions of LR, has been shown to outperform the classic LR in 
modeling imbalanced data and high-dimensional data [1] [17] [30] [31].  
 

L1LR works as follows. Suppose we have a training set with X∈Rn×d, where n is the number 

of observations and d denotes the number of features. For every instance 𝒙𝒊∈Rd, the 

dependent variable 𝑦𝑖  follows a Bernoulli distribution with probability of 𝑝𝑖  being 1 and 

probability of (1-𝑝𝑖) being 0. LR models the relationship between each instance 𝒙𝒊 with its 

expected outcome  𝑝𝑖  using  Equation 4, where (𝛽0, 𝛽1, … , 𝛽𝑛) is the parameter vector 

and can be denoted by a vector β.  By adding a regularization (penalty) term λ||β||1 into 

the objective function (i.e., the log-likelihood function) of LR, we get the optimization 

problem for L1LR defined in Equation 5, where λ is a hyper-parameter to control the 
regularization and ||β||1 is the L1 norm of the parameters. 
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Figure 2.  Graphical representation of the SMOTE algorithm 

 

𝑝𝑖 =
exp (𝒙𝒊𝛃)

1 + exp (𝒙𝒊𝛃)
 (4) 

 

𝑚𝑖𝑛 ∑ − log 𝑝𝑖 𝑙(𝑦𝑖|𝒙𝒊; 𝛃 

𝑛

𝑖=1

) +  λ||𝛃||
𝟏
  (5) 

  

2.6. Decision tree and model ensembling 
 

Some studies point out that one of the reasons DT is not efficient for imbalanced data is, 

in the building of DT, the instance space is partitioned into smaller and smaller spaces, 

making it difficult to find the regularities [16]. However, there are still several studies 

showing the promising utilization and the robustness of DT when being used on the 
class-imbalanced data [32] [33]. Considering that DT is widely accepted in the financial 

domain because of its strong interpretability as well as its robustness in the above-

mentioned studies, in our experiment we use it as one of the classifiers, aiming to 
investigate whether it is still powerful in class-imbalanced risk classification. For the DT 

algorithm, it searches the optimal splits on input variables based on different criteria 

such as entropy or Gini index. Gini index is used in this paper and its calculation for a 
given node is defined in Equation 6, where C is the number of classes in the dependent 

variable and p(code) is the relative frequency of class c at the node [34]. 
 

𝐺𝑖𝑛𝑖(𝑛𝑜𝑑𝑒) = 1 − ∑[𝑝(𝑐|𝑛𝑜𝑑𝑒)]2 

𝐶

𝑐=1

 (6) 

 

Many studies have confirmed that comparing to a single learning algorithm, ensemble 

methods can obtain better performance in rare event predictions by using multiple base 

1. The original imbalanced data

containing positives (orange

dots) and negatives (blue dots).

2. Randomly pick a positive

instance (green dot). Then find its 5-

nearest neighbors and label them

(black dots).

3. Randomly pick a nearest

neighbor (neighbor 3). Then

synthesize a new positive instance

(red dot).

1
2

3

4
5

1
2

3

4
5
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learners [35] [36]. Two widely used ensembling approaches are Bagging and Boosting. 
Bagging builds a series of parallel while independent base classifiers using bootstrap 

subsets of the training set. On the contrary, Boosting builds a series of base classifiers 

sequentially and dependently. As a result, the subset used for building the current base 
classifier is not generated by bootstrap sampling. Instead, the algorithm changes the 

instance weights for the current classifier based on the performance of the previous 

classifiers. Instances that are misclassified by previous classifiers would be weighted 

more in the current classifier [37] [38]. In the end, both methods use a majority voting 
logic for the final prediction. In this study, we consider both Bagging and Boosting 

approaches based on the DT classifier, aiming to investigate whether we can obtain a 

better risk model through ensembling. It is worth noting that before performing model 
ensembling, we focus on getting a DT model as accurate as possible by identifying the 

proper resampling method along with a properly resampled positive ratio, as described in 

Sections 2.2 and 2.3. During the processing of Bagging and Boosting on DT classifier, 
Gini index is also used to look for candidate variables for splitting each node in each DT 

model. Moreover, Gini reduction is used to rank the variable importance for business 

risk after the optimal model is identified. 
 

3. EXPERIMENTAL DESIGN 

3.1. Data description and pre-processing 
 

The dataset provided by the US national Credit Bureau is used in our study to develop and 

evaluate the risk models. The data contains commercial information of over 10 million de-
identified U.S. companies from 2006 to 2014. Example commercial information includes 

business location, business size, liens, industry account activities, and liabilities. The 

bankruptcy indicator represents the status of the business: 0 denotes the business is still 

running while 1 means the business went to bankruptcy. To evaluate the risk of going 
bankruptcy of the companies in 2014, a new target variable RiskInd is calculated based on 

the change of the bankruptcy indicator. In other words, in our study, the positives (i.e., risky 

business) are businesses which have changed the value of bankruptcy indicator from 0 in 
2013 to 1 in 2014 while the negatives (i.e., non-risky business) are those having bankruptcy 

indicator valued 0 in both 2013 and 2014. Observations that have bankruptcy indicator 

valued 1 in both 2013 and 2014 are excluded in our modeling.  
 

A series of data pre-processing procedures were applied sequentially as follows: (1) We 

performed 10-fold cross validation in our study. In each of the 10-fold cross validation, 90% 

data (i.e., 18,000 observations) was used as the training set while 10% (i.e., 2,000 records) 
was used as the validation set; (2) Variables with more than 70% missing were removed; (3) 

For both training and validation sets, missing values were imputed by the median of the 

variable from the training set; (4) For both training and validation sets, variables were 

standardized by using the means and the standard deviations of the variable from the training 
set. The percentage of positives is about 7.4% and 36 independent variables are kept for 

further analysis. 
 

3.2. Methodology 
 

Figure 3 shows the workflow of our numerical experiments by using oversampling as the illustrative 

example. There are mainly five stages in the workflow. In stage 1, the experiment starts by 
investigating the effect of different resampling methods on different classifiers. As described in 

Section 2.3, in the oversampling experiments, ROS and SMOTE are implemented on the training 

data to reach a series of resampled sets with different positive percentages: 10% to 90% with a 

step of 10%. The same procedure is applied in the undersampling experiments, except that RUS 
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and CCUS are implemented. In stage 2, three classifiers including LR, L1LR, and DT are applied 
on each of the resampled training sets. Then in stage 3, the model performance is evaluated and 

compared on the validation set using AUC, recall, and F1 score. Stages 1, 2, and 3 are repeated 10 

times in 10-fold cross validation and the optimal resampling method as well as the best resampled 
positive percentage are selected for each of the three classifiers based on the average cross-

validated results. Therefore, in this stage, the most accurate base classifier is built. Next, in stage 

4, Bagging and Boosting are implemented on DT using the training data with the optimal positive 

percentage and the best resampling method from stage 3. The purpose is to examine whether the 
performance of an individual DT can be further improved by model ensembling. Finally, in stage 

5, the optimal model is selected and the important features related to risk classifications are 

identified. 
 

 

 

 

Figure 3.  The workflow of the experimental design by using oversampling as the illustrative 

example 

 

4. EXPERIMENTAL RESULTS  
 

With respect to the analysis tools, we use SAS (version 9.4) for the data pre-processing. Python 

(version 3.5) is used for the rest of our analysis including resampling, 10-fold cross validation, 

implementation of LR, L1LR, and DT, as well as Bagging and Boosting on DT. Our experiments 
are implemented using a local desktop configured with a 3.3 GHz Intel Core i7 processor, 16GB 

RAM, and MacOS system. 
 

We started our experiments by first investigating the effect of different resampling methods on 

model performance, and the results came out in the end of stage 3, as described in Figure 3. 

Taking the 50% positive percentage value as an illustrative example, Figure 4 displays the 

visualization of the resampled data with the first two principal components through principal 
component analysis (PCA).  The figure clearly shows that the sizes of the data obtained by RUS 

and CCUS are obviously smaller than those obtained by ROS and SMOTE. Although all the four 

resampled sets have 50% positives, the distributions of the positives and the negatives are 

3. Scoring and evaluation, then 

select the best positive percentage

and the best resampling method 

for each classifier

Training set with

positive percentage

7.4% (blue denotes

positives while

yellow denotes

negatives) 1. Oversampling 

on the training set 

to reach different

positive 

percentages

Training set
LR

L1LR

DT

Boosting on DT

Bagging on DT

Validation set

2. Modeling on 

each oversampled 

data

10-fold cross validation

4. Model ensembling

Optimal model

Rank variables

5. Identify important 

variables
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different. The main difference is that the data obtained from SMOTE contains many newly 
generated points while the rest three samples only contain the points from the original data. It is 

because SMOTE algorithm synthesizes new points as illustrated by Figure 2. 

 

 

 

Figure 4.  PCA visualization of the training set with 50% positives obtained from four resampling 

methods: RUS, CCUS, ROS, and SMOTE 
 

In the end of stage 3 in the workflow, the average AUC of each classifier, LR, L1LR, or DT, 
is calculated from 10-fold cross validation and the results are illustrated by Figures 5, 6, and 

7, respectively. Overall, we see that, the different positive percentages result in very different 

model performance. Furthermore, different resampling methods affect the model 
performance in a various extent. In general, SMOTE outperforms the rest three resampling 

methods on all three classifiers across almost all training sets with different positive 

percentages. The highest AUC is obtained by SMOTE when the training set has 20%, 20%, 
and 50% risky business on LR, L1LR, and DT, respectively (as marked by a circle in Figures 

5, 6, and 7). We label the corresponding models as LR_SMOTE_20%, L1LR_SMOTE_20%, 

and DT_SMOTE_50%, respectively.  
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Figure 5.  AUC of LR versus various positive rates in the training data across different resampling methods 

 

 

Figure 6.  AUC of L1LR versus various positive rates in the training data across different resampling 

methods 
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Figure 7.  AUC of DT versus various positive rates in the training data across different resampling methods 

To investigate the three models including LR_SMOTE_20%, L1LR_SMOTE_20%, and 
DT_SMOTE_50% in more detail, we compare their performance using more evaluation 

criteria described in Section 2.1. Furthermore, to identify the benefits of resampling, we have 

implemented LR, L1LR, and DT on the original data (i.e., percentage of positives is 7.4%) 

and the resulting models are labelled as LR_original_7.4%, L1LR_original_7.4%, and 
DT_original_7.4%, respectively. All the above-mentioned results are illustrated in Figure 8. 

By comparing performance between LR_original_7.4% and LR_SMOTE_20%, between 

L1LR_original_7.4% and L1LR_SMOTE_20%, and between DT_original_7.4% and 
DT_SMOTE_50%, we found that resampling strategy can improve AUC, recall, and F1 

score in all these three classifiers, with recall having the most obvious increase. Surprisingly, 

LR and L1LR have very similar performance by using all the evaluation criteria, no matter 

whether the training data is resampled or not. This indicates that the LR with L1-
regularization does not show its superiority over LR without regularization in our study. 

  

 
 

Figure 8.  Comparison across different base classifiers and ensemble modelling using AUC, recall, and F1 

score 

AUC Recall F1	score

LR	_orginal_7.4% 0.7456 0.8153 0.8477

L1LR_original_7.4% 0.7455 0.8149 0.8475

DT_original_7.4% 0.7511 0.7066 0.7763

LR_SMOTE_20% 0.7771 0.9130 0.8878

L1LR_SMOTE_20% 0.7771 0.9130 0.8878

DT_SMOTE_50% 0.7925 0.8003 0.8431

DT_SMOTE_50%_bagging 0.8645 0.7879 0.8353

DT_SMOTE_50%_boosting 0.8633 0.9260 0.8907
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In the stage 4 illustrated by Figure 3, two model ensembling techniques, Bagging and 
Boosting, are applied on DT_SMOTE_50%, the DT classifier built on the optimal positive 

rate as well as the best resampling method.  The resulting models are labelled as 

DT_SMOTE_50%_bagging and DT_SMOTE_50%_boosting, respectively. To make the 
comparison of all the established models easier, the performance of 

DT_SMOTE_50%_bagging and DT_SMOTE_50%_boosting is also illustrated in Figure 8. 

It is observed that comparing with individual DT, while Bagging on DT improves AUC, it 

hurts recall and F1 score, quite surprisingly. Compared to the base classifier DT, Boosting is 
beneficial when considering AUC, recall, and F1 score. Moreover, Boosting on DT wins 

Bagging by a huge margin in recall and F1 score, while Bagging outperforms Boosting by a 

margin in terms of AUC. In the stage 5 illustrated by Figure 3, by combining all the 
aforementioned discussions, we conclude that Boosting on DT by using the resampled 

training set with 50% positives via SMOTE method (i.e., DT_SMOTE_50%_boosting) is the 

optimal risk model in our study and it is labelled with a red star in Figure 8.  It can achieve 
AUC, recall, and F1 score valued 0.8633, 0.9260, and 0.8907, respectively. 
 

Figure 9 shows the variable importance on business risk by using Gini reduction in the 

DT_SMOTE_50%_boosting model. Higher score denotes more importance of the variable in 
classifying the business risk. Results show that three variables including 

MonLstRptDatePlcRec (i.e., number of months since the last report date on public records), 

NocurLiensJud (i.e., number of current liens or judgment), and MostRecentLienorJud (i.e., 

most recent lien or judgment) have the largest weight comparing with other variables. On the 
contrary, the variable such as pctSasNFA12mon (i.e., percentage of satisfactory non-

financial accounts in the last 12 months) shows a negligible effect in the risk classifications. 

By ranking the risk factors, we can provide a comprehensive explanation on the possible 
reasons of business risk occurrence.  
 

 

Figure 9.  Identified business risk factors ranked by Gini reduction in the optimal model 
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5. CONCLUSION 
 

In business risk classification tasks, the data used is often imbalanced and it arises many 
problems. In this study, we investigate how we can get a good risk model by simultaneously 

using a series of algorithms, including using proper model evaluation metrics, resampling 

along with different positive ratios, appropriate cross-validation, classifier regularization and 
ensembling. The simultaneous utilization of the above-mentioned algorithms is a major 

strength of this study, as there are few previous studies considering these techniques jointly. 
 

In our experiment, AUC, rather than the widely-used accuracy, is selected as the primary 
measure when comparing different models. Two undersampling methods (RUS and CCUS) 

and two oversampling methods (ROS and SMOTE) are applied to resample the training data 

to reach a series of positive ratios ranging from 10% to 90% using a step of 10%. Three 

classifiers with strong interpretations including LR, L1LR, and DT are implemented on the 
resampled data as well as on the original data. Their performance is compared through 10-

fold cross validation. Two model ensembling techniques, including Bagging and Boosting, 

are used on DT to further improve the DT performance. Finally, important features related to 
business risk are identified by using the optimal model. 
 

Compared to the models built on the data without resampling, we found the increase in AUC, 

recall, and F1 score in all the three classifiers including LR, L1LR, and DT after resampling 
the training set to an appropriate positive percentage. SMOTE is shown to be the best 

resampling method for LR, L1LR, and DT across each percentage of positives in the training 

set. By using SMOTE, LR, L1LR, and DT can reach the highest AUC by using the 

resampled data with 20%, 20%, and 50% positives, respectively. On the other hand, among 
the four resampling methods, CCUS results in the lowest AUC in LR and DT when 

percentage of positives is between 20% and 80%. RUS and CCUS produce obviously 

different AUC on LR and DT. Although RUS and CCUS produce similar performance in 
L1LR, CCUS is less preferred because of its long processing time. Surprisingly, L1LR did 

not outperform LR in our result, since they produce very similar AUC under the same 

resampling procedure. By comparing with the base DT classifier, Boosting on DT is 
beneficial in terms of AUC, recall, and F1 score while Bagging on DT only improves AUC. 

The unexpected outcome is that Bagging on DT even slightly decrease recall and F1 score 

comparing to individual DT. The optimal candidate model for risk modeling is the Boosting 

model based on DT by using the resampled data with 50% positives via SMOTE. It can 
achieve the AUC, recall, and F1 score valued 0.8633, 0.9260, and 0.8907, respectively. 

MonLstRptDatePlcRec is shown to be the most important feature in classifying business risk 

while pctSasNFA12mon has little predictive power.  
 

There is no general answer of the best resampling methods along with the resampled positive 

percentage in building risk models, as the answer is surely case and data dependent. 

However, the experimental design used in this study can serve as a reference for future 
studies in developing and improving risk models on imbalanced data. Moreover, the critical 

variables for the business risk classification provided by the Boosting DT model in our study 

could guide financial institutions in approving loan applications. 
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