3 research outputs found

    Use of multiple LIDAR-derived digital terrain indices and machine learning for high-resolution national-scale soil moisture mapping of the Swedish forest landscape

    Get PDF
    Spatially extensive high-resolution soil moisture mapping is valuable in practical forestry and land management, but challenging. Here we present a novel technique involving use of LIDAR-derived terrain indices and machine learning (ML) algorithms capable of accurately modeling soil moisture at 2 m spatial resolution across the entire Swedish forest landscape. We used field data from about 20,000 sites across Sweden to train and evaluate multiple ML models. The predictor features (variables) included a suite of terrain indices generated from a national LIDAR digital elevation model and ancillary environmental features, including surficial geology, climate and land use, enabling adjustment of soil moisture class maps to regional or local conditions. Extreme gradient boosting (XGBoost) provided better performance for a 2-class model, manifested by Cohen's Kappa and Matthews Correlation Coefficient (MCC) values of 0.69 and 0.68, respectively, than the other tested ML methods: Artificial Neural Network, Random Forest, Support Vector Machine, and Naive Bayes classification. The depth to water index, topographic wetness index, and `wetland' categorization derived from Swedish property maps were the most important predictors for all models. The presented technique enabled generation of a 3-class model with Cohen's Kappa and MCC values of 0.58. In addition to the classified moisture maps, we investigated the technique's potential for producing continuous soil moisture maps. We argue that the probability of a pixel being classified as wet from a 2-class model can be used as a 0-100% index (dry to wet) of soil moisture, and the resulting maps could provide more valuable information for practical forest management than classified maps

    Water resources sustainability model for wetland conservation based on anonymous expert elicitation

    Full text link
    [EN] Wetlands play a key role in preserving biodiversity and preventing climate change. Their conservation poses an important and pressing challenge. In the Mediterranean region, one of the key threats to wetland survival is the lack of water due to competition for resources. The selection of the most sustainable water resources for wetland conservation is a complex elicitation problem. A novel Water Resources Sustainability Model (WRSM) focused on water quality has been developed to support the decision-making. This collaborative elicitation model is based on the analytical hierarchy process and uses the reference environmental status of the wetland. The model can be used to discriminate which water resources are more sustainable for the conservation of the wetland. The WRSM has been applied successfully to Las Tablas de Daimiel National Park. The framework enables establishing priorities when analyzing in terms of water quality any surface, recycled or underground water resources.Canto-Perello, J.; Benitez-Navio, A.; Martín Utrillas, MG.; Martinez-Leon, J.; Curiel Esparza, J. (2021). Water resources sustainability model for wetland conservation based on anonymous expert elicitation. Environmental Modelling & Software. 136:1-12. https://doi.org/10.1016/j.envsoft.2020.104952S112136Aguilera, H., & Merino, L. M. (2018). Data on chemical composition of soil and water in the semiarid wetland of Las Tablas de Damiel National Park (Spain) during a drought period. Data in Brief, 19, 2481-2486. doi:10.1016/j.dib.2018.04.085Aguilera, H., Moreno, L., Wesseling, J. G., Jiménez-Hernández, M. E., & Castaño, S. (2016). Soil moisture prediction to support management in semiarid wetlands during drying episodes. CATENA, 147, 709-724. doi:10.1016/j.catena.2016.08.007Alafifi, A. H., & Rosenberg, D. E. (2020). Systems modeling to improve river, riparian, and wetland habitat quality and area. Environmental Modelling & Software, 126, 104643. doi:10.1016/j.envsoft.2020.104643Alvarez Etxeberria, I., Garayar, A., & Calvo Sánchez, J. A. (2015). Development of sustainability reports for farming operations in the Basque Country using the Delphi method. Revista de Contabilidad, 18(1), 44-54. doi:10.1016/j.rcsar.2014.03.004Bilotta, G. S., & Brazier, R. E. (2008). Understanding the influence of suspended solids on water quality and aquatic biota. Water Research, 42(12), 2849-2861. doi:10.1016/j.watres.2008.03.018Bilotta, G. S., Burnside, N. G., Cheek, L., Dunbar, M. J., Grove, M. K., Harrison, C., … Davy-Bowker, J. (2012). Developing environment-specific water quality guidelines for suspended particulate matter. Water Research, 46(7), 2324-2332. doi:10.1016/j.watres.2012.01.055Blaas, H., & Kroeze, C. (2016). Excessive nitrogen and phosphorus in European rivers: 2000–2050. Ecological Indicators, 67, 328-337. doi:10.1016/j.ecolind.2016.03.004Caen, A., Latour, D., & Mathias, J. D. (2019). Dynamical effects of retention structures on the mitigation of lake eutrophication. Environmental Modelling & Software, 119, 309-326. doi:10.1016/j.envsoft.2019.06.012Camargo, J. A., & Alonso, Á. (2006). Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment. Environment International, 32(6), 831-849. doi:10.1016/j.envint.2006.05.002Canto-Perello, J., Martinez-Leon, J., Curiel-Esparza, J., & Martin-Utrillas, M. (2017). Consensus in prioritizing river rehabilitation projects through the integration of social, economic and landscape indicators. Ecological Indicators, 72, 659-666. doi:10.1016/j.ecolind.2016.09.004Canto-Perello, J., Morera-Escrich, J. L., Martin-Utrillas, M., & Curiel-Esparza, J. (2018). Restoration prioritization framework for roadway high cut slopes to reverse land degradation and fragmentation. Land Use Policy, 71, 470-479. doi:10.1016/j.landusepol.2017.11.020Cirujano, S., Casado, C., Bernués, M., & Camargo, J. A. (1996). Ecological study of Las Tablas de Daimiel National Park (Ciudad Real, central Spain): Differences in water physico-chemistry and vegetation between 1974 and 1989. Biological Conservation, 75(3), 211-215. doi:10.1016/0006-3207(95)00079-8Curiel-Esparza, J., Gonzalez-Utrillas, N., Canto-Perello, J., & Martin-Utrillas, M. (2015). Integrating climate change criteria in reforestation projects using a hybrid decision-support system. Environmental Research Letters, 10(9), 094022. doi:10.1088/1748-9326/10/9/094022Curiel-Esparza, J., Mazario-Diez, J. L., Canto-Perello, J., & Martin-Utrillas, M. (2016). Prioritization by consensus of enhancements for sustainable mobility in urban areas. Environmental Science & Policy, 55, 248-257. doi:10.1016/j.envsci.2015.10.015Curiel-Esparza, J., Reyes-Medina, M., Martin-Utrillas, M., Martinez-Garcia, M. P., & Canto-Perello, J. (2019). Collaborative elicitation to select a sustainable biogas desulfurization technique for landfills. Journal of Cleaner Production, 212, 1334-1344. doi:10.1016/j.jclepro.2018.12.095Dong, Y., Zhang, G., Hong, W.-C., & Xu, Y. (2010). Consensus models for AHP group decision making under row geometric mean prioritization method. Decision Support Systems, 49(3), 281-289. doi:10.1016/j.dss.2010.03.003Forman, E., & Peniwati, K. (1998). Aggregating individual judgments and priorities with the analytic hierarchy process. European Journal of Operational Research, 108(1), 165-169. doi:10.1016/s0377-2217(97)00244-0Gu, S., Gruau, G., Dupas, R., Petitjean, P., Li, Q., & Pinay, G. (2019). Respective roles of Fe-oxyhydroxide dissolution, pH changes and sediment inputs in dissolved phosphorus release from wetland soils under anoxic conditions. Geoderma, 338, 365-374. doi:10.1016/j.geoderma.2018.12.034Haas, M. B., Guse, B., & Fohrer, N. (2017). Assessing the impacts of Best Management Practices on nitrate pollution in an agricultural dominated lowland catchment considering environmental protection versus economic development. Journal of Environmental Management, 196, 347-364. doi:10.1016/j.jenvman.2017.02.060Thi Minh Hanh, P., Sthiannopkao, S., The Ba, D., & Kim, K.-W. (2011). Development of Water Quality Indexes to Identify Pollutants in Vietnam’s Surface Water. Journal of Environmental Engineering, 137(4), 273-283. doi:10.1061/(asce)ee.1943-7870.0000314Hes, E. M., & van Dam, A. A. (2019). Modelling nitrogen and phosphorus cycling and retention in Cyperus papyrus dominated natural wetlands. Environmental Modelling & Software, 122, 104531. doi:10.1016/j.envsoft.2019.104531Juston, J. M., & Kadlec, R. H. (2019). Data-driven modeling of phosphorus (P) dynamics in low-P stormwater wetlands. Environmental Modelling & Software, 118, 226-240. doi:10.1016/j.envsoft.2019.05.002Juwana, I., Muttil, N., & Perera, B. J. C. (2012). Indicator-based water sustainability assessment — A review. Science of The Total Environment, 438, 357-371. doi:10.1016/j.scitotenv.2012.08.093Kløve, B., Allan, A., Bertrand, G., Druzynska, E., Ertürk, A., Goldscheider, N., … Schipper, P. (2011). Groundwater dependent ecosystems. Part II. Ecosystem services and management in Europe under risk of climate change and land use intensification. Environmental Science & Policy, 14(7), 782-793. doi:10.1016/j.envsci.2011.04.005Koskiaho, J., & Puustinen, M. (2019). Suspended solids and nutrient retention in two constructed wetlands as determined from continuous data recorded with sensors. Ecological Engineering, 137, 65-75. doi:10.1016/j.ecoleng.2019.04.006Lefebvre, G., Redmond, L., Germain, C., Palazzi, E., Terzago, S., Willm, L., & Poulin, B. (2019). Predicting the vulnerability of seasonally-flooded wetlands to climate change across the Mediterranean Basin. Science of The Total Environment, 692, 546-555. doi:10.1016/j.scitotenv.2019.07.263Zhuang, L.-L., Yang, T., Zhang, J., & Li, X. (2019). The configuration, purification effect and mechanism of intensified constructed wetland for wastewater treatment from the aspect of nitrogen removal: A review. Bioresource Technology, 293, 122086. doi:10.1016/j.biortech.2019.122086Liu, Z., Tai, P., Li, X., Kong, L., Matthews, T. G., Lester, R. E., & Mondon, J. A. (2019). Deriving site-specific water quality criteria for ammonia from national versus international toxicity data. Ecotoxicology and Environmental Safety, 171, 665-676. doi:10.1016/j.ecoenv.2018.12.078Lobanova, A., Liersch, S., Tàbara, J. D., Koch, H., Hattermann, F. F., & Krysanova, V. (2017). Harmonizing human-hydrological system under climate change: A scenario-based approach for the case of the headwaters of the Tagus River. Journal of Hydrology, 548, 436-447. doi:10.1016/j.jhydrol.2017.03.015Martin-Utrillas, M., Reyes-Medina, M., Curiel-Esparza, J., & Canto-Perello, J. (2014). Hybrid method for selection of the optimal process of leachate treatment in waste treatment and valorization plants or landfills. Clean Technologies and Environmental Policy, 17(4), 873-885. doi:10.1007/s10098-014-0834-4Man, Y., Hu, Y., & Ren, J. (2019). Forecasting COD load in municipal sewage based on ARMA and VAR algorithms. Resources, Conservation and Recycling, 144, 56-64. doi:10.1016/j.resconrec.2019.01.030Martinez-Martinez, E., Nejadhashemi, A. P., Woznicki, S. A., Adhikari, U., & Giri, S. (2015). Assessing the significance of wetland restoration scenarios on sediment mitigation plan. Ecological Engineering, 77, 103-113. doi:10.1016/j.ecoleng.2014.11.031Mayo, A. W., Muraza, M., & Norbert, J. (2018). Modelling nitrogen transformation and removal in mara river basin wetlands upstream of lake Victoria. Physics and Chemistry of the Earth, Parts A/B/C, 105, 136-146. doi:10.1016/j.pce.2018.03.005Moreno, L., Jiménez, M.-E., Aguilera, H., Jiménez, P., & de la Losa, A. (2010). The 2009 Smouldering Peat Fire in Las Tablas de Daimiel National Park (Spain). Fire Technology, 47(2), 519-538. doi:10.1007/s10694-010-0172-yNagisetty, R. M., Flynn, K. F., & Uecker, D. (2019). Dissolved oxygen modeling of effluent-dominated macrophyte-rich Silver Bow Creek. Ecological Modelling, 393, 85-97. doi:10.1016/j.ecolmodel.2018.12.009Navarro, V., García, B., Sánchez, D., & Asensio, L. (2011). An evaluation of the application of treated sewage effluents in Las Tablas de Daimiel National Park, Central Spain. Journal of Hydrology, 401(1-2), 53-64. doi:10.1016/j.jhydrol.2011.02.008Norouzian-Maleki, S., Bell, S., Hosseini, S.-B., & Faizi, M. (2015). Developing and testing a framework for the assessment of neighbourhood liveability in two contrasting countries: Iran and Estonia. Ecological Indicators, 48, 263-271. doi:10.1016/j.ecolind.2014.07.033Novakowski, N., & Wellar, B. (2008). Using the Delphi Technique in Normative Planning Research: Methodological Design Considerations. Environment and Planning A: Economy and Space, 40(6), 1485-1500. doi:10.1068/a39267Okoli, C., & Pawlowski, S. D. (2004). The Delphi method as a research tool: an example, design considerations and applications. Information & Management, 42(1), 15-29. doi:10.1016/j.im.2003.11.002O’Neil, G. L., Goodall, J. L., Behl, M., & Saby, L. (2020). Deep learning Using Physically-Informed Input Data for Wetland Identification. Environmental Modelling & Software, 126, 104665. doi:10.1016/j.envsoft.2020.104665Pérez-Martín, M. A., Estrela, T., & del-Amo, P. (2016). Measures required to reach the nitrate objectives in groundwater based on a long-term nitrate model for large river basins (Júcar, Spain). Science of The Total Environment, 566-567, 122-133. doi:10.1016/j.scitotenv.2016.04.206Pottinger, T. G. (2017). Modulation of the stress response in wild fish is associated with variation in dissolved nitrate and nitrite. Environmental Pollution, 225, 550-558. doi:10.1016/j.envpol.2017.03.021Prăvălie, R., Patriche, C., & Bandoc, G. (2017). Quantification of land degradation sensitivity areas in Southern and Central Southeastern Europe. New results based on improving DISMED methodology with new climate data. CATENA, 158, 309-320. doi:10.1016/j.catena.2017.07.006Restuccia, F., Huang, X., & Rein, G. (2017). Self-ignition of natural fuels: Can wildfires of carbon-rich soil start by self-heating? Fire Safety Journal, 91, 828-834. doi:10.1016/j.firesaf.2017.03.052Rivers-Moore, N. A., Dallas, H. F., & Morris, C. (2013). Towards setting environmental water temperature guidelines: A South African example. Journal of Environmental Management, 128, 380-392. doi:10.1016/j.jenvman.2013.04.059Rusydi, A. F. (2018). Correlation between conductivity and total dissolved solid in various type of water: A review. IOP Conference Series: Earth and Environmental Science, 118, 012019. doi:10.1088/1755-1315/118/1/012019Sánchez-Montoya, M. del M., Arce, M. I., Vidal-Abarca, M. R., Suárez, M. L., Prat, N., & Gómez, R. (2012). Establishing physico-chemical reference conditions in Mediterranean streams according to the European Water Framework Directive. Water Research, 46(7), 2257-2269. doi:10.1016/j.watres.2012.01.042Sanchez-Ramos, D., Sánchez-Emeterio, G., & Florín Beltrán, M. (2015). Changes in water quality of treated sewage effluents by their receiving environments in Tablas de Daimiel National Park, Spain. Environmental Science and Pollution Research, 23(7), 6082-6090. doi:10.1007/s11356-015-4660-ySapriza-Azuri, G., Jódar, J., Carrera, J., & Gupta, H. V. (2015). Toward a comprehensive assessment of the combined impacts of climate change and groundwater pumping on catchment dynamics. Journal of Hydrology, 529, 1701-1712. doi:10.1016/j.jhydrol.2015.08.015Singh, S., Ghosh, N. C., Krishan, G., Galkate, R., Thomas, T., & Jaiswal, R. K. (2015). Development of an Overall Water Quality Index (OWQI) for Surface Water in Indian Context. Current World Environment, 10(3), 813-822. doi:10.12944/cwe.10.3.12Singh, S., Ghosh, N. C., Gurjar, S., Krishan, G., Kumar, S., & Berwal, P. (2017). Index-based assessment of suitability of water quality for irrigation purpose under Indian conditions. Environmental Monitoring and Assessment, 190(1). doi:10.1007/s10661-017-6407-3Sperotto, A., Molina, J. L., Torresan, S., Critto, A., Pulido-Velazquez, M., & Marcomini, A. (2019). A Bayesian Networks approach for the assessment of climate change impacts on nutrients loading. Environmental Science & Policy, 100, 21-36. doi:10.1016/j.envsci.2019.06.004Sun, B., Tang, J., Yu, D., Song, Z., & Wang, P. (2019). Ecosystem health assessment: A PSR analysis combining AHP and FCE methods for Jiaozhou Bay, China1. Ocean & Coastal Management, 168, 41-50. doi:10.1016/j.ocecoaman.2018.10.026Sutadian, A. D., Muttil, N., Yilmaz, A. G., & Perera, B. J. C. (2015). Development of river water quality indices—a review. Environmental Monitoring and Assessment, 188(1). doi:10.1007/s10661-015-5050-0Sutadian, A. D., Muttil, N., Yilmaz, A. G., & Perera, B. J. C. (2017). Using the Analytic Hierarchy Process to identify parameter weights for developing a water quality index. Ecological Indicators, 75, 220-233. doi:10.1016/j.ecolind.2016.12.043Tooth, S. (2018). The geomorphology of wetlands in drylands: Resilience, nonresilience, or …? Geomorphology, 305, 33-48. doi:10.1016/j.geomorph.2017.10.017Tyagi, S., Sharma, B., Singh, P., & Dobhal, R. (2020). Water Quality Assessment in Terms of Water Quality Index. American Journal of Water Resources, 1(3), 34-38. doi:10.12691/ajwr-1-3-3Viaroli, S., Mastrorillo, L., Lotti, F., Paolucci, V., & Mazza, R. (2018). The groundwater budget: A tool for preliminary estimation of the hydraulic connection between neighboring aquifers. Journal of Hydrology, 556, 72-86. doi:10.1016/j.jhydrol.2017.10.066Wang, H.-J., Xiao, X.-C., Wang, H.-Z., Li, Y., Yu, Q., Liang, X.-M., … Jeppesen, E. (2017). Effects of high ammonia concentrations on three cyprinid fish: Acute and whole-ecosystem chronic tests. Science of The Total Environment, 598, 900-909. doi:10.1016/j.scitotenv.2017.04.070Xu, Y., Wang, Y., Li, S., Huang, G., & Dai, C. (2018). Stochastic optimization model for water allocation on a watershed scale considering wetland’s ecological water requirement. Ecological Indicators, 92, 330-341. doi:10.1016/j.ecolind.2017.02.019Yuan, L., Ge, Z., Fan, X., & Zhang, L. (2014). Ecosystem-based coastal zone management: A comprehensive assessment of coastal ecosystems in the Yangtze Estuary coastal zone. Ocean & Coastal Management, 95, 63-71. doi:10.1016/j.ocecoaman.2014.04.005Zhang, R., Zhang, X., Yang, J., & Yuan, H. (2013). Wetland ecosystem stability evaluation by using Analytical Hierarchy Process (AHP) approach in Yinchuan Plain, China. Mathematical and Computer Modelling, 57(3-4), 366-374. doi:10.1016/j.mcm.2012.06.014ZHANG, L. (2016). CALCULATION OF WETLANDS ECOLOGICAL WATER REQUIREMENT IN CHINA’S WESTERN JILIN PROVINCE BASED ON REGIONALIZATION AND GRADATION TECHNIQUES. Applied Ecology and Environmental Research, 14(3), 463-478. doi:10.15666/aeer/1403_463478Zhang, B., Zhao, D., Zhou, P., Qu, S., Liao, F., & Wang, G. (2020). Hydrochemical Characteristics of Groundwater and Dominant Water–Rock Interactions in the Delingha Area, Qaidam Basin, Northwest China. Water, 12(3), 836. doi:10.3390/w1203083
    corecore