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ABSTRACT 
 

Effective management strategies are needed to control phosphorus loading of prairie watersheds 

that contribute to the eutrophication issues of Lake Winnipeg. Prairie Pothole Region (PPR) 

wetlands provide many ecosystems services including reducing nutrient mobility. Preferential 

conservation of PPR wetlands with calcium carbonate (CaCO3)-enriched soils may be a more 

effective strategy for controlling phosphorus loading, as these soils have greater potential to 

retain phosphorus from agricultural runoff. The spatial distribution of CaCO3-enriched wetland 

soils is controlled by hydrologic processes that may be modellable using high-resolution digital 

elevation models (DEMs). Two modelling approaches were tested to map spatial distributions of 

wetlands and wetland soils expected to be enriched with CaCO3. The models were trained and 

tested with wetland salinity and soil profile information collected at three Saskatchewan PPR 

sites, near Swift Current, St. Denis, and Smith Creek. The first model was developed to 

approximate landscape-scale hydrologic processes from high-resolution DEMs to predict the 

distributions of fresh and solute-rich wetlands; the solute-rich wetlands represent wetlands 

expected to have CaCO3-enriched soils. Spill channel connections between wetlands were 

modelled to characterize wetlands in terms of the runoff contributions they receive, their 

potential for contributing runoff downslope, and their relative position within the landscape; 

solute-richness predictions were based on these characteristics. This model was successful and 

achieved acceptable predictive accuracies based on external validation tests. Digital soil mapping 

(DSM) methodologies were tested for predicting the spatial distribution of wetland soil classes 

within PPR landscapes. Target soil classes were defined by hydropedological units that reflect 

differences in soil CaCO3 enrichment. Multiple machine-learning techniques were tested, which 

incorporated many topographic attributes derived from the DEMs as predictor variables, 

including knowledge-based topographic attributes developed specifically to characterize the 

PPR’s morphology. Certain DSM models achieved acceptable predictive accuracy based on 

external validation tests and mapped soils in expected distributions, but none predicted the 

occurrence of wetlands with CaCO3-enriched soils distributed throughout their basins. Both 

modelling approaches could potentially be used to 1) identify wetlands with CaCO3-enriched 

soils to target for conservation efforts to maximize phosphorus retention and 2) create upscaled 

estimates of phosphorus retention across the PPR. 
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CaCO3 Calcium carbonate
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1 INTRODUCTION 

 

1.1 Context 

Wetlands of the Prairie Pothole Region (PPR) are important landscape features that limit 

agricultural phosphorus runoff contributions to downstream waterways. Wetland drainage has 

increased in portions of the PPR to reduce occurrences of flooding and increase arable land for 

cultivation (Brown et al., 2017a); however, drainage also reduces phosphorus retention potentials 

in PPR watersheds, which results in increased loading of downstream waterbodies (Blann et al., 

2009; Badiou et al., 2018). This has major implications for Lake Winnipeg, which has already 

been severely impacted by eutrophication from phosphorus loading and is largely fed by PPR 

watersheds (Environment Canada, 2011).  

 

Wetlands with soils enriched with calcium carbonates (CaCO3) have a greater potential for 

reducing phosphorus mobility (Zhang et al., 2014; Brown et al., 2017b). Enrichment of CaCO3 

within PPR wetland soils is determined by the hydrologic characteristics of the wetland 

(Pennock et al., 2014). On the landscape scale, wetlands that a) receive greater runoff 

contributions, b) cannot contribute runoff downslope, and c) have a greater potential to receive 

groundwater discharge are more likely to be solute-rich and have soils enriched with CaCO3 

(Van der Kamp and Hayashi, 2009; Pennock et al., 2014). These hydrologic processes may be 

approximated through analysis of high-resolution digital elevation models (DEMs) to predict the 

spatial distributions of solute-rich wetlands. Successful predictions of solute-rich wetlands would 

allow for identification of wetlands expected to have CaCO3-enriched soils, which could be 

prioritized for conservation to maximize the phosphorus retention ecosystem service within the 

PPR.  

 

Calcium carbonates are not evenly distributed within PPR wetland soils. The distributions of 

calcareous soils (those enriched with CaCO3) within wetlands are controlled by hydrologic 

processes occurring over landscape scales and within individual wetlands (Pennock et al., 2014). 

Wetlands can be classified as recharge, discharge, and flow-through, depending on their 

relationship with the groundwater, which causes different distributions of calcareous soils within 

each wetland type (Arndt and Richardson, 1988). Relationships between the spatial distribution 
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of calcareous wetland soils and a few key topographic attributes have been identified (Bedard-

Haughn and Pennock, 2002; Pennock et al., 2014). However, wetland soil formation is highly 

complex (Pennock et al., 2014). Those complexities may be modelled through digital soil 

mapping methodologies that incorporate machine-learning techniques, which determine 

relationships between soil distributions and many environmental variables (McBratney et al., 

2003). The combination of machine-learning modelling techniques and topographic attributes 

derived from high-resolution DEMs, that reflect individual wetland-scale and landscape-scale 

hydrologic characteristics, may be used to predict spatial distributions of CaCO3-enriched 

wetland soils. Successful predictions of the extents of these soils within PPR landscapes would 

allow for upscaled estimates of phosphorus retention potentials for the PPR and could also 

potentially inform conservation efforts to target wetlands with greater potential to reduce 

phosphorus mobility.  

 

This research builds on the Pennock et al. (2014) study Application of hydropedology for 

predictive mapping of wetland soils in the Canadian Prairie Pothole Region. That study provides 

the foundation for many of the concepts used in the models of this study and is recommended as 

supplemental reading.  

 

1.2 Research objectives  

The first objective of this research was to develop a model to predict spatial distributions of fresh 

and solute-rich wetlands within PPR watersheds by approximating hydrologic processes using 

high-resolution DEMs. The second objective of this research was to assess digital soil mapping 

methodologies for predicting the spatial distributions of wetland soil types in PPR landscapes 

using high-resolution DEMs.  

 

1.3 Organization of thesis  

This thesis is presented in the manuscript-style format. The first two chapters provide a general 

introduction (Ch. 1) and review of relevant literature (Ch. 2); the next two chapters (Ch. 3 and 4) 

present the main body of the research in manuscript format. The first research objective, focused 

on wetland type, is addressed in Chapter 3: Predictive mapping of solute-rich wetlands in the 

Canadian Prairie Pothole Region through high-resolution digital elevation model analyses. 
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Chapter 4 addresses the second objective: Predictive digital soil mapping of wetland soil types in 

the Canadian Prairie Pothole Region. Chapter 5 summarizes and synthesizes the two research 

chapters, suggests how they can be applied, and proposes how they could be improved upon. 

Chapter 6 provides a comprehensive reference list for the entire thesis. There are multiple 

appendices included in this thesis: Appendix A describes the GIS methodologies used in the 

wetland solute-richness class prediction model proposed in Chapter 3, Appendix B describes GIS 

methodologies used to develop new knowledge-based topographic attributes used in the digital 

soil mapping study described in Chapter 4, and Appendix C provides maps of the soil sample 

locations and directs the reader to the soil profile descriptions.  
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2 LITERATURE REVIEW 

 

2.1 Eutrophication of Lake Winnipeg  

Lake Winnipeg is one of the largest lakes in the world (roughly 23,750 km2) (Environment 

Canada, 2011). It is considered a crucial resource for Manitoba’s tourism, fishing, and 

hydroelectric industries and is home to over 23,000 permanent residents, including Métis and 

First Nation communities (Environment Canada, 2011). Lake Winnipeg experienced a 71% 

increase in phosphorus inputs and an 18% increase in nitrogen inputs between 1994 and 2007 

(Schindler et al., 2012). The nutrient increases have caused large-scale increases in 

phytoplankton and shifts in phytoplankton populations to the dominance of cyanobacteria 

(greater than 90%), commonly known as blue-green algae (Kling et al., 2011). The more 

frequent and intense algal blooms have negative effects on the water quality and ecological 

health of the lake and have negative impacts on its socio-economic uses (Environment Canada, 

2011). 

 

Lake Winnipeg’s watershed is Canada’s second largest watershed at 1,000,000 km2 in size 

(Environment Canada, 2011). It spans four provinces and portions of the U.S. (Fig. 2.1). Nutrient 

loading is derived from both point and non-point sources within the watershed, with agricultural 

activity providing a significant source of nutrients (Schindler et al., 2012). Increased numbers of 

livestock operations and increased use of synthetic fertilizers in this region over the last century 

have contributed excessive phosphorus and nitrogen loads to the waterways within the watershed 

that eventually feed into Lake Winnipeg (Jones and Armstrong, 2001). Effective management 

strategies to address the various nutrient sources are needed to control and reduce loading 

affecting Lake Winnipeg (Environment Canada, 2011). The effects of reducing nitrogen inputs 

for controlling eutrophication are debateable, but there is no doubt that phosphorus inputs need 

to be reduced to effectively control eutrophication (Schindler, 2012).  
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2.2 Prairie Pothole Region 

There is substantial overlap between the Lake Winnipeg watershed basin with the Prairie Pothole 

Region (PPR) (Fig. 2.1). The PPR represents a unique prairie landscape that is characterized by 

an abundance of shallow wetlands. The undulating to hummocky landscape was formed by 

uneven depositions of glacial till (Pennock et al., 2010) left behind from the most recent 

glaciation, the Wisconsin glaciation, which retreated fully from the prairies approximately 

11,000 years ago (Klassen, 1989). The till parent materials include finer silts and clays with a 

low hydraulic conductivity, especially at depths 5 – 10 m below the surface (Miller et al., 1985; 

Hayashi et al., 1998a); precipitation ponds within low-conductivity depressions to form wetlands 

(Bedard-Haughn and Pennock, 2002). Since deglaciation, the region has mostly experienced arid 

and sub-humid climates, which have not provided the quantity of precipitation necessary to 

generate fluvially-eroded integrated drainage networks (rivers and streams) in much of the 

landscape (Shook et al., 2013). The wetlands are typically hydrologically isolated, except during 

wetter periods where water is passed through the wetland systems via shallow groundwater and 

surficial fill-and-spill flow (Van der Kamp and Hayashi, 2009). Phosphorus mobility is largely 

through surficial runoff because movement through groundwater is typically limited in the PPR 

Fig. 2.1 Approximate extents of the Prairie Pothole Region and the Lake 

Winnipeg Watershed Basin. 
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(Hayashi and Rosenberry, 2002); therefore, under natural conditions, much of the phosphorus 

does not easily move through these wetland complexes to reach the rivers that eventually feed 

into Lake Winnipeg. However, wetland drainage converts this system to more closely resemble 

an integrated drainage system where surface water (and phosphorus in runoff water) can be more 

readily passed into downstream waterways (Blann et al., 2009). 

 

2.3 PPR wetlands and nutrient retention  

Wetlands have been found to act as sinks for phosphorus and nitrogen in runoff through physical 

and chemical mechanisms (Johnston, 1991). On watershed scales, wetlands physically control 

nutrient runoff by increasing surface storage and reducing effective contributing areas (Blann et 

al., 2009). At the individual wetland scale, the ponds and associated riparian vegetation 

physically slow the movement of runoff causing sedimentation of nutrients (Mitsch et al., 1995). 

Badiou et al. (2018) found intact PPR wetlands to have greater potential for phosphorus retention 

compared with drained PPR wetlands. Wetland drainage has become more commonly 

implemented in the PPR, especially in the northern and eastern parts where wetlands have 

exacerbated flooding issues and reduced arable cropland (Brown et al., 2017a). This has been 

especially true since 2010 because the PPR has experienced an unusually wet period (Brown et 

al., 2017a). Further wetland drainage within the PPR would result in increased phosphorus 

loading of the prairie watersheds and would perpetuate eutrophication issues for Lake Winnipeg.  

 

Certain PPR wetland soils may have a greater potential for phosphorus retention due to their 

chemical characteristics. Soils enriched with calcium carbonates (CaCO3) react with the mobile 

phosphorus to form less soluble Ca-phosphates (Zhang et al., 2014). This reduces the mobility of 

the phosphorus and prevents it from moving into downstream waterbodies. This finding was also 

observed in the Rahman et al. (2014) study, where phosphorus content within runoff was reduced 

in soil treated with CaCO3. In a study comparing phosphorus content between calcareous and 

non-calcareous surficial PPR wetland soils, Brown et al. (2017b) found total phosphorus was not 

significantly different between the soil types, but available phosphorus was six times greater 

within the non-calcareous wetland soil. Therefore, the non-calcareous wetland soil had a greater 

potential to contribute phosphorus downstream.  
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2.4 PPR wetland hydrology and hydrochemistry 

The geochemical makeup of the PPR glacial deposits reflects the characteristics of the bedrock 

and other materials that they were sourced from (Pennock et al., 2011). Across the PPR, the 

glacial deposits are rich with calcium carbonates (St. Arnaud, 1976), sourced from limestone 

outcroppings located just to the south of the Canadian Shield in Manitoba and Saskatchewan 

(Pennock et al., 2011). The glaciers advanced from Hudson Bay and moved south-west across 

the prairies (Klassen, 1989), redistributing CaCO3 from the limestone outcroppings throughout 

the region. The glacial deposits closer to the original limestone outcroppings are more enriched 

with CaCO3 (Pennock et al., 2011) and the soils of these regions have remained enriched with 

CaCO3 even after thousands of years of weathering (Saskatchewan Soil Survey Staff, 1991). 

Solutes, including CaCO3, within the parent materials have been redistributed through the 

various wetland-dominated hydrologic processes occurring in the PPR.  

 

PPR wetlands are found within topographically closed basins and are often hydrologically 

isolated due to the low hydraulic conductivity of the glacial deposits, especially during dry 

periods (Van der Kamp and Hayashi, 2009). Snow is redistributed by wind to form snow drifts 

within the wetland depressions, which increases spring water levels (Fang and Pomeroy, 2008). 

Wetlands also receive much of the snowmelt as surficial runoff due to the reduced infiltration 

through frozen soils, although a portion of snowmelt does infiltrate the soils (Woo and Rowsell, 

1993). Throughout the growing season, wetlands receive precipitation through direct rainfall and 

lose water through evaporation. Due to the low hydraulic conductivity of the deeper glacial tills, 

hydrologic losses and additions through deep groundwater movement are typically very slow and 

are not considered to significantly affect wetland hydroperiods, unless there is direct interaction 

with coarse-textured intertill aquifers (Van der Kamp and Hayashi, 2009). The hydraulic 

conductivity of the glacial tills increases exponentially near the surface due to weathering (Miller 

et al., 1985; Hayashi et al., 1998b). Water within the wetland soil directly below the pond is 

conducted laterally outward from the wetland through the near-surface materials due to the 

higher hydraulic conductivity compared to the deeper tills (Hayashi et al., 1998a; Heagle et al., 

2013). This water can then move upwards to the soil surface at the wetland fringe through 

capillary rise (Knuteson et al., 1989; Hayashi et al., 1998a). Evaporation and evapotranspiration 

from vegetation in the wetland fringe contribute to this phenomenon (Hayashi et al., 1998a). This 
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has a significant effect on a wetland’s water balance; Millar (1971) determined that the recession 

rate of a wetland was strongly related to the wetland’s shoreline to pond-area ratio due to this 

effect.  

 

Runoff can move from adjacent uplands to the wetlands and can be transferred between wetlands 

via shallow groundwater and overland flow (Van der Kamp and Hayashi, 2009). These have 

been recognized as a threshold-mediated processes that occur once sufficient water levels have 

been achieved (Spence, 2010). The water table typically sits within the deeper, low-conductivity 

tills resulting in limited groundwater flow. During wetter periods, the water table will rise and 

encompass the higher hydraulically conductive near-surface tills which allows the groundwater 

to move; this is referred to as activation of the effective transmission zone (Brannen et al., 2015). 

Overland flow can occur when wetlands fill beyond their holding capacity and spill into adjacent 

wetlands; this is referred to as fill-and-spill flow (Cook and Hauer, 2007). Millar (1976) 

developed wetland classifications based on the runoff (fill-and-spill and shallow groundwater) 

contributions they receive: 1) isolated wetlands which do not receive nor contribute runoff to and 

from adjacent wetlands, 2) overflow wetlands which do not receive runoff contributions but can 

contribute them downslope, 3) channel wetlands which receive runoff contributions from 

upslope wetlands and contribute runoff to wetlands downslope, and 4) terminal wetlands which 

receive runoff contributions but cannot contribute them downslope.  

 

Solutes present in the glacial deposits of the PPR have been redistributed via these hydrologic 

mechanisms. The movement of CaCO3 is very slow due to its low solubility (Knuteson et al., 

1989). Solutes are transferred with the lateral and upwards movement of water to the wetland 

fringes (Knuteson et al., 1989; Hayashi et al., 1998b; Heagle et al., 2013). Enrichment with 

CaCO3 in the soils of the wetland fringe is a common feature observed in the PPR and is referred 

to as the wetland discharge ring (Pennock et al., 2014). This phenomenon was studied in North 

Dakota on glaciolacustrine parent materials by Knuteson et al. (1989) who determined that 

upward transfers of CaCO3 equivalent occurred at a rate between 0.1 to 0.2 mol m-2 yr-1. During 

periods of intense rainfall, the water table within the hillslopes adjacent to the wetlands can move 

into the effective transmission zone and flow will reverse back downslope into the wetlands 
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(Winter and Rosenberry, 1998) causing a limited amount of the solutes to be redistributed to the 

wetland pond (Berthold et al., 2004). 

 

Solutes are transferred from wetlands in topographically high positions to those in lower 

positions through fill-and-spill, shallow and deep groundwater flow (Van der Kamp and Hayashi, 

2009). Shallow groundwater and fill-and-spill contributions cause increases in solute loads in 

lower-lying wetlands (Cook and Hauer, 2007; Nachshon et al., 2013). The classifications defined 

by Millar (1976) for a wetland’s potential to receive and contribute runoff are important concepts 

for wetland solute accumulation as isolated and overflow wetlands are less likely to accumulate 

solutes and terminal wetlands are most likely to accumulate solutes because they cannot readily 

be removed via runoff (Nachshon et al., 2013).  

 

Although deep groundwater flow movement is typically very limited, it is important for 

determining if wetlands are dominantly recharge or discharge wetlands (Van der Kamp and 

Hayashi, 2009). Recharge wetlands recharge water to groundwater and discharge wetlands 

receive groundwater discharge (Lissey, 1971). With only minimal deep groundwater movement, 

over thousands of years, the solute additions and removals via these processes are important 

controls on wetland chemistry (Van der Kamp and Hayashi, 2009). Solutes in the sediments 

within recharge wetlands are slowly leached out through this process. Solutes are moved into the 

discharge wetlands through groundwater movement. These processes occur at much faster rates 

for wetlands that interact directly with coarse-textured intertill aquifers (Zebarth et al., 1989). 

Discharge wetlands are found in low-lying landscape positions where the wetland is located 

beneath or level with the surrounding water table (Lissey, 1971). Recharge wetlands are situated 

at an elevation above the surrounding water table. The relationships between wetlands and 

groundwater can change with changes in hydrologic regimes. Flow-through wetlands recharge 

the groundwater and receive groundwater discharge depending on the water table levels (Arndt 

and Richardson, 1988). Flow-through wetlands represent a midpoint between recharge and 

discharge wetlands in terms of solute accumulations (Arndt and Richardson, 1989).  
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2.5 PPR soil distributions  

The PPR spans the Brown, Dark Brown, Black, and Dark Gray soil zones, which reflect general 

climatic conditions; warmer and drier in the southwest (Brown) and cooler and wetter in the 

northeast (Black and Dark Gray) (Pennock et al., 2011). The colour reflects the organic carbon 

storage in the surface horizon due to differences in available moisture (Pennock et al., 2011). The 

soil zones correspond to the great groups of the Chernozemic soil order, which is the dominant 

soil of the prairies. 

 

A common catenary relationship is observed in the PPR. The upland landscape positions are 

dominated by Chernozems and Regosols. Thin Chernozems (often with Rego and Calcareous 

sub-groups) and Regosols form on the eroded shoulder and summit positions of hillslopes 

(Pennock et al., 2011). This distribution is more prominent in cultivated landscapes where tillage 

erosion in these positions can be substantial (Pennock, 2003). Further down the hillslope, in the 

mid-slope position, thicker Orthic Chernozems commonly form (Pennock et al., 2011). Eluviated 

and Gleyed Chernozems often form in foot-slope positions. Gleysols form in the toe-slope and 

depressional positions due to the redistribution of moisture to these positions (Bedard-Haughn 

and Pennock, 2002).  

 

Gleysols in the PPR typically reflect wetland soils. These form in positions where excessive 

moisture causes anaerobic conditions. The anaerobic conditions allow for oxidation-reduction 

processes to transform iron and manganese (Bedard-Haughn, 2011). During anaerobic 

conditions, Fe3+ is used as an electron acceptor by bacteria causing it to be reduced to Fe2+ 

(Bedard-Haughn, 2011). The reduced iron is more mobile and can be leached from the profile 

leading to a dull grey or bluish colour. When the soil dries out, the iron can be oxidized and form 

pockets of reddish mottles (Bedard-Haughn, 2011). The excessive moisture in wetland soils also 

reduces microbial activity. This slows the decomposition of organic material and results in thick 

layers of soil organic carbon in the upper horizons (Pennock et al., 2014). Wetlands of the PPR, 

however, do not typically form peat deposits due to periodic drought conditions which allow for 

decomposition of the organic material (Pennock et al., 2014). 
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Wetland soils differ in terms of their accumulation of CaCO3, which is largely controlled by the 

soil’s relationship with groundwater. As groundwater discharges into discharge wetlands, CaCO3 

is deposited throughout the soils of the wetland (Pennock et al., 2014). With the dominant 

downward movement of water within recharge wetlands, the CaCO3 can be leached out from the 

soils directly beneath the wetland pond (Pennock et al., 2014). Flow-through wetlands can 

experience fluxes in the direction of groundwater in their soils. They accumulate CaCO3 with 

groundwater discharge; however, intermittent periods of downward water movement cause the 

concentrations of solutes to be lower than in discharge wetlands (Arndt and Richardson, 1989). 

The relationship between deep groundwater movement and a wetland is an important control on 

the distribution of CaCO3 within its soil, but wetlands that receive significant solute 

contributions through fill and spill and shallow groundwater flow can accumulate CaCO3 within 

the soils throughout the wetland basin regardless of whether the wetland is recharge or discharge 

(Cook and Hauer, 2007; Pennock et al., 2014).  

 

As discussed in section 2.4, the upward and lateral movement of groundwater to the wetland 

fringe causes accumulations of the CaCO3 in a discharge ring pattern. This phenomenon is 

observed in all wetland types: recharge, discharge, and flow-through. These soils are enriched 

with CaCO3 throughout their full profile. The upward movement of water in these profiles often 

inhibits the development of a B horizon (Pennock et al., 2014). The discharge ring may or may 

not be gleyed. Much of the upward and lateral movement of water to the discharge ring occurs 

through unsaturated flow (Knuteson et al., 1989) which, alone, would not provide the anaerobic 

conditions necessary to form gleyed soil characteristics. Soil gleying within the discharge ring 

likely forms during wetter periods when the positions were saturated with wetland water. 

Gleying in these positions also indicates that the dominant movement of water within these 

profiles likely changed over time because gleyed soils are expected to develop with downward 

movement of water to cause iron to be leached from the profile (Bedard-Haughn and Pennock, 

2002).  

 

Wetlands are often defined in terms of their vegetation and the permanence of pond surface 

water (Stewart and Kantrud, 1971; Millar, 1976). However, water levels can vary significantly in 

this region year to year and within a season (Winter and Rosenberry, 1998). Vegetative 
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characteristics will shift in response to varying water levels and are difficult to use to reflect 

wetland extents in cultivated areas because they can be completely removed (Millar, 1976). 

Wetland soils can be used to indicate the fixed extents of wetlands. Soil gleying is an irreversible 

process (Bedard-Haughn, 2011) and the additions and removals of CaCO3 have required 

thousands of years to form (Knuteson et al., 1989); these characteristics reflect a more permanent 

stamp of the wetland on the landscape. Pennock et al. (2014) found that the boundary between 

wetland recharge soils and the discharge ring closely matched the maximum water level 

observed in the last half century. Wetland soil characteristics therefore indicate historic wetland 

extents.  

 

2.6 Hydrologic modelling in the PPR using digital elevation models  

High-resolution digital elevation models (DEMs) have allowed for detailed modelling of 

surficial hydrology in the PPR. A DEM is a grid-based raster surface in which every grid cell has 

an elevation value. The spatial resolution refers to the width of the individual cells. In a higher 

resolution DEM, there are more grid cells per area, providing a more detailed representation of 

the earth’s surface. Currently, 1-m DEMs exist only for select areas of Canada (Natural 

Resources Canada, 2018) and the rest of Canada is covered with 30 – 90 m DEMs (Natural 

Resources Canada, 2016). The latter are too coarse in resolution to represent the small-scale 

topographic variation of the PPR, which is characterized by countless wetlands, many of which 

are only tens of meters wide (Li et al., 2011). Higher-resolution DEMs (< 10 m) provide detailed 

representations of the earth’s surface which can be used to model small-scale hydrologic 

characteristics of a PPR landscape (Li et al., 2011). High-resolution DEMs can be generated 

from Light Detection and Ranging (LiDAR) remote sensed imagery which uses a pulsed laser to 

collect elevation information at densely-spaced points along the earth’s surface. Most modern 

LiDAR methods capture many points per square meter which are interpolated to create DEMs, 

usually with resolutions less than 5 m.  

 

One issue with high-resolution DEMs is that there can be many errors within the surface, 

creating artefactual features like depressions (Lindsay and Creed, 2006). For hydrologic 

modelling within landscapes with more integrated drainage systems, all depressions are assumed 

to be errors and are removed to allow for flow routing (Lindsay and Creed, 2005). However, this 
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practice is not appropriate for much of the PPR (Li et al., 2011) because depressions are common 

landscape features that define the region’s hydrology (Van der Kamp and Hayashi, 2009). To 

remove artefactual depressions from the DEM surface, Li et al. (2011) recommend smoothing a 

1-m DEM 10 to 20 times and removing any depressions with areas less than 200 m2 or depths 

less than 10 cm.  

 

Numerous methods have been developed to model surficial hydrology in PPR landscapes using 

high-resolution DEMs, all of which account for the influence of depressional storage. Wu and 

Lane (2016) developed a method for delineating wetland depressions and quantifying the 

hierarchical relationships between nested wetlands using a contour-tree approach. Shaw et al. 

(2013) developed a method for determining effective contributing areas within PPR watersheds 

that considers the storage capacity of the wetland depressions. Yang and Chu (2015) developed a 

similar hydrological model for the PPR that considers the hierarchical relationships of nested 

wetlands, but also accounts for spatio-temporally varied rainfall and infiltration rates in 

heterogeneous soil. Shook et al.'s (2014) Wetland DEM Ponding Model (WDPM) was developed 

to model distributions of runoff within PPR landscapes, which also considers the storage 

capacity of the wetland depressions. The advantage of the WDPM is that it uses Shapiro and 

Westervelt's (1992) algorithm for redistributing water on the landscape as oppose to the D8 

direction of drainage algorithm commonly used in other models (used in Shaw et al. (2013) and 

Yang and Chu (2015)). This algorithm allows for water to move in multiple directions from a 

single cell, whereas the D8 method determines one direction of water movement for a single cell. 

This iterative algorithm simulates the movement of water on the landscape; if water fills a 

depressions, additional water is able to spill over the depression (Shook et al., 2014). These 

models were largely developed for water budget purposes; no methods specifically model 

wetland solute accumulations influenced via hydrological processes. Successful modelling of 

solute distributions would allow for identifying wetlands with greater phosphorus retention 

potential. Wetland solute distribution mapping could serve other purposes as wetland salinity has 

important influences on biological, ecological, and agronomic functions.  
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2.7 Digital soil mapping in the PPR  

The hydrological modelling approaches described typically model processes occurring over the 

greater landscape and watershed. These approaches are appropriate for determining 

characteristics for larger hydrological units, like wetlands, but are less appropriate for 

determining individual soil pedon characteristics, which are influenced by various processes, 

hydrologic and otherwise, occurring on much smaller scales. Digital soil mapping approaches 

can consider a multitude of influences, including hydrologic ones, occurring over various scales, 

which makes them more appropriate for predicting individual soil characteristics.  

 

In the past 30 years, there have been considerable advances in the field of digital soil mapping 

(DSM) (McBratney et al., 2003). This has resulted from increased access to spatially continuous 

environmental information and the consistent and rapid advancements in computational 

capabilities. DSM involves mapping either soil properties or types based on relationships 

established between the target soil characteristic and the available environmental variables in a 

region. McBratney et al. (2003) propose the scorpan framework for DSM which builds on 

Jenny's (1941) conceptual model that soil formation is the function of the soil forming factors: 

climate, organisms, relief, parent material, and time. The scorpan model also includes: 1) the soil 

– which refers to information on a soil at a point either previously measured or for another soil 

property and 2) space – the geographic position of the soil. The environmental variables used to 

predict the spatial distributions of soil properties or types can reflect a single or multiple soil 

forming factors that are most pertinent for predicting the target soil characteristic. The 

environmental variables often include terrain attributes derived from DEMs, spectral reflectance 

bands from satellite imagery, and soil survey information. The scorpan framework can be 

applied to predict wetland soil distributions within the PPR. However, there are challenges for 

doing so because the typical information sources used in DSM, like soil survey and aerial 

imagery, do not provide much useful information for predicting the distributions of wetland soil 

types in this region.  

 

Legacy soil surveys of the Canadian PPR do not provide information necessary to map wetland 

soil types in the PPR. Surveys are typically at resolutions between 1:50,000 to 1:250,000 

(Agriculture and Agri-Food Canada, 2017). The soil surveys map large areas with a single 
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polygon that describes the soil series expected within the polygon: the dominant and commonly-

found soil orders and a description of the parent material. Wetlands are not mapped specifically, 

instead the presence of Gleysols within a polygon will be indicated within the soil series, which 

includes an estimate of the proportion of the polygon expected to have Gleysols; there is no 

indication of where within the polygons the Gleysols are found.  

 

Aerial imagery exists for most of the PPR and can provide information on spatial extents of 

wetland pond water. This approach has been used to create an inventory of wetlands across the 

PPR (Canadian Wetland Inventory Technical Committee, 2016). Pennock et al. (2014) found 

that distributions of wetland recharge and discharge ring soils corresponded to the maximum 

observed water levels, but this information is not available at most locations. Soil distance to 

wetland water has been found to be a key control on distributions of wetland soils (Bedard-

Haughn and Pennock, 2002; Murphy et al., 2009). However, due to variability of wetland pond 

water extents, it would be difficult to create standardized measures to relate the extents within 

imagery to the spatial distribution of wetland soil types (Bedard-Haughn and Pennock, 2002).  

 

High-resolution topographic information is likely more useful than legacy soil data or air photos 

for mapping detailed soil distributions in this region. Currently, high-resolution DEMs exist for 

portions of the PPR. Clear relationships between topographic attributes derived from high-

resolution DEMs and spatial distributions of soils within upland positions in PPR landscapes 

have been established. Pennock et al. (1987) identified landform elements based on plan and 

profile curvatures and hillslope gradient that could be used to predict soil A horizon depth and 

depth to CaCO3. Similarly, Manning et al. (2001) found relationships between landform 

elements and other soil properties including organic carbon, pH, and solum thickness in an 

undulating Manitoba landscape. Florinsky et al. (2002) related soil properties to various 

topographic attributes including aspect, curvatures, specific catchment area, and topographic 

index. These attributes reflect the soil hydrology at the hillslope scale that largely controls the 

common catenary relationship observed in much of the region (Thompson et al., 1997).  

 

Depressional positions can be more challenging for characterizing in terms of topographic 

attributes, for example, depressions are often flat and therefore cannot be defined by their 
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curvature, which complicates differentiating them from flat hilltop positions (Pennock et al., 

1987). Other topographic attributes have been found to relate specifically to distributions of PPR 

wetland soil types in depressional positions. Bedard-Haughn and Pennock (2002) found that 

gleyed recharge soils occurred in positions with specific dispersal areas less than 2 m2 m-1 and 

that non-gleyed recharge and discharge soils occurred in positions with specific dispersal areas 

greater than 2 m2 m-1. Pennock et al. (2014) found the distributions of wetland recharge and 

discharge soils were related to elevation above wetland basin bottom. There have been many 

other DEM-derived topographic attributes developed which quantify all types of topographic 

characteristics like wetness indices (Beven and Kirkby, 1979), terrain roughness indices (Riley et 

al., 1999), curvature derivatives (Zevenbergen and Thorne, 1987), multi-resolution valley bottom 

flatness index (Gallant and Dowling, 2003), to name a few. These attributes may provide useful 

information for predicting spatial distributions of PPR wetland soil types.  

 

Spatial distributions of wetland soil types in the PPR may relate to many topographic attributes 

and so modelling approaches that can account for many variables may be most applicable for this 

objective. Digital soil mapping methodologies often incorporate machine learning techniques to 

use as predictive models (McBratney et al., 2003). Machine-learning involves data mining where 

models will determine patterns and relationships between large numbers of predictor variables 

and the target variable; these relationships can then be used to make predictions for new data 

(Witten and Frank, 2005). Soil formation is a complex process involving many factors (Jenny, 

1941); machine-learning approaches have proven to be useful in DSM because they allow for the 

consideration of many variables that can reflect the effects and interactions of the forming factors 

on soil characteristics (McBratney et al., 2003).  

 

Many machine-learning approaches have been used in DSM for mapping soil classes. The most 

popular among these are tree-based learners which include classification trees, classification 

trees with bagging, and random forest models (Heung et al., 2016). These involve the 

development of one or thousands of decision trees which are based on if-then rules to 

differentiate soil class observations based on their predictor variable characteristics (Strobl et al., 

2009). These model types are useful because they can reflect non-smooth and non-linear 

relationships between the target classes and predictor variables (Strobl et al., 2009). Due to their 
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hierarchical structure, these models can reflect effects and interactions between the predictor 

variables, where the importance of a predictor variable can be dependent on another predictor 

variable value (Heung et al., 2016). As an example, surface flatness could reflect the bottom of a 

depression or hill summit within a PPR landscape; these features could be distinguished with a 

second predictor variable that quantifies their position relative to the midpoint of the hillslope. 

The tree-based learners would be able to reflect these types of relationships in their decision 

trees.    

 

Linear regression models are commonly used in DSM to map soil properties (McBratney et al., 

2003). A type of generalized linear model, multinomial logistic regression, can be used instead to 

map soil classes (Heung et al., 2016). Multinomial logistic regression is an extension of binomial 

logistic regression which models the probability of soil class occurrence between 0 and 1 based 

on relationships with predictor variables. This model is also frequently used in DSM studies to 

map soil classes (Kempen et al., 2009; Debella-Gilo and Etzelmüller, 2009; Heung et al., 2016).   

 

As mentioned, the distribution of wetland soils of the PPR have been related to key topographic 

attributes derived from high-resolution DEMs (Bedard-Haughn and Pennock, 2002; Pennock et 

al., 2014). However, no studies to date have attempted to predictively map spatial distributions of 

wetland soil types in the region using machine-learning DSM approaches in combination with 

topographic attributes derived from high-resolution DEMs as predictor variables. This approach 

could potentially allow for highly detailed mapping of these soils and improve our understanding 

of the distributions of them. The need to target and quantify the extents of phosphorus retaining 

wetland soils provides the impetus to apply these methods to map wetland soil types.  
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3 PREDICTIVE MAPPING OF SOLUTE-RICH WETLANDS IN THE CANADIAN 

PRAIRIE POTHOLE REGION THROUGH HIGH-RESOLUTION DIGITAL 

ELEVATION MODEL ANALYSES 

 

3.1 Preface 

Solute-rich wetlands are expected to have soils enriched with CaCO3, meaning they have a 

greater potential for phosphorus retention. Solute-rich wetlands develop from the influence of 

hydrologic processes that redistribute solutes present in the parent material. There have been 

several studies that used high-resolution DEMs to model hydrologic processes within the PPR, 

but none have attempted to model solute accumulations that result from those hydrologic 

processes. The model proposed in this chapter incorporated ideas used in the preceding PPR 

hydrologic models and applied them to predict binary wetland solute-richness classes. Wetland 

solute-richness classes were defined by electrical conductance measures of the pond water and 

wetland soil; wetland soil CaCO3 content measurements were not considered in the training or 

testing of this model. The model made predictions for individual wetlands; there was no attempt 

to predict where the solutes accumulate within the wetlands. Wetlands predicted to be solute-rich 

by the model proposed in this chapter would be recommended to be preferentially conserved due 

to their greater potential for phosphorus retention.  
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3.2 Abstract 

Wetlands of the Prairie Pothole Region (PPR) play an important role in reducing nutrient 

mobility in prairie watersheds. Wetlands with strongly calcareous soils have a greater potential 

for phosphorus retention than non-calcareous wetland soils. Accurate predictions of the spatial 

distributions of wetlands with CaCO3-enriched soils would allow for prioritized wetland 

conservation efforts to encourage this ecosystem service. Accumulations of CaCO3 and other 

solutes are largely determined by the wetland’s topographic position and its relationship with 

groundwater. A model for estimating these characteristics was developed and tested using 

LiDAR-derived digital elevation model analyses and measurements of pond water and soil 

electrical conductivity (i.e., solute-richness) from three study areas within the PPR, near Swift 

Current, SK; St. Denis, SK; and Smith Creek, SK. Spill channel connections between wetlands 

were predicted to characterize wetlands in terms of the potential shallow groundwater flow and 

fill-and-spill flow contributing to them, their potential for contributing flow downslope, and their 

relative position within the local landscape and greater watershed. Wetlands were then ascribed 

Strahler orders and determined to be terminal or not based on the predicted spill channel 

networks. Spatial distributions of solute-rich wetlands were predicted with a simple decision tree 

model that predicts wetlands as either fresh or solute-rich based on their Strahler order and 

terminal status. The model achieved total predictive accuracies between 69 and 82% based on 

training and external validation tests. The model showed potential to be used to map the 

distribution of solute-rich wetlands for other applications, i.e. salinity risks to agronomic 

productivity. Wetland Strahler order and terminal status variables could be incorporated into 

more complex multi-variate models for the purposes of digital soil mapping or hydrological 

studies in the Prairie Pothole Region.  
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3.3 Introduction 

Agricultural intensification and wetland drainage across the Prairie Pothole Region (PPR) have 

contributed to phosphorus loading of the watersheds that ultimately feed into Lake Winnipeg, 

resulting in its eutrophication. Among the many ecosystem services that wetlands of the PPR 

provide, they reduce phosphorus mobility within the prairie watersheds (Badiou et al., 2018). 

Certain wetland soils (those enriched with calcium carbonates (CaCO3)) have a greater potential 

to retain phosphorus. Brown et al. (2017b) found total phosphorus amounts in calcareous and 

non-calcareous PPR wetland soils to be similar, but available phosphorus was found to be 

significantly higher in non-calcareous wetland soils compared to calcareous wetland soils. 

Calcium reacts with phosphorus to form less soluble Ca-phosphates (Zhang et al., 2014) and 

thereby reduces the available phosphorus within the watershed.  

 

Calcium carbonate accumulation within wetlands is controlled by several hydrologic processes. 

During drier periods, PPR wetlands are predominantly hydrologically isolated from each other 

due to the low permeability of the deeper glacial tills, unless they are connected to coarse-

textured intertill aquifers (Van der Kamp and Hayashi, 2009). During wetter periods, 

connectivity between wetlands is increased due to increased fill-and-spill flow and shallow 

groundwater flow (Cook and Hauer, 2007; Brannen et al., 2015). Fill-and-spill flow occurs once 

wetlands fill to their maximum water holding capacity and contribute overland flow downslope. 

The glacial tills nearer to the surface have exponentially greater hydraulic conductivities than the 

deeper tills due to greater weathering (Miller et al., 1985; Hayashi et al., 1998b). Shallow 

groundwater flow occurs when the water table is near to the surface and the groundwater can 

move through the hydraulically conductive near-surface tills (Brannen et al., 2015). Water 

moving through fill-and-spill and shallow groundwater flow redistributes solutes present in the 

parent material to wetlands in lower-lying positions. The parent materials of the PPR are rich 

with CaCO3 (St. Arnaud, 1976), which is redistributed through these processes. Wetlands that 

receive greater contributions of shallow groundwater and fill-and-spill flow are expected to have 

greater accumulations of solutes. Certain wetlands may receive substantial solute contributions 

and, due to their topographic position or morphological characteristics, do not contribute fill-and-

spill or shallow groundwater flow further downslope; these are referred to as terminal wetlands 
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(Millar, 1976). Terminal wetlands have a greater potential to accumulate solutes because solutes 

are not easily leached from them.  

 

Although deep groundwater movement in glacial till is very slow and has little influence on 

wetland hydroperiods (Van der Kamp and Hayashi, 2009), the relationship between wetlands and 

deep groundwater movement is important for determining if a wetland is dominantly recharge or 

discharge (Lissey, 1971). This relationship determines if the limited movement of deep 

groundwater has dominantly caused additions or removals of solutes within a wetland over time. 

Recharge wetlands recharge water to the groundwater, whereby solutes are slowly leached from 

the wetlands into the groundwater. Groundwater discharges solutes to discharge wetlands. 

Solutes cannot be readily leached from discharge wetlands, causing them to accumulate. 

Discharge wetlands occur where wetlands are situated at an elevation below or level with the 

surrounding water table. They are less common than recharge wetlands; they only occur in low-

lying landscape positions (Lissey, 1971) and are often terminal wetlands (Van der Kamp and 

Hayashi, 2009). A wetland’s relationship with the groundwater can change with changes in 

groundwater levels (Winter and Rosenberry, 1998); flow-through wetlands can recharge the 

groundwater and receive groundwater discharge depending on groundwater levels. Flow-through 

wetlands fall on the spectrum between recharge and discharge wetlands in terms of solute 

accumulation (Arndt and Richardson, 1989). 

 

The solute-rich wetlands that develop from the described hydrologic processes (increased fill-

and-spill, shallow groundwater flow, and deep groundwater discharge contributions) are 

expected to have greater potential for phosphorus retention due to the increased concentrations of 

CaCO3 in their soils. As these hydrologic mechanisms for wetland solute accumulation are 

largely determined by the wetland’s topographic position, spatial distributions of solute-rich 

wetlands may be predictable through digital elevation model (DEM) analyses. Pennock et al. 

(2014) found all solute-rich wetlands (those with electrical conductivity greater than 1000 

µS cm-1) were below a certain elevation at the St. Denis National Wildlife Area (SDNWA). 

These wetlands received greater shallow groundwater and fill-and-spill flow contributions and 

had greater potential to be discharge wetlands. This information is useful for understanding the 

wetlands of the SDNWA, but the absolute elevations are not applicable for other areas of the 
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PPR, or even other portions of the St. Denis watershed. There is a need to develop a 

methodology that interprets more general topographic characteristics to predict spatial 

distributions of solute-rich wetlands within PPR landscapes. This study proposes a method for 

predicting the spatial distribution of fresh and solute-rich wetlands by approximating the 

hydrological processes influencing wetland solute accumulation through analyses of high-

resolution Light Detection and Ranging (LiDAR)-derived DEMs. Successful predictions would 

enable prioritized wetland conservation and restoration efforts to preserve and encourage 

phosphorus retention within the PPR. 

 

3.4 Materials and methods  

3.4.1 Study areas 

Wetlands were sampled and tested for water and soil salinity at three study areas across the 

Saskatchewan portion of the PPR to assess model predictions of solute-richness classes. The 

study areas included sites near Swift Current, SK; St. Denis, SK; and Smith Creek, SK. The 

areas were selected because high-resolution LiDAR-derived 1-m DEMs exist for their entire 

watersheds. The Swift Current study area was located 20 km east of Swift Current, SK; the St. 

Denis study area was located 40 km east of Saskatoon, SK; and the Smith Creek study area was 

located 60 km south-east of Yorkton, SK (Fig. 3.1). Multiple sites were sampled within each 

watershed. The sites were selected to have undulating to hummocky topography and glacial till 

parent material to be representative of the PPR. The sites included cultivated, pasture, and native 

land uses. The study areas were also selected based on soil survey salinity data. Sites with 

salinity ratings of moderate to severe (effects on productivity) were avoided. The study areas 

span the climate gradient of the PPR. Swift Current has the warmest and driest climate 

considering potential evaporation and Smith Creek has the coolest and wettest climate. General 

site characteristics are described in Table 3.1. 

 

The Swift Current study sites are found on either medium textured glacial till or moderately fine 

textured glacial till with thin deposits of moderately coarse textured fluvial or fluvio-lacustrine 

deposits on top (Ayres et al., 1985). The glacial deposits of the Swift Current study area are 

relatively thin (between 2 to 5 m thick) before bedrock is reached. Intertill aquifers were not 

mapped for the Swift Current area because the glacial deposits are so thin (Pennock et al., 2014).  
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†Ayres et al. (1985) 

‡Acton and Ellis (1978) 

§Saskatchewan Soil Survey Staff (1991) 

¶Climate normals for 1981 – 2010 (Government of Canada, 2018) 

 

 

Study areas Area extent Landform Slope
Soil salinity effects on 

agricultural productivity 
Soil zone

Mean annual 

temperature
¶

Mean annual 

precipitation
¶

(km
2
) (%) (

o
C) (mm)

Swift Current 13
Hummocky-dissected,

undulating-dissected
† 2 - 30

†
None to slight

† Brown 4.1 392.5

St. Denis 6 Hummocky
‡

2 - 30
‡

Very slight
‡ Dark brown 3.3 340.4

Smith Creek 14 Hummocky
§

0 - 15
§

Very slight to slight
§ Black 1.8 463.5

Fig. 3.1 Study area locations and approximate extents of the PPR and Lake Winnipeg 

Watershed Basin. 

Table 3.1 General study area characteristics.   
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The landforms at the Swift Current sites were dominantly hummocky-dissected with some 

hummocky and undulating-dissected areas.  

 

The St. Denis study sites are found on medium textured glacial tills with thin surficial deposits of 

fine-textured glacio-lacustrine materials in certain areas (Acton and Ellis, 1978). The St. Denis 

study area contains the SDNWA. The hydrology of the SDNWA has been studied extensively. A 

thin sand intertill aquifer is located roughly 20 – 30 m below ground level in the SDNWA 

portion of the watershed (Hayashi et al., 1998b). Pond water depth, salinity, and chemical  

characteristics have been monitored for the wetlands in the SDNWA since 1968 (Pennock et al., 

2013). 

 

The Smith Creek study sites are found on medium textured glacial tills (Saskatchewan Soil 

Survey Staff, 1991). The area has a hummocky landform, but the relief is gentler than the Swift 

Current and St. Denis study areas; the slopes ranged from 0 – 15% (Table 3.1). The study area 

overlies the Empress Group Aquifers (Saskatchewan Soil Survey Staff, 1991). These aquifers are 

at depths greater than 50 m and so the interaction between the surface waters and these aquifers 

are considered to be negligible.  

 

3.4.2 Digital elevation models and aerial imagery  

LiDAR data were collected for the Swift Current study area between October 16 and 25, 2009 

(Agriculture and Agri-Food Canada, 2009). The DEM had a horizontal resolution of 0.2 m and a 

vertical accuracy of 0.081 m (RMSE) (McElhanney Consulting Services Ltd., 2009). LiDAR 

data were collected for the St. Denis study area on August 9, 2005. The data had a horizontal 

resolution of 0.5 m and a vertical accuracy of 0.14 m (RMSE) (Töyrä et al., 2008). Because the 

data for St. Denis was collected earlier in the season, water was present at the base of the larger 

wetlands. The elevation surfaces in these positions reflect the water surfaces rather than the 

underlying sediment. Although this does affect the storage capacity of the depressions, the water 

levels were low enough within the depressions that it is not expected to significantly affect the 

proposed methodology. LiDAR data were collected for the Smith Creek study area between 

October 14 and 16, 2008. The data had a horizontal resolution of 1 m and a vertical accuracy of 
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0.05 m (RMSE) (Lidar Services International, 2009). To ensure consistency in the 

methodologies, 1-m resolution versions of all three site DEMs were used.   

 

Aerial imagery was used to inform wetland boundary delineation and identify road networks. 

Ortho photos from 2008 – 2016 for each site were acquired from FlySask2 (Saskatchewan 

Geospatial Imagery Collaborative, 2018). Ortho photos that were collected at the same time as 

the LiDAR collection for the Swift Current area were also used (Agriculture and Agri-Food 

Canada, 2009).  

 

3.4.3 Road and railroad removal from DEM  

Solute accumulations in wetlands are largely the result of redistribution through hydrologic 

processes occurring since the Wisconsin glaciation. To better reflect the historic surficial 

hydrologic connections between wetlands, roads and railroads were removed from the 1-m 

DEM. The road features were identified using the Saskatchewan Road Network Database 2014 

shapefile (ISC, 2014). Any missing grid roads and railroads segments that were discernible from 

the aerial imagery and the DEM were added to the shapefile. Buffer polygons were created for 

each road segment to cover all portions of the DEM that contained road-related features and the 

portions of the DEM that fell within the buffer polygons were removed. The removed area was 

filled through interpolation using inverse distance weighting (ESRI, 2016). The interpolated 

areas were smoothed and added to the DEM to create the road-removed 1-m DEM. This DEM 

was used for all aspects of the model. A detailed description of the full road-removal 

methodology can be found in Appendix A-1. 

 

3.4.4 Wetland boundary delineation  

Wetland boundaries were delineated by determining the closed topographic depressions within 

the DEM. Closed topographic depressions are groups of cells that represent features with internal 

drainage (Lindsay, 2016). These are common features in the PPR due to its glacial morphology; 

however, they can also be the result of errors within the DEM. The 1-m DEM was smoothed 

using a 2 x 2 mean filter and then resampled to 2 m to reduce the number of artefact depressions. 

The boundaries of the wetlands were defined by the spillover elevation of the closed depressions. 

The spillover elevation represents the maximum elevation of the depression before water would 
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spill from it. The methodology for determining the spillover elevations of the closed depressions 

is described in Appendix A-2. The spillover elevation boundary was used to define depression 

depth and area. Depressions with depths of less than 10 cm or areas of less than 50 m2 were 

removed to further reduce the number of artefact depressions in the DEM. The minimum depth 

size was based on the recommendations of Li et al. (2011) who found wetlands with depths less 

than 10 cm were often erroneous features. The minimum area size was based on the smallest 

wetland observed as a part of the SDNWA wetland inventory that had a depth greater than 

10 cm.  

 

At the St. Denis and Swift Current sites, some of the closed topographic depressions 

encompassed very large areas that contained many smaller nested wetlands. For some of these 

closed depressions, the spillover elevation represented an unrealistic wetland boundary that 

would only be representative in extremely wet periods that have yet to be recorded (Fig. 3.2). It 

cannot be assumed that the nested wetlands within the massive closed topographic depressions 

would have the same solute contents under typical conditions. To separate out the nested 

wetlands, the closed topographic depressions entirely within the maximum closed topographic 

depressions were identified. This process was repeated until the closed depressions could not be 

subdivided into two or more nested wetlands (that met the minimum size criteria outlined above) 

and the boundaries of the closed depressions more closely matched the minimum wetland pond 

water and associated vegetation extents observed in the aerial imagery (Fig. 3.2). The 

methodology for determining the maximum closed depressions and the nested closed depression 

boundaries is described in Appendix A-2. This procedure was not necessary at the Smith Creek 

sites because the maximum closed topographic depressions closely matched the observable 

wetland extents in the aerial imagery. This was due to the subtler relief and increased moisture 

levels at the Smith Creek study area. The wetland inventories for each study area were based on 

the nested closed depression boundaries; the sampling design considered each polygon as an 

individual wetland. The model was tested using both the nested closed depression boundaries 

and the maximum closed depression boundaries to represent wetland boundaries.  
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3.4.5 Stream channel networks 

Surficial hydrologic connections between wetlands were represented using dendritic stream 

channel networks created from the DEM using the Basic Terrain Analysis module of the System 

for Automated Geoscientific Analysis (SAGA) (Conrad et al., 2015) (Fig. 3.3a). The road-

removed 1-m DEMs were smoothed using a 5 x 5 mean filter and resampled to a resolution of 5 

m before running the module. This DEM resolution is detailed enough to capture the important 

hydrological relationships for modelling at this scale and reduces computational requirements. A 

study by Shook et al. (2013) on specific wetland storage dynamics in similar regions used DEMs 

with spatial resolutions ranging from 6 to 15 m to adequately represent landscape-scale 

hydrologic processes.  

 

Stream channel networks were ascribed Strahler order. Strahler ordering is a method of assigning 

relative orders to stream channels based on the number of stream channels that contribute flow to 

them (Strahler, 1952). Stream channels with Strahler orders less than three were not included in 

Fig. 3.2 Wetland polygon boundaries based on nested closed depression boundaries and 

maximum closed depression boundaries at the SDNWA portion of the St. Denis study area. 
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the stream channel network. This was set using the channel density parameter of the Basic 

Terrain Analysis module. This parameter defines the minimum Strahler order required to begin a 

channel segment. Strahler orders were reassigned to the stream channel network so that the 

initial stream segments had an order of one. Stream channel network Strahler order values are 

central to the prediction model. Their values are affected by the spatial resolution of the DEM 

and the channel density set in the Basic Terrain Analysis module. To follow the 

recommendations of this study, it is necessary to use the same specifications for DEM spatial 

resolution and channel density.   

 

3.4.6 Wetland Strahler order  

Wetland polygons were ascribed the maximum Strahler order of the stream segments that they 

intersected using the Spatial Join tool (ESRI, 2016) (Fig. 3.3a). The wetland Strahler order can 

be interpreted as a rough estimate of the fill-and-spill and shallow groundwater contributions a 

wetland is expected to have historically received. A wetland with a higher Strahler order would 

be expected to have received greater contributions of solutes.  

 

Wetland Strahler order also quantifies the relative position of a wetland in the landscape. The 

stream channels flow in the direction of the greatest downhill slope gradient. This causes them to 

flow towards the lowest-lying landscape positions; in more typical drainage structures these 

would be streams and rivers, but in PPR landscapes these are dominantly wetland depressions. 

Stream channel networks converge in the depressions causing increases in Strahler orderings. 

The Strahler order reflects that a depression is the lowest lying landscape feature compared to the 

surrounding landscape. It also works to reflect a wetland’s relative position within the watershed. 

Wetlands within a localized neighbourhood will have a higher Strahler order than the 

surrounding landscape features, but the Strahler order value is limited by its contributing area. 

Whereas, the lowest-lying wetlands within a watershed potentially have flow contributions from 

the entire watershed and therefore would have much higher Strahler orders. These lowest-lying 

wetlands with the highest Strahler orders represent wetlands with the greatest potential to be 

discharge wetlands. Therefore, although deep groundwater flow is not specifically modelled, 

lower-lying wetlands that have a greater potential to be discharge wetlands are predicted to be 

solute-rich. 
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a) 

b) 

Fig. 3.3 a) Stream channel network Strahler orders ascribed to intersecting wetland polygons for the 

SDNWA portion of the St. Denis study area. b) Wetland solute-richness class predictions based on 

wetland Strahler order threshold. The predictions pictured reflect an example where wetlands with 

Strahler order ≥ 6 are predicted to be solute-rich. 
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Binary predictions of wetland solute-richness class were made with a simple decision tree. 

Wetland Strahler order was a variable considered in the model decision tree. Wetlands with a 

Strahler order above a specified threshold were predicted to be solute-rich (Fig. 3.3b). The 

specified wetland Strahler order threshold used to define wetland solute-richness class 

predictions was a model parameter that was tuned in the model training.  

 

3.4.7 Predicted active spill channel networks  

Traditional stream channel network methodologies have been developed to model flow-routes in 

landscapes with more typical integrated hydrological drainage systems (rivers and streams). 

Within these methodologies, sinks and depressions within the DEM are filled to allow for stream 

flow to continue downstream uninterrupted (Fig. 3.4b). However, these sinks and depressions are 

a defining feature of the PPR hydrology; they interrupt hydrologic connections by providing 

intermittent storage basins. Therefore, the stream channel network methodologies developed for 

more typical hydrologic systems likely overestimate the level of hydrologic connectivity within a 

PPR landscape (Li et al., 2011).  

 

In a PPR landscape, certain hydrologic connections between wetlands (via both fill-and-spill and 

shallow groundwater flow) are more likely to be active based on the volume capacity of the 

closed depressions and the amount of water present in a system (Fig. 3.4c). Certain depressions 

do not receive sufficient water to fill to their capacity and contribute water further downslope 

either through fill-and-spill or shallow groundwater flow (e.g. wetland 1 in Fig. 3.4c). Other 

wetlands may not require substantial water contributions to fill to their capacity (e.g. wetland 2 

in Fig. 3.4c) or do require substantial water contributions to fill to their capacity but achieve 

them via large catchment areas. These wetlands are more likely to contribute fill-and-spill and 

shallow groundwater flow downslope.  
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The issue of overestimating the hydrologic connectivity within a PPR landscape using traditional 

stream channel networks was addressed using the Wetland DEM Ponding Model (WDPM) 

(Shook et al., 2014). The WDPM was developed to model distributions of runoff in the PPR. 

Within this model, water is applied evenly across the DEM and is redistributed using Shapiro 

and Westervelt’s (1992) iterative algorithm to determine the water’s final spatial distribution. 

Instead of allowing the water to settle to its final distribution, the WDPM model was stopped 

partway to observe which spill channels were active (Fig. 3.5a). Spill channels were determined 

to be active if water was distributed throughout the area between wetlands to form a continuous 

stream channel. The stream channel networks were adapted to reflect only the spill channels that 

were observed to be active by clipping the stream channel network by the WDPM spill channel  

c) 

1 

2 

3 

b) 
a) 

Fig. 3.4 Example schematic of a sequence of wetlands. b) Depressions are filled to create continuous 

stream channel drainage networks as in traditional stream network methodologies. c) Example 

schematic demonstrating how certain hydrologic connections between wetlands (via fill-and-spill 

and shallow groundwater flow) are more likely to be active than others. “Slow” and “Fast” refer to 

the expected movement of groundwater. Wetland 1 requires substantial water contributions before 

it can contribute fill-and-spill flow and before the water table is high enough for the groundwater to 

move down-slope through the zone of higher hydraulic conductivity. 
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Fig. 3.5 a) WDPM water distribution outline outputs based on a small water input (left) and a large water 

input (right). b) Stream channel networks clipped by the extents of the WDPM output polygons to create the 

predicted active spill channel networks. c) Strahler orders of the predicted active spill channel networks 

ascribed to the wetland polygons. d) Solute-richness classes predictions per wetland (dependent on the 

specified Strahler order threshold to distinguish fresh vs. solute-rich wetlands). 
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polygon outputs (Fig. 3.5b). These adapted stream channel networks are referred to as the 

predicted active spill channel networks.  

 

The amount of water distributed on the DEM is a controllable parameter in the WDPM. By 

adding greater amounts of water (Fig. 3.5, right), more depressions fill beyond their capacity and 

spill downslope, therefore more spill channels will be observed to be active and the stream 

channel network will be adapted to reflect a greater number of connections between wetlands. 

By adding smaller amounts of water (Fig. 3.5, left), there will be a smaller number of active 

connections between wetlands. The objective of this aspect of the model is to predict which spill 

channels have historically been most active to cause accumulations of solutes in wetlands lower 

lying in the landscape. Five versions of the predicted active spill channel networks were  

generated that reflect different levels of hydrologic connectivity. The predicted active spill 

channel networks were created by clipping the original stream channel network with the water 

distribution outputs from the WDPM (Fig. 3.5b). The volumes of water distributed on the DEMs 

were not meant to reflect realistic rainfall or snowmelt additions of precipitation; they were 

selected to achieve varying levels of connectivity between wetlands. The full methodology for 

creating the predicted active spill channel networks is described in Appendix A-3. In the model 

training, the model is tested using each of the five versions of the predicted active spill channel 

networks to determine which version results in the most accurate predictions of wetland solute-

richness classes. 

 

3.4.8 Terminal wetlands  

As described above, the wetland Strahler order reflects the contributions that a wetland receives. 

To predict the accumulations of solutes within a wetland, it is also important to consider whether 

the wetland can contribute water (and associated solutes) further downslope. Wetlands that 

receive water contributions, but cannot contribute water downslope, are terminal wetlands 

(Millar, 1976). The predicted active spill channel networks allowed for the determination of 

wetland terminal status. This would not be possible using the traditional methodologies for 

stream network generation because they assume that all depressions contribute water downslope. 

Wetlands were determined to be terminal if no segment of a spill channel had flow moving out 

of the wetland boundary polygon. This methodology is described in Appendix A-3. Terminal 
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wetlands needed to be distinguished from isolated wetlands. Isolated wetlands also do not 

contribute water further downslope but differ from terminal wetlands in that they do not receive 

significant contributions from upslope wetlands (Millar, 1976). Terminal wetlands were required 

to have a wetland Strahler order of greater than two to ensure that the wetlands would receive 

substantial upslope contributions. The number of wetlands determined to be terminal was 

affected by the level of hydrologic connectivity predicted by the predicted active spill channel 

networks. With more expected connectivity, there would be less wetlands expected to be 

terminal because they are more likely to contribute water downslope. 

 

3.4.9 Model tuning parameters  

The methodologies of the prediction model are summarized in the flowchart in Fig. 3.6. There 

were four model parameters tuned to refine model predictions (Table 3.2). Two parameters 

determined the GIS methodologies for ascribing Strahler orders and terminal status to wetlands 

(Fig. 3.6). The first parameter determined how wetland boundaries were defined. The model was 

tested using the maximum closed topographic depression boundaries and the nested closed 

topographic depression boundaries for the wetland observations. Using the maximum closed 

topographic depression boundaries increases the likelihood of a wetland having a higher Strahler 

order and being terminal because of the increased wetland boundary size.  

Table 3.2 Model tuning parameters. 

Model tuning parameters

Wetland boundary
Spill channel 

connectivity

Solute-rich 

Strahler order

Terminal 

status rule 

Nested depressions Minimum ≥ 3 Not considered

Maximum depressions Near minimum ≥ 4 Terminal only

Moderate ≥ 5 OR Terminal

Near maximum ≥ 6 AND Terminal

Maximum

Parameters affecting wetland 

Strahler order and terminal status
Decision tree parameters
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The second parameter determined the predicted active spill channel network to represent 

hydrologic connections between wetlands. Maximum was the stream channel network unaltered 

to reflect spill channels that were more likely to be active. The remaining spill channel networks 

were altered versions of the stream channel network to reflect spill channels that were more 

Fig. 3.6 Flowchart of wetland solute-richness prediction model 

methodology. 
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likely to be active using the water distribution outputs of the WDPM model; the predicted active 

spill channel networks.  

 

The model was a simple decision tree consisting of either one or two nodes to make binary fresh 

vs. solute-rich wetland predictions. Two model parameters altered the decision tree rules: 1) the 

Strahler order threshold between fresh and solute-rich predictions and 2) how wetland terminal 

status is considered in the decision tree. For an example of the solute-rich Strahler order 

threshold, at a threshold of ≥ 3, wetlands with a Strahler order greater than or equal to three were 

predicted to be solute-rich. Four options were tested for the terminal status rule: 1) Not 

considered – The model did not consider wetland terminal status and wetland solute-richness 

class predictions were based entirely on the wetland Strahler order. 2) Terminal only – The 

model does not consider wetland Strahler order and terminal wetlands were predicted as solute-

rich and non-terminal wetlands as fresh. 3) OR Terminal – wetlands were predicted to be solute-

rich if they either had a Strahler order above the defined threshold OR were terminal. 4) AND 

Terminal – Wetlands were predicted to be solute-rich if they both had a Strahler order above the 

defined threshold AND were terminal.   

 

3.4.10 Wetland salinity data collection 

A stratified random sampling design was used to select wetlands to test for salinity. The nested 

closed depression boundary polygons were used to delineate individual wetlands. The sampling 

design was informed by the prediction model, but it did not consider wetland terminal status; that 

aspect of the model was developed after the field sampling. For the sampling design, wetlands 

were classified as Expected Solute-Rich or Expected Fresh based on their wetland Strahler order. 

Wetlands with a Strahler order greater than or equal to five, according to any of the predicted 

active spill channel networks, were classified as Expected Solute-Rich. Wetlands with a Strahler 

order less than five, according to all the predicted active spill channel networks, were classified 

as Expected Fresh. The Expected Solute-Rich wetlands were further stratified according to 

which predicted active spill channel networks ascribed them a Strahler order greater than or 

equal to five. However, there were not enough wetlands from each category available at each site 

to achieve a balanced number of samples per category (Table 3.3). There were many small 

Expected Fresh wetlands and so they were stratified based on size to ensure larger Expected 
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Fresh wetlands were sampled (Table 3.3). Wetlands with areas greater than 4047 m2 were 

classified as large and wetlands with areas less than 4047 m2 were classified as small. Size 

classes were informed by Millar's (1976) size classifications, which were described in acres. A 

minimum size of 10 cm depth and 100 m2 area was used to avoid sampling very small 

depressions that did not exhibit wetland characteristics. The Expected Fresh wetlands were also 

stratified by relative elevation in watershed. Relative elevation reflected two categories, upper 

and lower halves of the watershed, which were determined using Jenks natural breaks 

classification method (Jenks, 1967). 

†PASCN = Predicted active spill channel network  

 

Water samples were collected where pond water was present and tested for electrical 

conductivity using a PC 700 conductivity meter (Oakton Instruments, Vernon Hills, Illinois). 

Electromagnetic conductivity surveys were conducted with an EM38 unit (Geonics Ltd., 

Mississauga, Ontario) at the edge of the pond water extent for wetlands that were inundated and 

at the wetland center when standing water was not present. The Swift Current and St. Denis sites 

were sampled in September and October of 2015 and the Smith Creek sites were sampled in June 

Table 3.3 Number of wetlands sampled per stratification at each site for the model training and 

external validation datasets. 

Swift 

Current
St. Denis

Smith 

Creek 

(n) (n) (n)

Training Set Expected Fresh None Upper Small 3 5 9

Large 5 5 10

Lower Small 5 5 -

Large 3 3 -

Total 16 18 19

Expected Minimum 4 9 12

Solute-Rich Near minimum 3 9 2

Moderate 2 - 4

Near maximum 4 2 -

Maximum 4 - -

Total 17 20 18

Soil Sample Test Set 16 12 11

St. Denis Historic Test Set - 115 -

Relative

elevation

PASCN†

causing ≥ 5 

Strahler order

SizeSample set Model prediction
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2016. Because the Smith Creek sites were sampled earlier in the season, it is likely that the 

wetlands had greater water levels than they would have in the fall because they would not have 

experienced the same period for evaporative loss (Euliss et al., 2014). Therefore, the solute 

concentrations within these wetlands may have been diluted. The wetland solute-richness 

classifications were based on very broad ranges of salinity values and so variability of 

measurements between seasons should not have significantly affected classifications. This 

dataset is referred to as the Training Set. It was used to tune the model parameters (discussed in 

section 3.4.9) to maximize predictive accuracy. 

 

Drained wetlands were not sampled. The majority of wetlands located in the lower half of the 

Smith Creek watershed were drained. All sampling in this study area was done in the upper 

elevation of the watershed. Wetlands sampled directly adjacent to roads were subsequently 

removed from the Training Set. Several wetlands sampled at Swift Current and a few at Smith 

Creek were determined to be on parent material other than glacial till and were subsequently 

removed from the Training Set. 

 

Wetland salinity was tested at an additional 42 wetlands across the three study areas as a part of 

the Predictive digital soil mapping of wetland soil types in the Canadian Prairie Pothole Region 

study (Ch. 4). A stratified random sampling design was used to select these wetlands; they were 

not stratified based on wetland Strahler orders, they were stratified based on size and relative 

elevation in the watershed (methodologies described in section 4.4.2). This is referred to as the 

Soil Sample Test Set. 

 

Since 1968, pond water electrical conductivity data has been collected for all wetlands within the 

SDNWA (Waiser, 2006). This is referred to as the St. Denis Historic Test Set. These two 

datasets, the Soil Sample Test Set and the St. Denis Historic Test Set, were used as external 

validation tests for the prediction model after it was trained using the Training Set. For the St. 

Denis Historic Test Set, wetland salinity averages were calculated for wetlands with multi-year 

data. A few wetlands identified in the SDNWA wetland inventory shared single wetland 

polygons. Each wetland in the SDNWA inventory had individual salinity measurements and so 

they were considered individual observations even when they shared a single wetland polygon.  
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3.4.11 Wetland solute-richness classification 

The objective of this model was to predict the spatial distribution of solute-rich wetlands for the 

purpose of identifying wetlands with CaCO3-enriched soils. However, water and soil salinity 

data can be collected far more readily and efficiently than testing for soil CaCO3 content. It is 

assumed that, generally, wetlands with greater accumulations of salinity will also have greater 

accumulations of CaCO3 as landscape-scale solute distribution is controlled by the same 

hydrological mechanisms (Pennock et al., 2014). Due to the inherent variability of wetland 

salinity (Euliss et al., 2014), the model aimed to predict wetlands as simple binary classes: 

solute-rich or fresh. The wetland classification criteria were based on electrical conductivity 

(EC) of pond water and electromagnetic conductivity (EM) of the wetland soil (Table 3.4). 

Wetlands with an EC of greater than 1000 µS cm-1 were classified as solute-rich because calcium 

carbonates begin to precipitate out of the pond water and concentrate in the soil at this threshold 

(Arndt and Richardson, 1989). This value also reflects a natural break in the distribution of  

wetland salinity observations measured at the SDNWA between 1968 and 2013 (Fig. 3.7) 

(Pennock et al., 2013). The EM value of 70 mS m-1 was chosen because wetlands with EC 

greater than 1000 µS cm-1 typically had soil EM values greater than 70 mS m-1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.7 Boxplots of SDNWA wetland pond water EC observations measured between 

1968 and 2013. Wetlands with more than five observations are shown. Adapted from 

Pennock et al. (2013).  
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Wetland classifications were made on available data if an observation did not have values for 

both measurements. Wetland observations with contradicting pond EC and soil EM values were 

removed from the training and external validation datasets. It was undetermined which 

measurement is more representative of wetland CaCO3-enrichment. These observations fall in 

the middle of the spectrum between fresh and solute-rich, as defined here. The objective of this 

model is only to predict wetlands as two broad classes of solute-richness. Correct or incorrect 

predictions for these questionably classified wetlands would not offer useful information to the 

modelling process.  

 

3.5 Results and discussion 

3.5.1 Model training results  

A wide range of predictions for the spatial distributions of solute-rich wetlands were generated 

by the models based on the varying combinations of model parameters. The best-performing 

models for predicting the solute-richness classes of the Training Set of observations are shown in 

Table 3.5. Total accuracy reflects the percentage of total observations that were correctly 

predicted. The Kappa score adjusts the overall predictive accuracy according to the likeliness of 

predictions being correct based on chance alone (Landis and Koch, 1977) and is defined as  

𝐾𝑎𝑝𝑝𝑎 =
𝑝𝑜 − 𝑝𝑒

1 −  𝑝𝑒
 

where po represents the overall accuracy and pe represents the expected accuracy between 

observations and predictions. Higher Kappa scores indicate more agreement between predictions 

and observations. Producer’s accuracy, reported per solute-richness class, refers to the number of 

observations of a soil class that were correctly predicted divided by the number of observations 

of that soil class (Malone et al., 2017). User’s accuracy (discussed later in the results) refers to 

Class criteria

Wetland Water EC EM for 0 - 1.5 m 

class (µS cm
-1

) (mS m
-1

) (n) (n) (n)

Fresh < 1000 < 70 38 35 48

Solute-Rich > 1000 > 70 46 4 67

Training

Set

Soil 

Sampled Set

St. Denis

Historic Set

Table 3.4 Wetland solute-richness class criteria and the number of observations per 

class per testing and external validation datasets. 
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the number of observations of a soil class that were correctly predicted divided by the number of 

predictions of that soil class. 

 

The best-performing models included those that had the highest total accuracy predicting for the 

entire Training Set, as well as the models that had the highest total accuracy per each study area. 

Model A had the highest total accuracy and Kappa score. Models C and D were the best-

performing models at the Swift Current study area. Models B and G were the best-performing 

models at the Smith Creek study area. Several models achieved the highest total accuracy for the 

St. Denis study area. The Smith Creek study area had disproportionately more solute-rich 

wetlands than fresh wetlands and models that predicted greater frequencies of solute-rich 

wetlands performed better in this area (e.g. in Models B and G). The Swift Current study area 

had disproportionately more fresh wetlands than solute-rich wetlands. Model parameters that 

worked best at the Swift Current study area (e.g. in Models C and D) were not as accurate at the 

Smith Creek study area.  

 

3.5.2 External validation results  

The best-performing models based on the training data listed in Table 3.5 were tested for 

predicting the wetland solute-richness classes of the external validation sample sets: the Soil 

Sample Set and the St. Denis Historic Set (Table 3.6). The models all performed well for the Soil 

Sample Set, however, there were only four solute-rich wetlands in this dataset. Model D had the 

highest total accuracy but a very low accuracy for predicting the solute-rich wetland 

observations. It had the lowest Kappa score for the Soil Sample Set. Model E and F were the 

best-performing models for the St. Denis Historic Set of observations. Their Kappa scores 

correspond to moderate levels of agreement between predictions and observations (Landis and 

Koch, 1977). Based on the predictive accuracies for both the training and external validation 

datasets, Model F represents the best-performing model overall. Model E had a higher total 

accuracy for the St. Denis Historic Set of observations, but Model F was slightly more successful 

for correctly predicting the solute-rich observations. Model F also achieved more balanced 

performance for both the Smith Creek and Swift Current study areas (Table 3.5).
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3.5.3 Predictive accuracies per solute-richness class  

All models had low producer’s accuracy for predicting the solute-rich wetland observations of 

the St. Denis Historic Set, meaning many of the solute-rich wetland observations were predicted 

to be fresh wetlands. The St. Denis Historic Set observations were all located in the lower 

portion of the St. Denis watershed. Some of these wetlands receive groundwater discharge from 

an intertill aquifer (Hayashi et al., 1998b; Heagle et al., 2013). Deep groundwater movement was 

not specifically modelled and so the model is unable to predict all wetlands that receive 

groundwater discharge from intertill aquifers. The user’s accuracy for solute-rich wetlands 

according to Model F is 85%. User’s accuracy reflects the likelihood of finding that specific 

predicted class to be correct. Therefore, although the model underestimates the frequency of 

solute-rich wetlands in this area, the wetlands that are predicted to be solute-rich are confidently 

predicted as such.  

 

3.5.4 Site-specific characteristics 

It is important to consider specific site characteristics, like geochemistry and climate, that may 

influence the distributions of fresh and solute-rich wetlands. The model parameters that work 

best for one area will not necessarily work best for others. In terms of mapping wetlands with 

CaCO3-enriched soils, the parent materials of the Smith Creek study area are characterized by an 

abundance of CaCO3 (Saskatchewan Soil Survey Staff, 1991) and therefore, more CaCO3-rich 

wetlands would be expected in this area. Site-specific information is available in the detailed soil 

surveys. Soil CaCO3 content is not specifically mapped but site-specific salinity information is 

available. The Smith Creek study area had more sites mapped as having salinity levels with 

slight affects on productivity than the other areas and therefore, more solute-rich wetlands would 

be expected in this area. The inclusion of site-specific salinity information could refine the 

model’s predictions to reflect general geochemical characteristics for a target area. The study 

areas also experience different climates, which can influence hydrologic characteristics due to 

differences in available moisture. With greater moisture inputs, more hydrologic connectivity 

within the landscape is expected, which could potentially mean greater amounts of solute-rich 

wetlands due to increased redistribution of solutes. These site-specific climatic differences may 

be best reflected by different parameter values used in the model. Model parameters could be 
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calibrated for a target area using wetland salinity data from that area to improve the model 

performance. 

 

3.5.5 Best-performing model parameters  

The prediction results show that adapting the stream channel networks to reflect spill channels 

that are more likely to be active is advantageous for this modelling purpose. The best-performing 

models were based on predicted active spill channel networks that represented either minimum, 

near minimum, or moderate levels of connectivity between wetlands. The maximum predicted 

active spill channel network, which was the original stream channel network unaltered to reflect 

spill channels that are more likely to be active, did not perform as well. The unaltered stream 

channel network overestimates the hydrologic connectivity between wetlands in a PPR 

landscape. Hydrologic connectivity within a PPR landscape is controlled largely by the 

characteristics of the depressional features (Shook et al., 2013) and hydrological models built for 

this region need to account for this (Li et al., 2011). The method proposed in this study accounts 

for these features which contributed to its predictive success.  

 

The model accuracy was not improved by separating nested wetlands from the larger closed 

topographic depressions. The predictive accuracies were similar using the maximum closed 

topographic depressions for the wetland boundaries. Although the nested wetlands would each 

have unique hydrologic characteristics causing differences in their solute accumulations, the 

characteristics of their respective maximum closed topographic depression may be more 

important for determining their solute-richness. The additions and removals of solutes have been 

developing for thousands of years (Van der Kamp and Hayashi, 2009). Although some 

maximum closed topographic depressions seem exceedingly large compared to current wetland 

extents, they may have functioned as single waterbodies for extensive periods of time. Water 

records dating back only slightly more than half a century show huge variation in the water 

levels at the SDNWA (Pennock et al., 2013); wetland extents would have varied considerably 

more than this since the time of glaciation. Pond water salinity within a single wetland does not 

vary substantially spatially (Euliss et al., 2014). Therefore, during periods where the maximum 

wetland boundaries were fully inundated, the nested wetlands within likely accumulated solute 

depositions at similar rates.  



 

45 

 

Wetland Strahler order was more important than wetland terminal status for predicting wetland 

solute-richness classes. Most of the best-performing models did not consider terminal status of 

wetlands to determine their predictions. The best-performing models predicted wetlands with 

Strahler orders of four or greater to be solute-rich, except Model D. This Strahler order is 

relatively low compared to the maximum Strahler orders observed across the entire watersheds. 

This indicates that wetland solute accumulations (to the level of interest in this study) can occur 

from the hydrologic contributions generated over relatively small areas. Wetlands expected to be 

enriched with CaCO3 are not only found in the lowest positions of the watershed but are also 

present in more localized low-lying landscape positions. This corresponds to the findings of 

Cook and Hauer (2007) who observed significant solute enrichment in wetlands with expected 

hydrologic connectivity to an upslope wetland. The connected wetlands did not require 

contributions from many wetlands; with just one adjacent hydrologically-contributing wetland, 

solute-enrichment was found to be much greater than that of isolated wetlands.  

 

3.5.6 Mapped distributions of solute-rich wetlands  

The maps in Fig. 3.8 show the predicted distributions of solute-rich and fresh wetlands of the 

three study areas based on Model F, which was the best performing model overall. The maps 

indicate that the solute-rich wetlands were typically larger wetlands that are expected to receive 

hydrologic contributions from wetlands upslope. These wetlands would be expected to have soils 

enriched with CaCO3 and, therefore, these wetlands could be prioritized in terms of conservation 

to maximize phosphorus retention in the PPR. Many of these wetlands would be considered 

“gatekeeper” wetlands (Phillips et al., 2011), which control the contributions from numerous 

upstream wetlands to downstream waterbodies by providing an intermittent storage basin. 

Hence, in addition to stopping runoff from moving into key waterways downstream, these 

wetlands are also likely to have highly CaCO3-enriched soil, and therefore greater phosphorus 

retention capacity, stressing the importance of conserving these wetland types.  
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3.5.7 Modelling wetland salinity for other applications   

The goal of this study was to predict the spatial distributions of solute-rich wetlands that would 

be expected to have soils enriched with CaCO3. The salinity criteria of the solute-richness classes 

were based on thresholds reflecting that characteristic. The model has potential to be used to map 

wetland salinity for other purposes. To predict the spatial distributions of solute-rich wetlands 

based on different salinity thresholds, different model parameters may perform better. The model 

was also tested to predict the spatial distribution of saline wetlands that would pose risks to 

agronomic productivity. The salinity classes were based on different EC and EM criteria (Table 

3.7). Soils with EM values greater than 100 mS m-1 are expected to have salinity levels that 

seriously limit crop productivity (Henry, 2003). The threshold of 2000 µS cm-1 was selected as 

the criteria for wetland pond water EC, as this value corresponded to wetlands with EM values 

greater than 100 mS m-1.  

 

Using these criteria, there were limited numbers of solute-rich wetland observations in each 

sample set. A new set of observations (referred to as the Agronomic Risk Sample Set) was 

created to assess the model’s applicability for predicting solute-richness classes based on these 

Fig. 3.8 Predicted spatial distributions of fresh and solute-rich wetlands based on Model F for portions of 

the Swift Current (left), St. Denis (center), and Smith Creek (right) study areas. 
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different criteria. The Agronomic Risk Sample Set included all 68 solute-rich wetlands from the 

datasets, and 69 fresh wetlands were randomly sampled from the Training Set: 23 from each 

study area. The models were not tested with external validation observations due to the limited 

number of solute-rich wetlands corresponding to these new class criteria. 

 

The best-performing model parameters for predicting the distributions of solute-rich wetlands 

according to these class criteria (Table 3.8) varied considerably from the best-performing model 

parameters discussed earlier (Table 3.5), mostly in terms of the Strahler order threshold at which 

the model predicts wetlands to be solute-rich. Wetlands with a Strahler order greater than or 

equal to four were predicted to have solute accumulations reflective of CaCO3-enriched soils, 

according to the previous models. Wetlands with a Strahler order greater than or equal to five or 

six were predicted here to have salinity levels that pose agronomic risks. This indicates that the 

salinity accumulations that reflect agronomic risks require greater hydrologic contributions to 

develop. This makes conceptual sense as wetlands are often discussed in terms of their position 

along a salinity/solute-richness spectrum; their position in that spectrum is influenced by the 

hydrologic contributions they receive (Euliss et al., 2014).  

 

The models for predicting the distribution of wetlands that pose agronomic salinity risks 

performed well but had lower accuracies (70 – 75% total accuracy, Table 3.8) as compared to the 

previous models’ internal validation predictive accuracies (80 – 83% total accuracy, Table 3.5). 

The wetlands that had salinity levels representative of CaCO3-enrichment but not agronomic 

risks (i.e. wetlands with EC values between 1000 – 2000 µS cm-1 and EM values between 70 –  

 

Table 3.7 Wetland solute-richness class criteria based on salinity risks to agronomic productivity 

and the number of observations per class per dataset. 

Wetland Water EC EM for 0 - 1.5 m 

class (µS cm
-1

) (mS m
-1

) (n) (n) (n) (n)

Fresh < 2000 < 100 92 40 71 69

Solute-Rich > 2000 > 100
OR EM > 150 

regardless of EC
16 2 44 68

Class criteria

Exceptions

Training

Set

Soil 

Sampled Set

St. Denis

Historic Set

Agronomic Risk 

Sample Set
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†S-Rich = Solute-rich  
‡pr. acc = producer’s accuracy  

 

100 mS m-1), will be referred to as moderately saline wetlands. The lower predictive accuracy for 

these models indicates that the models had more difficulty distinguishing the moderately saline 

and fresh wetlands from the very saline wetlands. The models performed better distinguishing 

the moderately and very saline wetlands from the fresh wetlands. This is likely because the 

moderately saline wetlands had Strahler orders more similar to the very saline wetlands and the 

models could not differentiate between them. Wetland Strahler order may work best to 

differentiate fresh from moderately saline wetlands. Wetlands with Strahler orders of three and 

four seem to exhibit real differences in terms of solute-richness whereas differences between 

higher wetland Strahler orders (i.e. six and seven) seem more arbitrary. The differences between 

moderately saline and very saline wetlands may result from influences that are not fully reflected 

by wetland Strahler order. The models still performed well for his purpose, but these 

implications should be considered if attempting to differentiate between saline and very saline 

wetlands within models.  

 

3.6 Conclusion 

The proposed model used high-resolution DEMs to 1) approximate the shallow groundwater and 

fill-and-spill contributions wetlands receive, 2) determine if whether wetlands are terminal, and 

3) quantify the relative position of wetlands within the landscape, in order to predict wetlands as 

either fresh or solute-rich. The model was relatively successful in its predictions. For the 

purposes of predicting wetlands expected to have soils enriched with CaCO3, the best-

Table 3.8 Prediction accuracies and parameters for the best-performing models for predicting the 

solute-richness classes based on criteria that represent agronomic risks. 

Total Fresh S-Rich

accuracy Kappa pr. acc.‡ pr. acc.

n = 69 n = 68

(%) (%) (%)

H Maximum Minimum ≥ 6 Not considered 75 0.48 96 52

I Maximum Moderate ≥ 6 Not considered 71 0.40 79 62

J Maximum Minumum ≥ 5 Not considered 71 0.42 76 67

K Maximum Maximum ≥ 6 Not considered 70 0.39 69 71

Model parameters Agronomic Risk Sample Set

Model
Wetland

boundary

Spill channel 

connectivity

S-Rich†

Strahler

order

Terminal 

status rule
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performing model achieved total predictive accuracies between 69 and 82% based on training 

and external validation data sets. The model parameters of Model F are recommended for 

mapping CaCO3-enriched wetlands in PPR landscapes, as it was the best performing model 

overall; although, calibrating model parameters for a target area using wetland salinity data 

collected in that area would result in the best model performance. Mapped distributions of 

solute-rich wetlands generated by this model could be used to inform conservation efforts by 

identifying wetlands that are expected to have soils enriched with CaCO3, which have a greater 

potential for phosphorus retention.  

 

The model performance was improved by adapting the stream channel networks to reflect spill 

channels that are more likely to be active. This allowed for better representation of expected 

hydrologic connectivity between wetlands to estimate which wetlands have historically received 

the greatest contributions of solutes. Wetland terminal status was not as valuable as wetland 

Strahler order for predicting wetland solute-richness classes. There was little to no improvement 

to the model performance by separating out nested wetlands from the maximum closed 

topographic depressions. Based on the validation results for predicting wetland classes for the St. 

Denis Historic Set of observations, the model potentially underestimates the distribution of 

solute-rich wetlands. Therefore, if the model were used to create an upscaled estimate of 

wetlands with greater potential for phosphorus retention, it would represent a conservative 

estimate. The models indicate that the larger “gatekeeper” wetlands are expected to have CaCO3-

enriched soils which emphasizes the importance of their conservation for reducing phosphorus 

mobility within PPR watersheds. The model showed potential to be used to map wetland salinity 

for other purposes, although the model parameters should be adapted for the specific purpose. 

Modelling could be improved by incorporating site-specific salinity or climatic information to 

potentially address differences in site geochemistry and hydrology. The model made predictions 

based entirely on wetland Strahler order and terminal status. These variables could be 

incorporated into more complex multi-variate models to improve model performance or 

potentially map specific salinity values rather than binary solute-richness classes.  
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4 PREDICTIVE DIGITAL SOIL MAPPING OF WETLAND SOIL TYPES IN THE 

CANADIAN PRAIRIE POTHOLE REGION 

 

4.1 Preface 

The study presented in this chapter assessed the capability of digital soil mapping methodologies, 

which incorporated high-resolution DEMs to map PPR wetland soil types that differ in terms of 

their CaCO3 content. A few key topographic attributes have been related to the distribution of 

PPR wetland soil types (Bedard-Haughn and Pennock, 2002; Pennock et al., 2014), but no 

studies have attempted to model spatial distributions of these soils using a variety of high-

resolution DEM-derived topographic attributes in combination with machine-learning modelling 

techniques. The model proposed in Chapter 3 makes predictions of solute-richness for individual 

wetlands, whereas these models attempt to predict the spatial distribution of the calcareous soils 

within the individual wetlands and overall landscape. Wetland types, other than solute-rich and 

fresh, are discussed in this study that refer specifically to the distribution of soils within the 

wetlands; these are recharge, flow-through, and discharge/strongly calcareous wetlands. 

Although there are clear relationships between the soil distribution types and wetland solute-

richness types, the terms are not used interchangeably, i.e. a solute-rich wetland is not 

necessarily a discharge/strongly calcareous wetland. The models in this study incorporated 

topographic attributes developed for the model proposed in Chapter 3, that reflect landscape-

scale hydrologic processes and characteristics. Other attributes that reflect topographic variation 

within individual wetlands were included as predictor variables in this study. These models do 

not attempt to predict the concentration of CaCO3 within the soil; instead, they predict the 

occurrence of soil classes that reflect differences in CaCO3 enrichment. The resulting soil map 

outputs from successful models would provide area-per-hectare estimates of calcareous wetland 

soils which could be used to upscale estimates of phosphorus retention potentials for the PPR. 

Although the modelling approach used in this study differs substantially from the model 

proposed in Chapter 3, the resulting soil maps generated by the models could be used for the 

same purpose: to identify wetlands with a greater potential for phosphorus retention. These 

models could achieve this goal by indicating which wetlands have the greatest extents of 

calcareous soils.  
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4.2 Abstract 

Wetlands of the Prairie Pothole Region (PPR) reduce phosphorus mobility within prairie 

watersheds. Wetland soils that are strongly calcareous at their surface have a greater potential for 

retaining phosphorus from wetland pond water. Recent studies have indicated that the 

distribution of calcareous wetland soils within PPR landscapes may be predictable through 

analyses of high-resolution digital elevation models (DEMs). Digital soil mapping 

methodologies were assessed for modelling the spatial distribution of wetland soil types in the 

PPR. Soil profiles were sampled at three Saskatchewan PPR sites: Swift Current, St. Denis, and 

Smith Creek. Soils were classified and mapped according to two classification schemes: 

1) Calcareous Wetland, Recharge, Transition, Upland and 2) Calcareous Wetland, Non-

Calcareous Wetland, Upland. Four machine-learning model types were tested including 

classification trees, classification trees with bagging, random forest, and multinomial logistic 

regression. Model predictor variables were generated from high-resolution LiDAR-derived 

DEMs. Knowledge-based topographic variables were developed to reflect the unique 

characteristics of the PPR’s morphology. Various spatial resolutions and levels of smoothing 

were tested for the base DEMs. Models were tested using the original topographic variables and 

principal components as predictor variables. The models were trained through five-fold cross-

validation repeated 20 times and were tested through external validation on datasets from 

previous studies in the St. Denis and Smith Creek areas. The best-performing models had 

acceptable validation predictive accuracies. The classification trees with bagging and random 

forest models using predictor variables derived from the 2-m DEMs with no smoothing produced 

maps that reflected expected soil distributions. Visual assessment identified unexpected 

distributions of soils in the maps generated from models based on the DEMs with greater degrees 

of smoothing and coarsening; this was due to issues caused by near-flat water surfaces within the 

DEM. No models successfully predicted the occurrence of wetlands with Calcareous Wetland 

soils throughout the wetland basins because samples could not be collected from more 

permanent wetland basin centers due to deep water inundation. However, wetlands were mapped 

with Transition soils throughout their basin floors which may be used to indicate potential 

discharge/strongly calcareous wetlands.  
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4.3 Introduction 

Lake Winnipeg and other prairie waterbodies have been negatively impacted through 

eutrophication. Over-application of phosphorus fertilizers for agricultural production is a 

nonpoint source for nutrient loading of the prairie watersheds, many of which ultimately 

contribute to Lake Winnipeg. Wetlands of the Prairie Pothole Region (PPR) work as filters to 

reduce phosphorus mobility within these watersheds (Badiou et al., 2018). Wetland soils that are 

enriched with calcium carbonates (CaCO3) are especially effective at retaining phosphorus. 

Although calcareous wetland soils were found to have similar total phosphorus as non-calcareous 

wetland soils, they were found to have six times less available phosphorus (Brown et al., 2017b). 

Phosphorus movement in calcareous soils is limited due to the formation of insoluble Ca-

phosphates (Zhang et al., 2014). Phosphorus is retained within the calcareous wetland soils and 

stopped from moving into downstream waterways. This ecosystem service is likely lost with 

wetland drainage (Badiou et al., 2018). Understanding spatial distributions of calcareous wetland 

soils can inform conservation and restoration efforts to maintain this service.  

 

A model for predicting the spatial distributions of wetlands that are expected to have the greatest 

accumulations of CaCO3, and therefore the greatest potential for phosphorus retention, is 

discussed in Chapter 3. That model makes predictions based on individual wetlands but does not 

model the distribution of CaCO3 within the wetland soils. Calcareous soils are not evenly 

distributed within PPR wetlands (Pennock et al., 2014). The objective of this study was to assess 

the suitability of digital soil mapping (DSM) methodologies to predict the spatial distributions of 

calcareous wetland soils in PPR landscapes. Successful predictions could provide extent 

estimates of calcareous wetland soils within PPR landscapes. If phosphorus storage within 

calcareous soils were quantified, the extent estimates could be used to establish upscaled 

estimates of wetland phosphorus retention potential across the PPR.  

 

The hydropedologic influences on the distributions of wetland soils are highly complex; they 

include hydrologic processes occurring over landscape-scales as well as within individual 

wetlands. These characteristics could potentially be modelled from topographic attributes 

determined from high-resolution LiDAR-derived digital elevation models (DEMs). 

Methodologies for quantifying many topographic attributes from DEMs have been developed in 
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the last 30 years; these have proven to be fundamental to DSM studies for predicting spatial 

distributions of soil types and properties (McBratney et al., 2003). Pennock et al. (2014) and 

Bedard-Haughn and Pennock (2002) suggest a few topographic attributes that relate specifically 

to the distribution of PPR wetland soil types, such as specific dispersal area, elevation from 

wetland basin bottom, and position relative to maximum observed wetland water levels. The 

spatial distributions of wetland soil types are likely related to many topographic attributes. 

Machine-learning modelling techniques are well suited to determine relationships between soil 

classes and large numbers of variables. The relationships defined by the machine-learning 

models reflect complex effects and interactions of the topographic attributes as soil forming 

factors.  

 

4.3.1 Wetland soil classes and their expected spatial distributions 

Calcium carbonates are abundant in the glacial deposits of the PPR (St. Arnaud, 1976). The 

distribution of CaCO3 within the wetland soils is largely determined by the wetland’s 

relationship with groundwater. Wetlands can be classified as recharge, discharge, or flow-

through (Arndt and Richardson, 1988). The pond water level in recharge wetlands is at an 

elevation higher than the surrounding water table; the dominant movement of water in the soils 

directly beneath the pond is downward (Pennock et al., 2014), and CaCO3 can be leached out of 

these soils with the downward movement (Fig. 4.1). The pond water elevation within discharge 

wetlands is dominantly below or level with the surrounding water table elevation. Discharge 

wetlands are only found in low-lying landscape positions (Lissey, 1971). Groundwater 

discharges into the wetland. Groundwater carries dissolved solutes, including CaCO3, and 

distributes them throughout the discharge wetland’s soil (Fig. 4.1) (Pennock et al., 2014). 

Wetland soils that receive solute depositions throughout their profile from the upward and lateral 

movement of groundwater are commonly referred to as discharge soils and are included in the 

Calcareous Wetland soil class within this study. Flow-through wetlands represent a transitional 

wetland type. Flow-through wetlands both recharge the groundwater and receive groundwater 

discharge depending on water table levels (Winter and Rosenberry, 1998). The soils of flow-

through wetlands are characterized by having reduced solute accumulations in the upper depths 

of their profile compared to Calcareous Wetland soils due to leaching during periods of 

dominantly downward movement of water (Arndt and Richardson, 1989). These are referred to 



 

54 

 

here as Transition soils. Wetlands can also receive significant inputs of solutes from fill and spill 

and shallow groundwater flow from upslope wetlands (Fig. 4.1) (Cook and Hauer, 2007; 

Nachshon et al., 2013). This can result in CaCO3-enriched soils throughout the wetland basin 

regardless of the wetland’s relationship with groundwater (Cook and Hauer, 2007; Pennock et 

al., 2014). These wetlands are referred to as strongly calcareous wetlands and their soils are also 

included in the Calcareous Wetland soil class. The hydrologic characteristics of wetlands are 

complex and can change with changes in hydrologic regimes (Winter and Rosenberry, 1998). 

However, the accumulations and removals of CaCO3 require long periods of time to occur due to 

their low solubility (Knuteson et al., 1989) and, therefore, the distribution of CaCO3 can be used 

to interpret the dominant hydrologic characteristics of a wetland. 

Regardless of wetland type, a ring of calcareous discharge soils forms at the wetland fringe 

(Pennock et al., 2014). Due to the increased hydraulic conductivity of the near-surface 

glaciolacustrine and oxidized tills compared to the deeper glacial tills, water within the wetland 

soil moves laterally outward from the wetland and then upward towards the soil surface at the 

wetland fringe through capillary rise (Fig. 4.1) (Knuteson et al., 1989; Hayashi et al., 1998b; 

Heagle et al., 2013). Evaporation and evapotranspiration from plants in the wetland fringe 

Fig. 4.1 Schematic diagram of soil class distributions, depth to CaCO3, groundwater table, and 

direction of groundwater and fill and spill flow based on diagrams from Van der Kamp and Hayashi 

(2009), Pennock (2011), and Pennock et al. (2014). Soil class distributions are indicated by the 

uppercase letters U = Upland, CW = Calcareous Wetland, T = Transition, and R = Recharge.  
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contribute to this phenomenon (Hayashi et al., 1998b). The upward movement of water to the 

wetland fringe redistributes CaCO3 to these positions causing the development of a ring of 

Calcareous Wetland soils surrounding the wetlands (Fig. 4.1) (Pennock et al., 2014). In addition 

to describing the soils of flow-through wetlands, Transition soils are used in this study to 

describe the soils in the positions between recharging wetland basin floors and the discharge 

ring. These soils are affected by upward and lateral movement of water through most of their 

profile, but downward movement of water in the upper portion of their profile causes CaCO3 to 

be leached out of the upper horizons. These are specified as a separate class here because they 

are not enriched with CaCO3 in their upper depths of their profile to the extent of Calcareous 

Wetland soils, nor do they match the commonly-used concept of a Recharge soil.  

 

Movement of dissolved phosphorus through the soil matrix is limited (Hayashi and Rosenberry, 

2002; King et al., 2015) and so soil calcium within the surficial horizon has much greater 

potential to interact with phosphorus within wetland pond water. Calcareous Wetland soils, 

either within wetland fringes or within the basins of fully discharge/strongly calcareous 

wetlands, are characterized by accumulations of CaCO3 throughout their full profile. Recharge 

and Transition soils lack CaCO3 in the surficial depths of their profile and therefore are not 

expected to have the same potential for phosphorus retention. In this study, models were 

generated to predict the distribution of Calcareous Wetland, Recharge, Transition, and Upland 

soil classes. This modelling objective is referred to as 4-class mapping. Models were also 

generated to predict the distribution of Calcareous Wetland, Non-Calcareous Wetland, and 

Upland soil classes where Recharge and Transition soils were grouped into the single class, Non-

Calcareous Wetland, as they are expected to have the same effect on phosphorus retention. This 

modelling objective is referred to as 3-class mapping. 

 

4.4 Materials and methods  

4.4.1 Study areas 

Soil samples for the DSM model training and testing were collected from study areas near Swift 

Current, SK; St. Denis, SK; and Smith Creek, SK. The study areas are summarized in Table 4.1. 

More detailed descriptions and a map of the study areas within the PPR are found in section 

3.4.1. The climate gradient spanned by the Swift Current, St. Denis, and Smith Creek study areas 
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corresponds to the Brown, Dark Brown, and Black soil zones, respectively, which reflect general 

organic carbon storage trends influenced by the climatic gradient (Pennock et al., 2011). Similar 

soil catenas are found at the three sites, where Regosols and thinner Chernozems are commonly 

found in the eroded hillslope shoulder positions, Chernozems with thicker solums develop in 

mid-slope positions, and Gleysols and eluviated and gleyed Chernozems form in the depressional 

positions (Pennock et al., 2011). Soils in the Smith Creek area are commonly strongly enriched 

with CaCO3 due to the limestone-rich parent materials (Saskatchewan Soil Survey Staff, 1991). 

LiDAR-derived DEMs were available for all three sites (section 3.4.2). 

†Ayres et al. (1985) 

‡Acton and Ellis (1978) 

§Saskatchewan Soil Survey Staff (1991) 

¶Climate normals for 1981 – 2010 (Government of Canada, 2018) 

 

4.4.2 Sample design   

Wetland discharge rings represent a small portion of the overall landscape. Randomly placed 

sampling points within a PPR landscape are likely to miss these features. Soil sample locations 

were based on individual depressions to focus the sampling in depressional areas. Wetland soil 

characteristics only develop within depressions, but not all depressions develop wetland soil 

characteristics. Individual wetlands could be interpreted from water and vegetative extents 

present in aerial imagery to inform the sample design, but those can change drastically over short 

periods of time as a function of climate and management. Instead, the focus of this study was on 

the topographic characteristics that influence the development of wetland soil characteristics. By 

basing the sample design on depressions rather than only on confirmed wetlands, the data could 

provide information on the differences between depressions that form wetland soil characteristics 

and those that do not. Depressions were selected for sampling based on a stratified random 

Study areas Area extent Landform Slope
Soil salinity effects on 

agricultural productivity 
Soil zone

Mean annual 

temperature
¶

Mean annual 

precipitation
¶

(km
2
) (%) (

o
C) (mm)

Swift Current 13
Hummocky-dissected,

undulating-dissected
† 2 - 30

†
None to slight

† Brown 4.1 392.5

St. Denis 6 Hummocky
‡

2 - 30
‡

Very slight
‡ Dark brown 3.3 340.4

Smith Creek 14 Hummocky
§

0 - 15
§

Very slight to slight
§ Black 1.8 463.5

Table 4.1 General study area characteristics.   
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sample design. Individual depression boundaries were determined by the maximum closed 

topographic depressions within the DEM (described in section 3.4.4). Depressions were stratified 

based on size (Table 4.2) and relative elevation in the watershed (upper and lower) (Table 4.3). 

Size classes were based on Millar's (1976) size classifications for wetlands in the Canadian PPR. 

The smallest depressions ( 4047 m2) were further stratified based on depth to capture very small 

depressions in the sampling design. These could be sampled quickly and could provide 

information on minimal depths required to form wetland soil characteristics. Relative elevation 

was defined by two categories, upper and lower halves of the watershed, which were determined 

using Jenks natural breaks classification method (Jenks, 1967). 

†Area criterion were based on Millar’s  

(1976) wetland size classes which were 

described in acres. 

 

 

 

Sampled depressions were located in sites with a range of land uses including cultivated, pasture, 

and native. Some of the smaller depressions within the cultivated sites were tilled through. The 

wetland soil characteristics of gleying and discharge rings are expected to persist regardless of 

land use. Tillage erosion can result in redistribution of CaCO3 to wetland positions, but this 

effect can be differentiated from natural, hydrologically-influenced CaCO3 distributions with 

field inspections. Wetland vegetation has been found to contribute to the formation of the 

discharge ring (Hayashi et al., 1998b). However, the discharge rings developed over long periods 

of time (Knuteson et al., 1989), so the current vegetative characteristics do not necessarily reflect 

the long-term vegetative regimes for a depression. Wetlands that had undergone obvious 

mechanical drainage were avoided because the soils can be substantially disturbed through the 

process. There has been extensive drainage of wetlands throughout the lower portion of the 

 

 

Study area

Swift 

Current
St. Denis

Smith 

Creek

(n) (n) (n)

1 3 3 3

2 2 2 2

3 2 2 3

4 2 1 3

1 3 3 -

2 2 2 -

3 2 2 -

4 2 2 -

Upper

Lower

Relative elevation

in watershed
Size class

Table 4.2 Depression size classes 
Table 4.3 Number of depressions sampled per study area 

per relative position in watershed and size stratifications. 

 

 

Area† Depth

(m
2
) (m)

1 0 - 4047 0.1 - 0.3

2 0 - 4047 > 0.3

3 4047 - 40470 > 0.1

4 > 40470 > 0.1

Size

class



 

58 

 

Smith Creek watershed and so sampling was done only in the upper half of that watershed (Table 

4.3).  

 

Randomly placed sample points focused within depressional areas are likely to end up in 

inundated positions making them inaccessible for sampling. The wetland water levels can change 

dramatically year to year and even within a season and therefore, aerial imagery could not be 

reliably used to inform sample point placement to avoid inundated positions. Sample points were 

placed along a single transect per depression and transect placement was determined in the field. 

Transects were placed away from potential spill channels and ran in straight lines with the 

origins at the basin centers (example: Fig. 4.2). The first transect point was placed in the wetland 

center if the wetland was not inundated and at the water’s edge if the wetland was inundated. 

Transect points were sampled with a truck-

mounted hydraulic corer (Giddings Machine 

Company Ltd., Windsor, CO) if it was 

accessible to do so. Otherwise, transect points 

were sampled by hand auger. Samples were 

taken upslope along the transect until soils 

that were certain to be Upland soils were 

observed.   

 

In a study on PPR wetlands in similar regions, Pennock et al. (2014) found Recharge soils 

distributed throughout the 0 – 0.95 m elevation above the wetland basin bottom and discharge 

(Calcareous Wetland) soils distributed throughout the 0.95 – 2 m elevation above the wetland 

basin bottom. They also found that the boundary between Recharge and discharge ring soils 

within PPR wetlands roughly matched the maximum observed water level. For smaller wetlands, 

the maximum water level is expected to match the depression spillover elevation. The sample 

point spacing was designed to ensure the points would capture any changes in soil types that may 

occur over these boundaries. Sample point placement along the transect was based on changes in 

elevation. Spacing between sample points depended on the depth of the depression because the 

height of the depression depth marked the spillover elevation. For depressions with depth less 

than 0.3 m, sample points were spaced at elevation increments of 0.1 m until 0.5 m and in 0.25 m 

Fig. 4.2 Sample point transect at a depression 

within the Swift Current study area. 
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increments after 0.5 m. For depressions with depth between 0.3 to 0.5 m, sample points were 

spaced at elevation increments of 0.25 m. For depressions with depth greater than 0.5 m, sample 

points were spaced at elevation increments of 0.5 m. Changes in elevation were determined using 

a Suunto PM-5 clinometer (Suunto, Vantaa, Finland). This method was tested at a transect with 

seven sample points using a Sokkisha Set5 Total Station (Sokkia, Kanagawa Prefecture, Japan) 

and was found to have a RMSE of 0.02 m. The number of sample points per depression varied, 

with an average of five sample points per depression. Some of the smallest depressions only had 

one to three sample points, whereas some of the larger depressions had greater than ten. 

 

Sample point locations were collected with a Trimble GeoExplorer 2005 Series GeoXT GPS 

(Trimble, California, U.S.A.). At each sample point, sample cores were taken to 90 cm when 

possible. The profiles at each sample point were described and classified according to the 

Canadian System of Soil Classification (CSSC) (Soil Classification Working Group, 1998). Soil 

samples were collected in fall 2015 and 2016 for the Swift Current study area; fall 2015 for the 

St. Denis study area; and fall 2016 for the Smith Creek study area. By fall, water levels within 

wetlands were at their lowest. The sampling took place over a period of relatively high 

precipitation for these areas (Brown et al., 2017a), which meant that the larger, more permanent 

ponds were often inundated with water.   

 

4.4.3 Wetland soil type classification 

Each soil profile was classified according to the two classification schemes:  

1) 4-class mapping: Calcareous Wetland (CW), Recharge (R), Transition (T), Upland (U), 

or buried/depositional  

2) 3-class mapping: Calcareous Wetland (CW), Non-Calcareous Wetland (NCW), Upland 

(U), or buried/depositional  

Soil classes were determined from CSSC classifications and profile descriptions (Table 4.4). The 

3-class mapping classifications used the same classification criteria as the 4-class mapping 

except Recharge and Transition soils were grouped into the Non-Calcareous Wetland soil class.  

 

The distribution of CaCO3 within soil profiles was determined through application of 10% 

hydrochloric (HCl) acid during the field assessment. Soils were considered to have moderate to  
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strong presence of CaCO3 when moderate to strong effervescence was observed with HCl 

application. Moderate to strong effervescence is observed when bubbles form either thick or low 

foam (Watson and Pennock, 2016).  

 

The discharge ring surrounding wetlands is expected to have a gradational effect where some 

soils accumulate substantial contributions of CaCO3 and soils in adjacent positions will 

accumulate CaCO3 through the same processes, but not to the same degree. The Calcareous 

Wetland soil class was restricted to profiles with moderate to strong CaCO3 throughout their 

profile. Recharge and Transition soils are expected to have the same potential for phosphorus 

retention as they both lack moderate to strong CaCO3 in the surficial depth (0 – 15 cm) 

increment hence their grouping as Non-Calcareous Wetland soil class for the 3-class mapping 

modelling objective.   

 

Gleyed soils are the most characteristic feature of wetland soils. Excessive moisture can lead to 

anaerobic conditions within the soil which causes iron to be reduced from Fe3+ to Fe2+ (Bedard-

Haughn, 2011). The reduced iron is more mobile and is redistributed within the soil profile. It 

can be leached out of the profile completely, causing grey or even blue soil colours. It can also 

form red pockets of oxidized iron (mottles) within soil matrices that experience both anaerobic 

and aerobic conditions to allow for the reduction and oxidation of iron. Gleysols and gleyed soils 

were determined based on the criteria outlined in the CSSC (Soil Classification Working Group, 

1998). Some of the soils in the Swift Current area had very dark colours due to the incorporation 

of shale within the glacial till parent material (Ayres et al., 1985). This made it difficult to 

classify soil gleying based on colour because the dark parent material had colours with chromas 

of one according to the Munsell Soil Color Chart (Munsell, Michigan, USA), which can indicate 

a gleyed horizon (Soil Classification Working Group, 1998). The magnetic susceptibility for the 

samples from these profiles were analyzed using a Bartington MS-2D meter (Bartington, 

Oxfordshire, U.K.) following the protocol described in de Jong et al. (2000). Profiles with 

horizons having potentially gleyed soil colour and magnetic susceptibility less than 150 x 10-9 m3 

kg-1 were determined to be Gleysols according to the findings of de Jong et al. (2005).  
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The dominant movement of water within gleyed soil profiles is expected to be downward to 

cause the leaching of iron out of the profile (Bedard-Haughn and Pennock, 2002). Therefore, 

discharge ring soils with both gleyed profiles and accumulations of CaCO3 throughout their 

profile likely reflect changes in the dominant direction of water movement within the soil over 

time. The capillary rise of water to the discharge ring is through unsaturated flow (Knuteson et 

al., 1989), which is unlikely to cause the development of gleyed soils. Therefore, discharge ring 

and, by extension, Calcareous Wetland soils are not always gleyed to the extent required to be 

classified as such according to the CSSC. Due to the gradational effect of the discharge ring and 

the ubiquity of CaCO3 in PPR soils, it was difficult to develop class criteria to distinguish non-

gleyed Calcareous Wetland soils from adjacent Upland soils that had moderate to strong CaCO3 

throughout their profile. Upland soils may contain CaCO3 in the surface horizon of their profile 

but would not be in landscape positions where they would interact with phosphorus within 

wetland pond water. Therefore, several soil characteristics were explored to distinguish non-

gleyed Calcareous Wetland soils from Upland soils. The upward movement of water to the 

discharge ring positions often results in a lack of B horizon development, which can be used to 

distinguish Calcareous Wetland soils from adjacent Upland soils with B horizons (Pennock et al., 

2014). However, this characteristic is not always present. Soil organic carbon (SOC) content and 

A horizon depth thresholds were explored to distinguish the soil classes. Discharge ring positions 

would be expected to have greater moisture causing greater accumulations of SOC. However, 

SOC and A horizon depth can reflect many other influences and can be substantially altered with 

tillage erosion and deposition. Instead, criteria were established to distinguish the soil classes 

based on soil colour of the B horizon, when present. Upland soils have greater colour chroma 

due to the oxidation of iron in the soils, this gives the soil a more reddish colour (Fig. 4.3) (Smith 

et al., 2011). The presence of moisture within the wetland soils causes the iron to be reduced. In 

profiles with excessive moisture, the soil forms the gleyed characteristics of grey colours or 

mottling. The non-gleyed Calcareous Wetland soils would not have had the moisture conditions 

to form those qualities, but enough moisture to cause a reduced soil colour compared to the 

adjacent oxidized Upland soils. The following colour criteria for B horizons was incorporated 

into the classification: for non-gleyed Calcareous Chernozems to be classified as a Calcareous 

Wetland soil, the B horizon must have a chroma < 5 and a chroma at least 1 chroma less than the 

adjacent Upland soil B horizon.  
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B Horizon colour:  
Hue = 10 YR 
Value = 4.5  
Chroma = 2 

B Horizon colour:  
Hue = 10 YR 
Value = 3
Chroma = 4 

CW U 

Fig. 4.3 Comparison of B horizon colour for a non-gleyed 

Calcareous Wetland soil (left) and the adjacent Upland 

soil (right). 
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Soils with greater than 30 cm of depositional material at the top of their profile were classified as 

buried/depositional. Buried/depositional soils were not considered in the soil class prediction 

models because it would not be possible to accurately predict their distribution based on the 

current elevation surface (Bedard-Haughn and Pennock, 2002). For soil profiles with less than 

30 cm of depositional material, the difference between the soil surface represented by the 

elevation model and the historic soil surface under which the soil developed is not expected to be 

substantially different. The depth of 30 cm was selected because it was less than the maximum 

vertical error considering both the vertical error of the DEM and the potential vertical error 

caused by the positional error of the GPS. The maximum vertical error of the DEMs used in this 

study was 22 cm for wetland areas in the St. Denis DEM (Töyrä et al., 2008). There was a 95% 

probability that the sampled points were within 2 m of the GPS point (Trimble, 2005). Based on 

the 2-m DEM, the average RMSE of the elevation of the adjacent 8 cells for each soil-sampled 

cell was 13.8 cm. Therefore, the discrepancy between the historic soil surface and the current soil 

surface with less than 30 cm of depositional material is within the possible range of error 

between the soil surface and the elevation model (35.8 cm).  

 

Tables 4.5 and 4.6 show the number of observations per 4-class and 3-class classification 

schemes. These observations were used to train the predictive models. There were proportionally 

more Upland observations than other soil classes. There were 118 wetland soil class observations 

total (Recharge, Transition, Calcareous Wetland) which represents a balanced number of wetland 

vs. upland soil class observations. There were fewer Calcareous Wetland soil class observations 

as compared to Recharge and Non-Calcareous Wetland soil classes, which is reasonable as they 

are expected to be less abundant within a typical landscape. 

 

4.4.4 Spatial resolution  

The PPR landscape is characterized by small scale topographic variation. Hilltops and 

depressions of the hummocky landscapes can occur within five to ten meters of each other. Very 

different soils develop in these positions (Pennock et al., 1987). These features would be 

smoothed out and lost in low-resolution DEMs and so the DEMs were kept at high resolutions 

for the soil modelling. The spatial resolution of the DEMs used to generate the predictor 

variables define the spatial resolution of the resulting maps. Soil mapping was tested at 2 m and  
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5 m to assess differences in predictive accuracy at varying spatial resolutions. The original 

LiDAR-derived 1-m DEMs were resampled using block averaging to the specified resolutions. 

Mapping was tested at 5-m spatial resolution, staying consistent with the Bedard-Haughn and 

Pennock (2002) DSM study on the distribution of PPR wetland soil types. Due to the specific 

sampling design used in this study to capture the extent of the discharge rings, at a resolution of 

5 m, many closest sample point pairs shared the same pixel. Based on recommendations in Hengl 

(2006), a spatial resolution of 2 m was also tested because at this resolution, less than 5% of 

closest point pairs shared pixels. The 2-m DEMs provide a more detailed representation of the 

land surface and may capture features that would be smoothed out at 5-m resolution. However, 

down-sampling reduces the numbers of errors that may be present in the elevation surface at the 

Table 4.5 Number of soil class observations per 4-class mapping 

classification scheme. 

Table 4.6 Number of soil class observations per 3-class mapping 

classification scheme. 

Swift Current St. Denis Smith Creek Total

(n) (n) (n) (n)

Recharge 19 20 19 58

Transition 5 8 8 21

Calcareous

Wetland
6 20 13 39

Upland 37 47 27 111

Total 67 95 67 229

Soil Class

Study Area

Undrained Drained

(n) (n) (n)

Recharge 20 8 25

Transition 0 2 3

Calcareous

Wetland
28 0 4

Upland 13 10 31

Total 61 20 64

Soil Class

External validation sets

BIOCAP - St. Denis
Brown - Smith Creek
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higher resolutions (Lindsay, 2016), which means that the 2-m DEM likely has more features that 

are the result of errors than the 5-m DEMs. To correct for this, mapping was tested using 2-m 

DEMs without smoothing after resampling and 2-m DEMs smoothed five times using a 3 x 3 

mean filter after resampling. This is based on the findings of Li et al. (2011) who recommend 

smoothing LiDAR-derived 1-m DEMs 10 to 20 times for depression identification within PPR 

landscapes to reduce erroneous features. Smoothing the 2-m DEM five times uses the same 

smoothing window as smoothing the 1-m DEM ten times.  

 

4.4.5 Predictor variables  

A total of 32 predictor variables of topographic attributes were used in the predictive models. 

Predictor variable information exists for all locations of the areas to be sampled and mapped. All 

were derived from the DEM. The predictor variables were generated for each DEM resolution 

and smoothing: 2-m – not smoothed, 2-m – 5x smoothed, and 5-m – not smoothed. The predictor 

variables included many attributes commonly used in DSM methodologies (Table 4.7). These 

were calculated using the System for Automated Geoscientific Analysis (SAGA) (Conrad et al., 

2015).  

 

 

Table 4.7 Descriptions of predictor variables and associated references. 

Predictor variable Description Reference

Topographic wetness index
An index of expected moisture accumulation that 

considers catchment area and slope angle
Beven and Kirkby (1979)

SAGA wetness index
Similar to the topographic wetness index but 

considers a modified catchment area
Boehner et al. (2002)

Slope height
Elevation above the nearest stream channel 

determined in the DEM
Boehner and Selige (2006)

Normalized height

A measure of a grid cell’s relative position in the 

local landscape which considers its vertical offset 

and catchment area 

Boehner and Selige (2006)

Standardized height
The normalized height multiplied by the absolute 

elevation
Boehner and Selige (2006)

Valley depth Elevation below the nearest ridge Boehner and Selige (2006)

Mid slope position
Elevation above or below the mid-slope 

position of a local hill-slope 
Boehner and Selige (2006)

Specific dispersal area

The total area of land that a grid cell contributes flow 

towards per unit contour. It is calculated based on 

inverted catchment area

Costa-Cabral and Burges (1994)
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Multi-resolution valley 

bottom flatness index

A calculation that identifies flat valley bottoms 

based on elevation and slope values across a range 

of spatial scales

Gallant and Dowling (2003)

Multi-resolution ridge 

top flatness index

A complementary calculation to the valley bottom 

flatness index that identifies flat hill tops using a 

similar approach

Gallant and Dowling (2003)

Convergence index
An index reflecting if the slopes of adjacent grid 

cells face the target grid cell

Koethe and Lehmeier (1996)

Kiss (2004)

Relative hydrologic 

slope position 

Similar to the normalized height measure but a 

more simplified measure of a grid cell’s relative 

position in the local landscape. It is calculated as: 

catchment area / (inverted catchment area + 

catchment area)

MacMillan (2005)

Slope length and 

steepness factor

An index which considers slope length and 

slope gradient
Moore et al. (1991)

Catchment area

The total area of land that contributes flow to a grid 

cell. The catchment area was calculated using a 

multiple flow direction algorithm which considers that 

water flows more than one direction from a grid cell

Quinn et al. (1991)

Specific catchment area

The total area of land that contributes flow to a grid 

cell per unit contour. It is calculated based on the 

catchment area

Quinn et al. (1991)

Terrain ruggedness index

An index that quantifies topographic heterogeneity 

based on the total change in elevation of a grid cell 

compared to its adjacent cells

Riley et al. (1999)

Aspect Direction of the slope face Zevenbergen and Thorne (1987)

Slope Angle of inclination relative to the horizontal plane Zevenbergen and Thorne (1987)

General curvature A summary of curvature of the entire surface Zevenbergen and Thorne (1987)

Plan curvature

The curvature along the horizontal plane. This is 

often referred to as the contour curvature as it 

reflects the curvature along a hypothetical contour 

line

Zevenbergen and Thorne (1987)

Profile curvature The curvature in the direction of the steepest slope Zevenbergen and Thorne (1987)

Tangential curvature
The curvature perpendicular to the steepest slope 

gradient
Zevenbergen and Thorne (1987)

Total curvature
A summary of curvature of the entire surface, 

calculated differently than general curvature
Zevenbergen and Thorne (1987)

Elevation Meters above sea level -

Table 4.7 - continued 
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Several topographic attribute measures were developed to better represent the unique 

morphological characteristics of the PPR that were expected to relate to wetland soil type 

distributions. Detailed descriptions on the GIS methodologies for calculating each new 

topographic attribute are included in Appendix B. Elevation percentile determines each grid 

cell’s elevation percentile in relation to the entire study area watershed. Fully discharge wetlands 

are expected in lower positions within a watershed. This variable may help to capture these 

features. Three of the variables were based on a grid cell’s position relative to a local depression. 

These were developed to potentially capture relationships identified by Pennock et al. (2014) 

between soil class distribution and topographic position in relation to depression bottoms and 

maximum water levels. The contributing basins were determined for each closed topographic 

depression with depths greater than 10 cm. Grid cells were related to their local depression based 

on the contributing basin they fell within. Values were calculated for a grid cell’s elevation 

above the associated depression’s basin bottom (Fig. 4.4) and elevation above or below the 

depression’s spillover elevation. The Depression depth variable ascribes a depression’s depth 

value to the depression’s contributing basin. The measure of Elevation above depression bottom 

divided by depression depth was included to potentially capture differences in relationships of 

soil distribution for wetlands of varying sizes.  

Table 4.7 - continued 

Elevation percentile
A grid cell’s elevation percentile in relation to the 

entire study area watershed
This study

Elevation from depression 

spillover

Elevation above or below the associated 

depression's spillover elevation
This study

Elevation above basin 

bottom

Elevation above the associated depression 

bottom elevation
This study

Elevation above basin 

bottom / depth

Elevation above the associated depression's bottom 

elevation divided by depression depth
This study

Depression depth
Elevation difference between a depression's spillover 

elevation and bottom
This study

Depression max 

catchment area

The maximum catchment area of a depression 

ascribed to all cell's within a depression
This study

Wetland Strahler order 

minimum

A measure of a wetland's hydrologic position in 

the watershed, considering minimum hydrologic 

connectivity 

This study

Wetland Strahler order 

maximum

A measure of a wetland's hydrologic position in 

the watershed, considering maximum hydrologic 

connectivity 

This study
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Several variables were developed to reflect the characteristics of individual depressions 

including Depression max catchment area, Wetland Strahler order minimum, and Wetland 

Strahler order maximum (Fig. 4.5). These characteristics were quantified for each closed 

topographic depression. All cells within a closed topographic depression were given the same 

value according to the characteristics of that depression. Cells outside of the closed topographic 

depressions were given values of zero. Wetland Strahler orders were determined following the 

methodologies described in section 3.4. The two measures vary in the expected connectivity 

between wetlands.  

 

Because the predictor variables were all derived from the DEM, it is expected that many of them 

were collinearly related. Principal component analysis (PCA) can improve model performance 

by reducing the number of collinear variables. There have been mixed results in terms of the 

effect of using principal components in random forest models (Svetnik et al., 2004; Xiong et al., 

2012). Non-penalized multinomial logistic regression models (as used in this study) are sensitive 

to overfitting with too many available predictor variables (Hastie et al., 2009). Reducing the 

number of predictor variables through PCA may reduce the likelihood of the multinomial logistic 

regression models overfitting. PCA also helps to reduce computational requirements. Models  

Elevation above  
basin bottom (m) 

Fig. 4.4 3D representation of the topographic predictor variable Elevation above basin 

bottom for a portion of the St. Denis study area. The attribute reflects the meters 

above the associated depression’s bottom. 
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were tested using the original 32 topographic variables as predictor variables and using principal 

components of the topographic variables as predictor variables. The number of principal 

components used accounted for 95% of the total variance within the original topographic 

variables. For the 2-m – not smoothed DEM, the original 32 topographic attributes were reduced 

to 20 principal components and for the 2-m – 5x smoothed and 5-m – not smoothed DEMs, they 

were reduced to 19 principal components.  

 

4.4.6 Machine-learning techniques  

Four machine-learning techniques were tested to model the distributions of soil classes. These 

included classification trees, classification trees with bagging, random forest, and multinomial 

logistic regression. 

 

A classification tree is a decision tree of if-then rules based on the inputted predictor variables to 

predict soil classes. The rules are generated based on characteristics between predictor variables 

and soil classes as seen in the training observations. At each step in the decision tree, the soil 

observations are split per the predictor variable value that results in the greatest impurity 

Fig. 4.5 3D representation of the topographic predictor variable Wetland Strahler order 

maximum for a portion of the St. Denis study area. The stream channel lines are not included 

in the final variable raster surface, only the values for each depression polygon. 



 

71 

 

reduction between groups of observations (Strobl et al., 2009). After each split, the groups of 

observations become more homogeneous. Finally, the terminal nodes or leaves (where no further 

splitting occurs) represent a mostly uniform group of observations. The model is applied to new 

observations with the same predictor variable information to predict the classes of those new 

observations. Classification trees can develop enough splits to perfectly classify the training data, 

which would result in an overfitted model that would not perform well for predicting classes of 

new observations. The number of splits is limited to ensure the model is not overfitted (Venables 

and Ripley, 2002). 

 

Classification trees with bagging is an ensemble classification tree model that involves the 

creation of many classification trees based on bootstrap sample sets of the training data. In this 

study, for each bagged classification tree model, 1000 trees were created. Each tree is based on a 

different 70% of the training data. After the creation of the ensemble of trees, the model makes 

predictions for new observations by running them through each tree. Each tree casts its “vote” on 

what class it predicts the new observation to be and the class that receives the most votes is 

selected as the prediction. Random forest is another form of an ensemble classification tree 

model. More diverse trees are grown by limiting the number of variables available to make each 

individual splitting rule (Strobl et al., 2009).  

 

Multinomial logistic regression is a generalized linear model used to predict the occurrence of 

soil classes. It is an extension of binomial logistic regression which models the relationship 

between predictor variables and the probability of soil class occurrence between 0 and 1 using 

the logit link function (Kempen et al., 2009):  

logit(𝑝𝑖) = ln (
𝑝𝑖

1 −  𝑝𝑖
) = 𝜂𝑖 

where pi is the probability of occurrence of soil class i and ηi is the vector of predictor variables 

and associated coefficients that define the linear regression relationship for soil class i to 

logit(pi). In the multinomial case, where n is the number of soil classes, η is determined for each 

soil class and pi is determined by: 

𝑝𝑖 =
exp (𝜂𝑖)

exp(𝜂1) + exp(𝜂2) +  … + exp(𝜂n) 
 

The soil class with the highest probability of occurrence is selected as the predicted class.  
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4.4.7 Model tuning and cross-validation 

Some of the machine-learning techniques have parameters that can be tuned to improve 

predictive accuracy. The R-package caret (Kuhn, 2008) was used to optimize model parameters. 

caret uses k-folds cross-validation which splits the training data into k number of folds (five 

folds were used in this study). The model is trained using four of the five folds and then tested on 

the 5th fold. The process is repeated so that each fold is used as the testing fold. This was 

repeated 20 times where the data was split into different sets of five folds and the accuracies 

from each cross-validation were averaged. This whole process is repeated for each tuning 

parameter value to determine the tuning parameter value with the highest cross-validation 

accuracy. This process not only optimizes the tuneable model parameters, but it also gives a 

cross-validated estimate of the model accuracy.  

 

As mentioned, the classification trees could potentially create enough splits to classify every 

observation of the training dataset so that there are no impurities among the observations in each 

terminal node. This model would be overfitted and would not perform well predicting for new 

data. The tuneable model parameter of the classification tree models was the complexity 

parameter cp, which controls the number of splits made by the classification tree. The number of 

splits per trees is not controlled for the classification trees with bagging or random forest models. 

Each random forest and bagged classification model consisted of 1000 trees. There were no 

optimizable parameters for the classification trees with bagging or multinomial logistic 

regression models, but their cross-validation predictive accuracy was still determined through the 

k-folds cross-validation. The number of predictor variables available for each split (mtry) in the 

random forest models was optimized through the cross-validation.  

 

4.4.8 External validation datasets  

Two datasets of soil observations from previous studies were used as external validation sets to 

test the predictive accuracy of the models on observations that were not used to train the models. 

These included data from the BIOCAP study at St. Denis (Pennock et al., 2014) and the Brown 

et al. (2017a) study at Smith Creek. The BIOCAP dataset consisted of three wetlands sampled 

with 2 transects, each with 10 – 12 points per transect. The transects extended from the upland, 

through the wetland center, to the upland on the other side of the wetland. The three sampled 
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wetlands consisted of two recharge wetlands and a discharge wetland. This sample set was 

considered a rigorous test for the predictive models due to the high density of samples per 

wetland and the inclusion of a fully discharge wetland. The Brown dataset consisted of samples 

from 42 wetlands, however, 32 of those wetlands had been drained at some point. The data from 

the undrained and drained wetlands were separated into two validation sets. The set of drained 

wetland soil observations allows for assessment of whether the models are applicable in these 

types of landscapes. Each of the 42 wetlands were sampled with two points, one at the wetland 

toe-slope and one in a mid-slope position just above the discharge ring. The Undrained dataset 

did not include any Calcareous Wetland soil observations and the Drained dataset included only 

four. These datasets effectively tested the boundary surrounding the discharge ring. The number 

of observations per external validation dataset per modelling objective are shown in Table 4.8 

and Table 4.9.  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.8 Number of soil class observations according to the 4-class mapping 

classification scheme per external validation set. 

Undrained Drained

(n) (n) (n)

Recharge 20 8 25

Transition 0 2 3

Calcareous

Wetland
28 0 4

Upland 13 10 31

Total 61 20 64

Soil Class

External validation sets

BIOCAP - St. Denis
Brown - Smith Creek
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There were six observations in the external validation datasets that were difficult to classify as 

either Calcareous Wetland or Upland soils. The soil colour data required to distinguish them as 

Upland or non-gleyed Calcareous Wetland soils did not exist, so these observations were 

removed from the external validation datasets.  

 

Two methods of external validation testing were used. The mapping was done at a high 

resolution to maintain a high level of detail in the DEM and not because it is the objective of the 

study to map the soil class distributions so specifically. To allow for some spatial uncertainties 

between the GPS positions of the observations and predictor variables, r = 0 cell and r = 1 cell 

methods of validation were used for the external validation tests (Heung et al., 2014; Nauman 

and Thompson, 2014; Vincent et al., 2018). r = 0 cell validation determines if the observed soil 

class matches the prediction at a single grid cell location. In r = 1 validation, an observation is 

considered correctly predicted for if its soil class matches the predictions at the single grid cell 

location or any of the eight adjacent grid cell locations.  

 

4.4.9 Selection of best-performing models 

Models were generated for the two modelling objectives: 4-class and 3-class mapping. The best-

performing models per modelling objective were selected based on their predictive accuracies for 

the cross-validation and the r = 0 cell external validation. These include the four models with the 

highest accuracy based on the cross-validation, the four models with the highest accuracy based 

on the BIOCAP external validation, the four models with the highest accuracy based on the 

Undrained Drained

(n) (n) (n)

Non-Calcareous

Wetland
20 10 28

Calcareous

Wetland
28 0 4

Upland 13 10 31

Total 61 20 63

External validation sets

BIOCAP - St. Denis
Brown - Smith Creek

Soil Class

Table 4.9 Number of soil class observations according to the 3-class mapping 

classification scheme per external validation set. 
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Brown – Undrained external validation, and the four models with the highest average predictive 

accuracy of all three validations. The selection of the best-performing models did not consider 

the predictive accuracy based on the Brown – Drained external validation.  

 

The predictive accuracies based on the cross and external validations provide a summary of the 

best-performing models among the many combinations of model parameters. However, before 

deciding which models performed best overall, it is crucial to ensure that the outputted maps of 

the soil distributions make conceptual sense. This is especially true for this study, where the 

distribution of the wetland soil types is conceptually well understood but has been difficult to 

quantify. Maps were generated for each site from each of the best-performing models. The maps 

were visually inspected to determine if the distribution of soils matched the concepts described in 

section 4.3.1.  

 

4.5 Results  

4.5.1 Tuned model parameters and cross-validation results 

Table 4.10 shows the model parameters and the predictive accuracies based on the 5-fold cross-

validation repeated 20 times for the best-performing models for the two modelling objectives. 

The model parameters include the spatial resolution and level of smoothing used for the 

underlying DEM that all predictor variables were derived from, whether original topographic 

variables or principal components were used as predictor variables, the machine-learning 

technique, and the machine-learning parameter value optimized through the cross-validation. The 

best-performing models included a range of model parameters. Overall predictive accuracy and 

Kappa scores are reported. Cross-validation predictive accuracy of the best-performing models 

for 4-class mapping ranged from 60 to 72% (Table 4.10). The Kappa scores ranged between 0.33 

to 0.57 which correspond to fair to moderate levels of agreement between predictions and 

observations (Landis and Koch, 1977). The cross-validation predictive accuracy for the best-

performing models for 3-class mapping were higher and ranged from 64 to 77% accurate. These 

Kappa scores ranged from 0.4 to 0.63 which correspond to moderate to substantial levels of 

agreement between predictions and observations. The lower accuracy for 4-class mapping is 

largely a result of error in differentiating the Transition and Recharge soil classes that were 

grouped as the single Non-Calcareous Wetland class for the 3-class mapping objective. 



 

76 

 

 

  

†Models are referred to by their model code in the following results and discussion. It reflects the model 

objective: 4C = 4-class mapping, 3C = 3-class mapping; and model parameters: base DEM: 2mNoSm = 

2-m – not smoothed, 2m5xSm = 2-m – 5x smoothed, 5mNoSm = 5-m – not smoothed; predictor 

variables: OV = original topographic variables, PC = principal components; and machine-learning 

technique: ctree = classification tree, treebag = classification tree with bagging, RF = random forest,  

MLR = multinomial logistic regression 

‡Original = original topographic variables, Prin. comp. = principal components  

§Multinom. log. reg. = multinomial logistic regression 

 

Table 4.10 Model parameters and cross-validation predictive accuracy of the best-performing 

models per model objective. 

Accuracy Kappa

(%)

4-class 4C_2mNoSm_OV_treebag 2m no smooth Original Bagged class tree - 71 0.56

4C_2mNoSm_OV_RF Original Random forest mtry = 21 70 0.55

4C_2mNoSm_PC_ctree Prin. comp. Class tree cp = 0.200623 60 0.33

4C_2mNoSm_PC_RF Prin. comp. Random Forest mtry = 4 62 0.39

4C_2m5xSm_OV_ctree 2m 5x smooth Original Class tree cp = 0.035195 68 0.50

4C_2m5xSm_OV_treebag Original Bagged class tree - 72 0.57

4C_2m5xSm_OV_RF Original Random forest mtry = 28 71 0.57

4C_2m5xSm_PC_ctree Prin. comp. Class tree cp = 0.058803 63 0.41

4C_5mNoSm_OV_ctree 5m no smooth Original Class tree cp = 0.012798 63 0.43

4C_5mNoSm_OV_treebag Original Bagged class tree - 71 0.56

4C_5mNoSm_PC_RF Prin. comp. Random forest mtry = 5 68 0.50

3-class 3C_2mNoSm_OV_treebag 2m no smooth Original Bagged class tree - 76 0.60

3C_2mNoSm_OV_RF Original Random forest mtry = 18 76 0.61

3C_2mNoSm_PC_ctree Prin. comp. Class tree cp = 0.03459 64 0.40

3C_2mNoSm_PC_RF Prin. comp. Random forest mtry = 6 71 0.51

3C_2m5xSm_OV_treebag 2m 5x smooth Original Bagged class tree - 77 0.62

3C_2m5xSm_OV_RF Original Random forest mtry = 12 77 0.63

3C_2m5xSm_PC_MLR Prin. comp. Multinom. log. reg. - 73 0.57

3C_5mNoSm_OV_treebag 5m no smooth Original Bagged class tree - 75 0.59

3C_5mNoSm_OV_RF Original Random forest mtry = 22 75 0.59

3C_5mNoSm_PC_MLR Prin. comp. Multinom. log. reg. - 69 0.50

Modelling

Objective
Model code†

Model parameters

Base DEM 
Predictor 

variables‡

Machine-learning 

technique§

Optimized tuning 

parameter

Training data

cross-validation
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4.5.2 External validation results 

The predictive accuracies for the BIOCAP – St. Denis, Brown – Smith Creek – Undrained 

Wetlands, and Brown – Smith Creek – Drained Wetlands external validations for the best-

performing models are shown in Tables 4.11 and 4.12. Overall predictive accuracy and Kappa 

scores are reported for r = 0 cell and r = 1 cell validation methods. The producer’s and user’s 

accuracy are reported for the Calcareous Wetland soil class observations only for the BIOCAP – 

St. Denis external validation dataset because there were few observations (n = 4) within the 

Brown – Smith Creek datasets.  

 

4.5.2.1 BIOCAP – St. Denis external validation  

The predictive accuracies for the BIOCAP – St. Denis external validation were lower than the 

predictive accuracies for the cross-validation and the other external validation tests. The best-

performing models for 4-class mapping had predictive accuracies between 48 to 73% and Kappa 

scores between 0.28 to 0.57 according to the r = 0 cell validation method. As expected, the 

predictive accuracies and Kappa scores were higher according to the r = 1 cell validation method 

and ranged between 55 to 87% accurate with Kappa scores of 0.37 to 0.79. The producer’s 

accuracy for Calcareous Wetland observations were low for each model and ranged from 0 to 

47% accurate, whereas the user’s accuracy was high and ranged from 69 to 100% accurate 

(excluding the 4C_2mNoSm_PC_ctree model). This indicates that the models underestimate the 

amount of Calcareous Wetland soils but, when they were predicted, they were confidently 

predicted as such. The producer’s and user’s accuracy for the Calcareous Wetland observations 

for the 3-class mapping models were similar with the exception of the 3C_5mNoSm_PC_MLR 

model which had both high producer’s accuracy (75%) and user’s accuracy (81%). The overall 

predictive accuracies for the BIOCAP – St. Denis external validation were similar between the 

two modelling objectives (Table 4.11 and 4.12). This is because there were no Transition 

observations in this dataset and none of the 4-class mapping models predicted there to be 

Transition soil classes within this dataset. 
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4.5.2.2 Brown – Smith Creek – Undrained external validation 

The best-performing models for 4-class mapping had predictive accuracies between 50 to 80% 

and Kappa scores between 0.19 to 0.64 according to the r = 0 cell validation method for the 

Brown – Smith Creek – Undrained external validation. The predictive accuracies and Kappa 

scores according to the r = 1 cell validation method ranged between 60 to 90% and 0.37 to 0.82. 

The models for 3-class mapping had higher predictive accuracy which ranged from 70 to 95% 

with Kappa scores between 0.55 to 1.0 according to the r = 0 cell validation method. Most of 

these models were able to successfully predict the soil classes of this external validation dataset, 

however, there were no Calcareous Wetland observations within this dataset. This external 

validation test provided an assessment of whether the models overestimated the extent of 

Calcareous Wetland soil classes and the results indicate that they did not. 

 

4.5.2.3 Brown – Smith Creek – Drained external validation 

The models were similarly successful in their predictions for the Brown – Smith Creek – Drained 

external validation set. The 4-class mapping models had predictive accuracies between 61 to 

89% according to the r = 0 cell validation method and the 3-class mapping models predictive 

accuracies between 70 to 93%. This indicates that the distribution of wetland soils may still be 

predictable within mechanically drained wetlands.  

 

4.5.3 Visual assessment  

Fig. 4.6 and 4.7 show three example wetland series from each study site and the predicted soil 

maps from a few of the best-performing models. The predicted extents of wetland soils vary 

from site to site: Swift Current had the smallest extents of wetland soils and Smith Creek had the 

greatest extents of wetland soils, which is consistent with what was observed in the field 

sampling.  

 

4.5.3.1 Visual assessment of 4-class maps 

The 4C_2mNoSm_OV_RF (Fig. 4.6d-f) and 4C_2mNoSm_OV_treebag (not shown) models 

generated similar, acceptable-looking maps. Calcareous Wetland soil rings were consistently 

mapped surrounding the wetland basins. Transition soils were often mapped between the 

Recharge basins and the Calcareous Wetland ring as expected (most apparent in Fig. 4.6f). 
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Upland soils were restricted to upland landscape positions. The wetland basin floors were 

mapped as either Recharge or Transition soils. There was some speckling of Recharge and 

Transition soils within wetland basin floors, which is not expected. Other than the transition from 

Recharge to Transition or Calcareous Wetland soils at the edge of the basin, wetland basin floors 

are expected to have uniform distributions of soils throughout them (Pennock et al., 2014). This 

speckling issue was far less common in the maps generated from these models 

(4C_2mNoSm_OV_RF and 4C_2mNoSm_OV_treebag) compared to most of the other 4-class 

mapping model outputs. Another issue was that no models mapped wetlands as having 

Calcareous Wetland throughout their basins. Field observations in previous studies confirm that 

there are several known discharge wetlands in the lower portion of the St. Denis watershed 

(Pennock et al., 2014). These same wetlands were consistently mapped as having Transition soils 

throughout the basin floors which would indicate that these are flow-through wetlands. Some 

recharge wetlands were mapped as having Transition soils throughout their basin floor, as is seen 

in the largest wetland pictured in the Swift Current map (Fig. 4.6), but most recharge wetlands 

were mapped with Recharge soils throughout their basin floor. Aside from the minor speckling 

issue and mapping the discharge wetland basins at St. Denis with Transition soils, the maps from 

these models matched the conceptual understanding of the distribution of soil types in these 

landscapes.  

 

The random forest and bagged classification tree models based on the 2-m – 5x smoothed and 

the 5-m – not smoothed DEMs using the original variables generated similar-looking maps 

 (4C_2m5xSm_OV_treebag, shown Fig. 4.6g-i) as those discussed above. However, for many of 

the wetlands at St. Denis, Calcareous Wetland soils were speckled throughout the wetland basins 

(seen in Fig. 4.6h). This issue was far more common in these maps than in the maps generated by 

the 4C_2mNoSm_OV_RF and 4C_2mNoSm_OV_treebag models discussed above.  

 

The 4C_5mNoSm_OV_ctree model did map some wetlands with Calcareous Wetland soils 

throughout their basins (Fig. 4.6k) but it was not consistent in its mapping of discharge/strongly 

calcareous wetlands. There were several other issues associated with these outputted maps, 

including Upland soils being mapped in wetland landscape positions. The maps generated from 

models built using principal components consistently had soil classes in more scattered  
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Fig. 4.6 3D representations of aerial imagery and 4-class map outputs from select best-

performing models for example wetlands from each site. 
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Fig. 4.7 3D representations of aerial imagery and 3-class map outputs from select best-

performing models for example wetlands from each site. Calc. = Calcareous. 
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distributions including wetland soil classes mapped in Upland positions (4C_5mNoSm_PC_RF 

shown Fig. 4.6m-o.). 

 

4.5.4.2 Visual assessment of 3-class maps  

The 3C_2mNoSm_OV_RF (Fig. 4.7d-f) and 3C_2mNoSm_OV_treebag outputs were similar to 

the 4C_2mNoSm_OV_treebag (Fig. 4.6d-f) and 4C_2mNoSm_OV_RF discussed above, except 

that the Recharge and Transition soils were predicted as Non-Calcareous Wetland soils. All 

wetland basin floors were mapped with Non-Calcareous Wetland soils. There was no issue of 

soil class speckling within the wetland basins in the maps generated by these two particular 

models. Again, no wetlands were mapped with Calcareous Wetland soils throughout the wetland 

basin. Similar to their 4-class mapping equivalent models, apart from missing these features, the 

maps generated from these models were consistent with the conceptual understanding of the 

distribution of wetland soil types.  

 

Similar issues of soil class scattering throughout the St. Denis wetland basins were seen in the 

maps generated from the models based on the 2m – 5x smoothed and 5m – not smoothed DEMs. 

The maps generated from the models using principal components again had issues with wetland 

soil classes predicted in upland positions. This is most apparent from the 3C_2mNoSm_PC_ctree 

model maps (Fig. 4.7g-i) and less apparent with the 3C_5mNoSm_PC_MLR model maps (Fig. 

4.7m-o). 

 

4.6 Discussion 

4.6.1 4-class vs. 3-class mapping  

The purpose of the modelling was to predict the extents of wetland soils that offer greater 

potential for phosphorus retention due to their enrichment with CaCO3. The 3-class mapping was 

designed to be more appropriate for this purpose as it classified the wetland soil based on 

whether it is enriched with CaCO3 at the surface of its profile where soil calcium could interact 

with the mobile phosphorus within the wetland pond. The classifications of Calcareous Wetland, 

Recharge, and Upland were also explored because they are important hydropedological concepts 

in this region and successful mapping of them could serve additional purposes. The Transition 

class was incorporated because Calcareous Wetland and Recharge soils represent very specific 
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concepts and many soil profile observations did not fit into those classes. The extent of the 

Transition soils between the recharging wetland center and the discharge ring is not necessarily 

important to distinguish for the purposes of phosphorus retention potential estimates. However, 

based on the map outputs, the 4-class maps may provide more information in terms of 

phosphorus retention potentials than the 3-class maps. This is because the predicted extents of 

Transition soils provide more information than they were intended to, as they seem to indicate 

wetlands with the potential to be fully discharge/strongly calcareous wetlands; this is discussed 

further in section 4.6.2. Otherwise, the 4-class and 3-class 2mNoSm_OV_RF and 

2mNoSm_OV_treebag models predict similar extents for the Calcareous Wetland soils. The only 

difference is that Non-Calcareous Wetland soils were further specified as either Transition and 

Recharge soil classes in the 4-class maps. The predictive accuracies were generally lower for the 

4-class maps, but this is due to the higher predictive error in differentiating between the 

Recharge and Transition soil classes. The predictive accuracies of the 4C_2mNoSm_OV_RF and 

4C_2mNoSm_OV_treebag models were still within an acceptable range. There was also some 

speckling of Recharge and Transition soil classes within some wetland basins in the 4-class maps 

generated by these models, but this was not as prominent as was seen in other model outputs.  

 

4.6.2 Fully discharge/strongly calcareous wetlands  

None of the models predicted wetlands with Calcareous Wetland soils throughout their basins. 

This contributed to the low predictive accuracies for the BIOCAP external validation tests. One 

of the three sampled wetlands in this dataset had Calcareous Wetland soils throughout its basin; 

the 3C_5mNoSm_PC_MLR model was the only model that predicted Calcareous Wetland soils 

within that specific wetland basin. However, it did not consistently predict Calcareous Wetland 

soils throughout the known discharge wetlands in the St. Denis study area.  

 

Within the dataset collected for this study (the model training data), there were only six wetlands 

sampled that were likely to be fully discharge/strongly calcareous wetlands: five in the lower 

portion of the St. Denis study area and one in the lower portion of the Swift Current study area. 

Even though they were sampled, it was not possible to confirm if they were fully 

discharge/strongly calcareous wetlands because sampling could not be conducted at the basin 

floor due to deep water inundation. This was an issue with the sample design that was likely to 
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have caused the lack of these wetland types being predicted. Generally, discharge wetlands are 

less likely to dry out annually (Van der Kamp and Hayashi, 2009). Recharge wetlands can also 

remain inundated throughout the year, but smaller, less permanent wetlands are typically 

recharge wetlands. The pattern of soil distribution observed at most recharge wetlands was a ring 

of Calcareous Wetland soils surrounding the Recharge soils within the basin floor (potentially 

with a ring of Transition soils between them). Because this pattern was so common in the 

training data, the models likely assumed that within the potentially discharge/strongly calcareous 

wetlands, at the positions at lower than the observed Calcareous Wetland soil profiles, the same 

pattern of Transition and Recharge soils would be encountered.  

 

The low producer’s accuracy and high user’s accuracy for the Calcareous Wetland soil class 

indicates that the models underestimated the frequency of these soils, but where they were 

mapped they were confidently mapped as such. There were fewer Calcareous Wetland 

observations within the training data than Recharge, Non-Calcareous Wetland, and Upland soil 

class observations (Tables 4.5 and 4.6). Therefore, models that predict greater frequencies of 

these other soil classes will be preferentially selected because they are more likely to have 

greater overall predictive accuracy. One method to address this issue is to influence the model to 

predict more Calcareous Wetland soil classes by creating synthetic observations of Calcareous 

Wetland soil classes in the training data using the Synthetic Minority Over-sampling Technique 

(SMOTE) (Chawla et al., 2002). This involves generating new predictor variable information for 

each synthetic observation based on the predictor variable information of the existing 

observations. This was tested with the 3C_2mNoSm_OV_RF model where 40 synthetic 

observations of Calcareous Wetland soils were incorporated into the training data to match the 

number of Non-Calcareous Wetland soils (n = 79). However, the resulting model had similar 

producer’s and user’s accuracies for Calcareous Wetland observations and similar overall 

predictive accuracy for the BIOCAP external validation test. Due to the water inundation during 

the time of sample collection at potential discharge/strongly calcareous wetlands, Calcareous 

Wetland soils were only observed in the fringe surrounding wetlands and not within wetland 

basin floors. Therefore, these soil class observations occupied a relatively small feature space in 

terms of their predictor variable values. The newly generated synthetic observations would be 
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ascribed predictor variable information similar to the existing observations and would not 

necessarily encourage the mapping of these soil classes in the wetland basin centers.   

 

The wetlands that were mapped as having Transition soils throughout their basins (flow-through 

wetlands) by the 4C_2mNoSm_OV_RF and 4C_2mNoSm_OV_treebag models have 

characteristics that would indicate the potential to be fully discharge/strongly calcareous 

wetlands; they were typically large and found in lower positions within the landscape. This 

included most of the known discharge wetlands in the St. Denis study area. This is likely due to 

the influence of a sampled flow-through wetland in this area that had Transition soils throughout 

its basin center. Wetlands mapped as flow-through wetlands could be interpreted as wetlands 

with greater potential to be discharge/strongly calcareous wetlands. Certain wetlands found to be 

recharge through the field sampling were also mapped as being flow-through wetlands, as seen 

in the largest wetland shown in the Swift Current output map (Fig. 4.6). But beyond this 

example, known recharge wetlands were not commonly mapped as flow-through wetlands. 

 

4.6.3 Predictor variable importance 

Random forest models do not allow for easy interpretation of their decision-making, but they do 

provide a measure of the predictor variable importance to the decision-making. This is reported 

as mean decrease in Gini coefficient (MDG) which reflects how effective a variable is at creating 

homogeneous splits in the nodes across the entire forest (Strobl et al., 2009). Fig. 4.8 shows the 

MDG of each predictor variable for the 4C_2mNoSm_OV_RF model. Many of the knowledge-

based predictor variables developed for this study were found to be important according to this 

and the other best-performing random forest models (Fig. 4.8).  

 

According to the 4C_2mNoSm_OV_RF model, the Elevation from depression spillover variable 

was one of the most important predictor variables (Fig. 4.8). This is consistent with the findings 

of Pennock et al. (2014) that found the distribution of Recharge and discharge (Calcareous 

Wetland) soils was predictable based on maximum recorded water levels. Their finding was 

determined at sites where pond water levels have been recorded annually since at least 1968. 

This information does not exist for most locations but Elevation from depression spillover works 

as a proxy for this information, as for many wetlands, the depression spillover elevation will 
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match the maximum water level. This will not necessarily be true for the largest wetlands. This 

highlights the advantage of more complex model types, like the tree-based models, that 

determine instances where certain variables are most applicable for determining class 

predictions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Elevation above basin bottom attribute was another useful knowledge-based predictor 

variable developed for this study. Pennock et al. (2014) found that 95% of Recharge soils were 

found within the 0 - 0.95 m elevation above the wetland basin bottom and 90% of discharge 

Slope height 
Elevation from depression spillover 

Standardized height 
Multi-resolution valley bottom flatness 

Normalized height 
Wetland Strahler order minimum 

Elevation above basin bottom 
DEM 

Depression max- catchment 
Slope length and steepness factor 

Elevation above basin bottom/depth 
Specific dispersal area 

Aspect  
Wetland Strahler order maximum 

SAGA wetness index 
Depression depth 

Total curvature 
Multi-resolution ridge top flatness 

Slope 
Valley depth 

Terrain ruggedness index 
Mid-slope position 

Topographic wetness index 
Profile curvature 

General curvature 
Relative slope position 

Elevation percentile 
Catchment area 

Convergence index 
Plan Curvature 

Tangential curvature 
Specific catchment area 

Mean Decrease in Gini 
Fig. 4.8 Predictor variable importance for the 4C_2mNoSm_OV_RF model 

plotted based on MDG. Predictor variables developed for this study are 

highlighted in gray. 



 

89 

 

(Calcareous Wetland) soils occurred between 0.95 to 2 m elevation above the wetland basin 

bottom. The relationships between Elevation above basin bottom and the soil profiles sampled in 

this study (which included a broader range of wetland sizes) were analyzed. It was found that all 

Recharge soils were within 0 to 1.2 m and all Transition soils were within 0 to 2.1 m elevation 

above the basin bottom. All Calcareous Wetland soils were found between 0.5 to 3 m elevation 

above the basin bottom except for five profiles that were adjacent to the two massive, potentially 

lake-sized wetlands at St. Denis. This attribute is important for predicting the distributions of soil 

classes. It does not provide all necessary information, but again, it provides useful information to 

more complex model types to make predictions.     

 

4.6.4 DEM resolution and smoothing 

The models based on the 2-m – 5x smoothed and the 5-m – not smoothed DEMs performed well 

in the cross-validation and external validation tests. The issue with these models was identified 

in the visual assessment. Most commonly seen in the St. Denis study area, the wetland basins 

were often speckled with varying soil types. The DEM smoothing and coarsening was performed 

to reduce the erroneous sinks and artefacts present in the DEM and therefore, it was expected 

that class prediction errors would have been more likely to be found in the maps generated based 

on the 2-m – not smoothed DEM.  

 

The class speckling within the basins was commonly associated with wetlands where low levels 

of water were present during the time of LiDAR collection. This results in flat surfaces in the 

DEM where the water was located (Li et al., 2011). Upon close inspection of these positions 

within the 2-m – not smoothed DEM, it was observed that these flat surfaces were not perfectly 

flat; there were small differences in elevation from cell to cell (less than 30 cm) (Fig. 4.9a). 

These differences were errors within the DEM surface. The small degree of variation in cell to 

cell elevations within a relatively flat surface can cause drastically different values between the 

cells for certain topographic attributes. For example, the Convergence Index algorithm considers 

the direction of slope of the adjacent cells compared to the target cell, it does not consider the 

degree of slope (Kiss, 2004). The variation caused by the error in the flat surface causes 

drastically different Convergence Index values between cells which results in a very noisy raster 

surface (Fig. 4.9c). This was the case for several topographic attribute raster surfaces generated 
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from the 2-m – not smoothed DEM. The machine-learning models would be unable to determine 

useful relationships between the soil classes and the noise of the topographic attributes in these 

positions and would not use them to inform predictions. Conversely, when the flat surfaces were 

smoothed and coarsened to create the 2-m – 5x smooth and 5-m – not smoothed DEMs, the cell 

to cell variation was reduced but erroneous features still existed (Fig. 4.9b.). The topographic 

attributes of these features look less like random noise (Fig. 4.9d) and may end up providing 

information to the machine-learning models causing the models to predict different soil classes at 

different positions along these features. 

 

The artefactual features within the water-caused near-flat surfaces could be corrected by 

removing these surfaces from the DEM and re-interpolating them, as was done by Li et al. 

(2011). These positions would still have flat surfaces, but they would either be perfectly flat or 

have the same generalized slope across them so that artefactual features would not be interpreted 

from them. Li et al. (2011) provide a simple method for determining these surfaces by using the 

LiDAR intensity data to determine where water was present during the time of LiDAR 

collection. However, the LiDAR intensity data was not available for these study areas. Detection 

of these water-caused near-flat surfaces could not be automated and so re-interpolation of these 

surfaces was not conducted for this study. 

 

Aside from this class speckling within the wetland basins, most of the classification trees with 

bagging and random forest models generated using the 2-m – 5x smoothed and the 5 m – not 

smoothed DEMs created acceptable map outputs. The models built from the 5-m DEM did not 

capture features in as much detail but captured the same major distributions of wetland soils as 

the 2-m resolution maps. To map PPR wetland soils on a much larger scale, it would be 

especially beneficial to work with 5-m DEMs to reduce computational memory and processing 

time requirements.  
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4.6.5 Principal component analysis  

There were fewer principal component-based models amongst the best-performing models (only 

4 of 21). Based on the validation accuracy metrics, it is unclear if using the principal components 

had any effect on the performance of the tree-based machine-learning models. In terms of visual 

assessment, the principal component-based models often generated maps with speckling of 

unexpected soil classes in both the wetland and upland landscape positions. The use of principal 

Fig. 4.9 Comparing surficial errors within the 2 m – not smoothed and 2 m – 5x smoothed DEM. a) 

and b) show 3D representations of the elevation surfaces for a wetland within the St. Denis DEM 

with a near-flat surface due to water presence during LiDAR collection. c) and d) show the 

resulting raster surfaces for the Convergence Index variable for the same wetland. 
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components improved the performance of the multinomial logistic regression models as the only 

MLR models included as best-performing models were principal component-based. Non-

penalized multinomial logistic regression models are susceptible to overfitting when too many 

predictor variables are available (Hastie et al., 2009). Because principal component analysis 

reduced the number of predictor variables, the principal component-based MLR models 

performed better than the original variable-based MLR models.  

 

One issue with PCA for this study is that the variables were simplified in terms of their overall 

variance and not strictly in terms of their variance in relation to the target soil classes. Not all 

features of the landscape were as important as others to this modelling exercise; large expanses 

of upland areas would be expected to have the same soil type, whereas three to four soil types 

may be found in the mid-slope, foot-slope, and toe-slope of a depression within a few meters of 

each other. The topographic attributes of these more important features may be simplified 

through PCA causing useful modelling information to be lost.  

 

4.6.6 Drained wetlands  

Wetlands that had been mechanically drained were avoided in the sample design because it was 

unknown how the distribution of soil types would have been affected. It was also unclear how 

the drainage would affect the topographic attributes of the wetlands. Many of the topographic 

attributes used as predictor variables in this study quantify water movement potential in the 

landscape. As well, many of the topographic attributes developed in this study were based on the 

closed topographic depressions in the DEM. Mechanical drainage alters the elevation surface and 

so these attributes would be affected.   

 

The Brown – Smith Creek – Drained dataset allowed for the assessment of the performance of 

the prediction models in areas that had undergone mechanical drainage. The models were still 

able to successfully predict the distribution of soil types for this dataset. There were only four 

Calcareous Wetland soil observations within this dataset and they were predicted with varying 

accuracy (0 – 75 % producer’s accuracy). But the high overall predictive accuracy still indicates 

that the models were at least able to successfully differentiate between wetland and upland soils. 
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Therefore, modelling could potentially be used for restoration projects in these drained 

landscapes to identify previous wetland extents.  

 

4.7 Conclusion 

The combination of high-resolution LiDAR-derived DEMs and machine-learning model 

techniques were assessed for modelling the spatial distribution of wetland and upland soil types 

within PPR landscapes. Two modelling objectives were tested: 1) 4-class mapping where soils 

were mapped to reflect hydropedological concepts of Recharge, Calcareous Wetland, Transition, 

and Upland soils and 2) 3-class mapping where soils were mapped in terms of their potential for 

phosphorus retention within wetlands.  

 

The 4C_2mNoSm_OV_RF and 4C_2mNoSm_OV_treebag models were the best-performing 

models for 4-class mapping. The 3C_2mNoSm_OV_RF and 3C_2mNoSm_OV_treebag models 

were the best-performing models for 3-class mapping. These models had similar cross-validation 

and external validation accuracies as the other best-performing models but the maps they 

generated were more consistent with the conceptual understanding of the distribution of wetland 

soil types within the PPR. There were issues of soil class speckling in unexpected landscape 

positions within the maps generated by the models based on the 2 m – 5x smoothed and 5 m – 

not smoothed DEMs as well as in the maps generated by the principal component-based models. 

No models consistently predicted wetlands with Calcareous Wetland soils throughout their basin. 

This is due to being unable to sample the basin centers of potentially fully discharge/strongly 

calcareous wetlands because they were inundated at the time of sampling.  

 

The 4-class and 3-class 2mNoSm_OV_RF and 2mNoSm_OV_treebag models successfully 

mapped the distribution of soil types within recharge wetlands. The distribution of Calcareous 

Wetland soils in the wetland fringe is intuitively understandable when observed in the field; 

however, it is difficult to quantify this relationship with a single or even several topographic 

attributes. The more complex machine-learning techniques, like the ensemble tree learners 

(classification trees with bagging and random forest models), were able to successfully model 

this soil distribution for wetlands of varying sizes and characteristics. The inclusion of 

knowledge-based predictor variables based on the relationships established by Pennock et al. 
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(2014) improved these predictive models. The map outputs from these models convey the 

intuitively-understood distribution of these soil types.    

 

Map users can be confident to find Calcareous Wetland soils where they were mapped by these 

models. However, the models underestimate the extent of these soil types because no models 

consistently predicted the occurrence of wetlands with Calcareous Wetland soils throughout their 

basins. This must be considered if the models were used to upscale estimates of these soil types 

across the PPR. The 4-class mapping models consistently mapped wetlands with greater 

potential to be discharge/strongly calcareous wetlands as flow-through wetlands (which have 

Transition soils throughout their basin floors). For this reason, the 4-class mapping models 

provide more information than the 3-class mapping models for the purpose of identifying 

wetlands with greater potential for phosphorus retention because the mapped flow-through 

wetlands could be interpreted as potentially discharge/strongly calcareous wetlands. These 

wetlands could be given greater priority in terms of conservation for the purposes of maintaining 

phosphorus retention potentials in the PPR.  

 

Overall, the results indicate that DSM methodologies are well suited to mapping wetland soil 

types in the PPR. However, the presence of water surfaces within the DEMs and the challenge of 

sampling more permanent wetlands with inundated basin centers must be considered. Also, the 

landscapes are defined by their small-scale topographic variability and so mapping of soil 

distributions should be done at high-resolutions. It is likely that at much coarser resolutions, 

wetland depressional features would be smoothed over and predictive capacities would be 

reduced.  
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5 SYNTHESIS AND CONCLUSIONS 

Phosphorus loading of prairie watersheds has led to degradation of water quality in major 

waterbodies within the region, including Lake Winnipeg (Environment Canada, 2011). Drainage 

of PPR wetlands reduces the natural ability of these wetlands to retain mobile phosphorus from 

agricultural runoff (Blann et al., 2009; Badiou et al., 2018). Efforts to maintain phosphorus 

retention potentials in the PPR may be more effective by prioritizing the conservation of 

wetlands with soils enriched with CaCO3, as these soils have greater potential to retain mobile 

phosphorus (Zhang et al., 2014; Brown et al., 2017b). The spatial distributions of wetland solute 

and CaCO3 enrichment are controlled by hydrologic processes that occur over landscape scales 

and on individual wetland scales (Van der Kamp and Hayashi, 2009; Pennock et al., 2014). The 

studies presented in this thesis attempted to predict the spatial distributions of solute-rich 

wetlands and calcareous soils through analysis of high-resolution LiDAR-derived DEMs. Two 

modelling approaches were tested, each with slightly differing objectives. The model discussed 

in Chapter 3 proposes a method to estimate hydrologic characteristics for individual wetlands 

and predict them to be either fresh or solute-rich. Digital soil mapping methodologies were tested 

in Chapter 4 to predict the spatial distribution of wetland soil types through use of machine-

learning modelling techniques and many topographic attributes derived from the DEM. The 

models predictively mapped soil classes based on hydropedologic units: Recharge, Calcareous 

Wetland, Transition, and Upland soils as well as more generalized soil classes that related more 

specifically to CaCO3 enrichment: Calcareous Wetland, Non-Calcareous Wetland, and Upland 

soils.  

 

5.1 Summary of findings and general conclusions 

The modelling studies of this thesis indicate that it is possible to predictively map the spatial 

distributions of solute-rich wetlands and calcareous wetland soils within PPR landscapes. Both 

modelling approaches were dependent on high-resolution DEMs. The small-scale topographic 

variation of the PPR defines its hydrologic and hydropedologic processes which control the 

distributions of CaCO3 (Van der Kamp and Hayashi, 2009; Pennock et al., 2014). The high-

resolution DEMs allowed for more realistic approximations of these processes and 

characteristics. At too coarse of resolutions, depressional features can be smoothed out and 

important modelling information is lost (Li et al., 2011).  
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Deep groundwater movement can be an important control on the distribution of solutes in PPR 

wetlands (Van der Kamp and Hayashi, 2009). The inability of the models to specifically account 

for deep groundwater movement using only surface elevation models likely resulted in some 

model error for both studies. The model proposed in Chapter 3 underestimated the number of 

solute-rich wetlands in the SDNWA which may have been because it could not account for the 

intertill aquifer known to contribute solutes to select wetlands in that area (Hayashi et al., 1998b; 

Heagle et al., 2013). The models discussed in Chapter 4 had difficulty predicting the occurrence 

of discharge wetlands which dominantly receive deep groundwater discharge. It would require 

enormous resources to develop spatially continuous maps of deep groundwater characteristics on 

wide-scales. Although high-resolution DEMs can be expensive to generate (i.e. via LiDAR) and 

cannot specifically account for deep groundwater characteristics, they are relatively accessible, 

and they provided adequate information to allow for the modelling of the hydrologic and 

hydropedologic processes occurring at this scale, which would not have been possible otherwise. 

Furthermore, unmanned aerial vehicles are increasingly being used to collect data to generate 

high-resolution DEMs; this approach requires comparatively minimal costs. 

 

The model proposed in Chapter 3 was successful in predicting the spatial distributions of fresh 

and solute-rich wetlands within PPR landscapes. The best-performing model had acceptable 

predictive accuracies based on the training and external validation tests (between 69 and 82% 

accurate). The methodologies proposed for this model, where stream channel networks were 

adapted to reflect spill channel connections that were more likely to occur, proved to be 

advantageous for this modelling purpose. This methodology accounts for the influence of 

depressional features on hydrologic connectivity within PPR landscapes. When this methodology 

was not incorporated into the model, the model did not perform as well. These characteristics 

need to be considered in any attempt to model hydrology in the PPR (Li et al., 2011; Shook et 

al., 2013).   

 

The model also showed potential to be used for predicting wetland solute-richness for other 

purposes and could, therefore, potentially inform studies in biology, ecology, or agrology. It was 

tested to predict the distributions of wetland solute-richness classes based on salinity thresholds 

that reflected risks to agronomic productivity. Different model parameters were used for this 
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objective. These models were successful in their predictions, although they had slightly lower 

predictive accuracies than the models generated to predict wetland solute-richness classes that 

reflected CaCO3 enrichment. This may indicate that the model is less effective at differentiating 

between wetlands that are at the higher end of the solute-richness spectrum, i.e. differentiating 

solute-rich wetlands from very solute-rich wetlands.  

 

There was varying success for predicting the spatial distributions of wetland soil types depending 

on the DSM methodologies used. The classification trees with bagging and random forest models 

that used predictor variables derived from the 2-m DEM with no smoothing were the best-

performing models. These models had reasonable predictive accuracies based on the cross-

validation and external validation tests and mapped the soils in distributions that matched the 

conceptual understandings established in the literature (Arndt and Richardson, 1988; Pennock et 

al., 2014). The classification trees with bagging and random forest models are complex 

modelling techniques that can capture effects and interactions between many predictor variables. 

This likely contributed to their success in predicting the distribution of wetland soil types, which 

result from complex interactions of soil forming factors. The topographic attributes developed to 

specifically reflect characteristics of the PPR morphology contributed to the overall success of 

the models. A few of these were based on the relationships between topographic attributes and 

PPR soil distributions determined by Pennock et al. (2014) and represent knowledge-based 

predictor variables. The incorporation of knowledge-based predictor variables into DSM models 

has been shown to improve model performance (MacMillan et al., 2005).  

 

Many of the DSM models had reasonable predictive accuracies but produced maps with 

unexpected distributions of soils. This was largely due to the effect of near-flat surfaces within 

the DEM in the positions where water was present during the time of LiDAR collection. If not 

for these specific issues, the map outputs from these models would be acceptable. The models 

that were generated using the principal component-based predictor variables produced maps with 

soil classes scattered in unexpected positions. Conducting principal component analysis for the 

predictor variables did not prove to be beneficial for this modelling objective.  
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None of the DSM models successfully predicted the occurrence of fully discharge/strongly 

calcareous wetlands, which have Calcareous Wetland soils throughout their basins. This was the 

result of an issue with the sample design where the basin floors of the larger, more permanent 

wetlands could not be sampled due to deep water inundation and, as a result, there were minimal 

observations of Calcareous Wetland soil classes in wetland basin floor positions. The lack of 

these observations in the training dataset resulted in no models predicting the occurrence of 

discharge/strongly calcareous wetlands. This highlights the importance of the training data to 

DSM. The training data must include observations that are representative of every landscape 

feature that is meant to be mapped. Some of the 4-class mapping models predicted flow-through 

wetlands (wetlands with Transition soils throughout their basin) occurring where known 

discharge wetlands are found at St. Denis. These could be interpreted to indicate wetlands with 

potential to be discharge/strongly calcareous wetlands.  

 

The models in both studies incorporated topographic attributes that reflected landscape and 

watershed-scale hydrologic processes. Distributions of CaCO3 are controlled by processes 

occurring over this scale. It is uncertain how the models would perform using DEMs for only a 

portion of a watershed. The topographic characteristics derived from the DEM would not be able 

to account for the hydrologic processes occurring on the larger scales. Soil distributions within 

individual wetlands could still likely be predicted, but the models would have difficulty 

determining wetlands as either fresh or solute-rich or recharge, discharge/strongly calcareous, or 

flow-through, depending on the characteristics and size of the area to be modelled.  

 

5.2 Model application for prioritizing conservation efforts  

A number of different wetland types were discussed throughout this thesis (Table 5.1). There are 

clear relationships between the wetland types but, for the purposes of this study, the terms are not 

used interchangeably.  
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The models discussed in this thesis were developed using very different approaches but they both 

could be used for the same objective: to identify wetlands with soil enriched with CaCO3 that 

have a greater potential for phosphorus retention. Both approaches have underlying uncertainties 

associated with them. The model proposed in Chapter 3 maps solute-rich wetlands, which can 

include both recharge, flow-through, and discharge/strongly calcareous wetland types. Recharge 

wetlands can have strongly calcareous soils within their discharge rings, but discharge/strongly 

calcareous wetlands have calcareous soils throughout their basin and therefore would likely have 

a greater potential for retaining mobile phosphorus because there is more soil-surface area to 

interact with the wetland pond-water phosphorus.  

 

Although the DSM models did not predictively map discharge/strongly calcareous wetlands, the 

wetlands mapped as flow-through wetlands could be indicative of wetlands with greater potential 

to be discharge/strongly calcareous. There were much fewer flow-through wetlands mapped than 

solute-rich wetlands, and those that were mapped as flow-through wetlands were often known 

discharge wetlands. Therefore, the wetlands that were mapped as flow-through wetlands were 

the most likely to be discharge/strongly calcareous wetlands and would be considered to have the 

Table 5.1 Wetland type definitions used within this thesis. 

Chapter Wetland Type Definition

3 Fresh
EC < 1000 µS cm

-1

EM < 70 mS m
-1

Solute-rich
EC > 1000 µS cm

-1

EM > 70 mS m
-1

4 Recharge
Recharge/Non-Calcareous Wetland 

soils throughout wetland basin floor

Flow-through
Transition soils throughout wetland 

basin floor

Discharge / 

strongly calcareous

Calcareous Wetland soils throughout 

wetland basin floor
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greatest potential for phosphorus retention. Other wetlands predicted to be solute-rich by the 

model described in Chapter 3 would still be expected to be enriched with CaCO3 but not to the 

extent of those most likely to be discharge/strongly calcareous wetlands. Wetlands predicted to 

be fresh are expected to have the lowest potential for phosphorus retention. Wetlands could be 

prioritized for conservation based on their expected phosphorus retention potential from most to 

least important: 1) discharge/strongly calcareous/flow-through, 2) other solute-rich wetlands, and 

3) fresh wetlands. This is not to indicate that fresh wetlands do not contribute to managing 

phosphorus runoff; all wetlands provide increased water storage capacities and reduce 

conveyance within PPR watersheds (Blann et al., 2009). Other factors should also to be 

considered in conservation decision-making, including a wetland’s potential to contribute runoff 

to rivers and streams. Certain wetlands would not be expected to contribute phosphorus runoff to 

downstream waterways regardless of their chemical characteristics due to their topographic 

position or morphology. Where as “gate-keeping” wetlands would be most important to conserve 

as they control connectivity to downstream waterways.  

 

5.3 Suggested model improvements and future research directions 

There are several improvements that could be made to each of the modelling approaches. The 

model proposed in Chapter 3 based its predictions on only one or two variables (Strahler order 

and terminal status), and the performance of the model varied at the different study areas. The 

study areas varied in terms of the CaCO3 content of their parent materials and their climatic 

characteristics, which affect wetland area extents and general hydrologic connectivity within the 

landscape. These characteristics would have implications for the distributions of solute-rich 

wetlands. The model could be improved upon by incorporating site specific information that 

reflect these characteristics, such as soil survey salinity maps. This issue could also be addressed 

by calibrating the model parameters for a target mapping area by using wetland salinity data 

from that area.  

 

The main issues encountered in the DSM study (Chapter 4) were due to water within the 

wetlands, which limited sampling access and caused error-prone near-flat surfaces within the 

DEMs. Capturing wetland soil observations in the centers of larger, more permanent wetlands 

are essential for accurate predictive mapping in these positions. The soil sampling was conducted 
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during a particularly wet period. Wetland basin centers for larger, more permanent wetlands 

would be more accessible during drier periods. Other sampling methods could also be explored, 

such as coring through the ice in winter. The issue of the near-flat surfaces within the DEMs 

could be corrected by identifying these features through an automated detection procedure and 

re-interpolating them. 

 

Testing wetlands for salinity and field-testing wetland soil cores through application of 

hydrochloric acid were both very quick measures of solute-richness and CaCO3 content. The 

classification criteria used for the solute-rich wetland class reflects a very broad range of wetland 

salinity and the wetlands within this class would have had a wide range of CaCO3 content within 

their soils. Similarly, the soils that were determined to have moderate to strong CaCO3 within 

their surface horizons to be classified as Calcareous Wetland soil may have contained widely 

varying actual CaCO3 content. It would be beneficial in a future modelling study to analyze and 

quantify soil surface CaCO3 content and attempt to map it. There has been extensive work in the 

field of DSM to map continuous variables like CaCO3 content. However, the model would need 

to also account for the potential for the CaCO3 to interact with mobile phosphorus within runoff. 

There are many landscape positions with CaCO3-enriched soils that would not have the same 

potential to interact with phosphorus runoff as wetland positions do. This is a strength of the 

class-based approach, as the wetland soil classes reflect soils that are most likely to interact with 

runoff.  

 

Before any further modelling is conducted, it is necessary to further quantify the relationships 

between phosphorus retention and calcareous wetland soils. Brown et al. (2017b) compared 

available and total phosphorus content within calcareous and non-calcareous wetland soils but 

had a limited sample set. It would be beneficial for future studies to analyze the relationships 

between soil type and specific phosphorus fractions, as they have different loss potentials 

(Brown et al., 2017b). It would also be useful to compare phosphorus retention of discharge ring 

soils and calcareous basin floor soils, as this would have implications for prioritizing wetland 

conservation. With better relationships established between calcareous wetland soils and 

phosphorus retention, the map outputs from the DSM models could be used to estimate the 

stored phosphorus within wetland soils across the PPR. 
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APPENDIX A: GIS METHODOLOGIES FOR WETLAND SOLUTE-RICHNESS CLASS 

MODEL 
 

Note: the output files generated throughout the procedures (shapefiles, rasters, etc.) are given 

names in this document to clarify their origin and purpose, some names may be longer than 

ArcGIS allows for and abbreviations should be used.  

 

Appendix A-1: Remove roads from DEMs 

1. Acquire 1-m resolution DEM for the target study area and import into ArcMap. DEMs of 

other resolutions could also be used but the procedures that are affected by cell size 

should be adjusted accordingly 

2. Acquire or create road network polyline shapefile and import into ArcMap 

a. The Saskatchewan Road Network Database 2014 shapefile provided a polyline 

shapefile for the roads within each study area 

b. Road segments that were visible in the aerial imagery or in the DEM that were not 

reflected in the original road network shapefile were added as line segments  

3. Use the ArcGIS Buffer tool – this step will create polygon buffers of the road network 

shapefile 

a. Input Features: Road network shapefile 

b. Output Feature Class: Road_Buffer_Polygons 

c. Distance: Linear unit 28 m – this will buffer the roads 28 m on either side (56 m 

total). 56 m was wide enough to cover the widest road-related features in the 

DEMs of the three sites. Different values could be used for other sites to either 

capture larger road-related features or minimize the effect of the procedure on the 

DEM 

d. Side Type: FULL 

e. End type: ROUND 

f. Method: PLANAR 

g. Dissolve type: NONE 

4. Use the ArcGIS Polygons to Raster tool 

a. Input Features: Road_Buffer_Polygons  

b. Value field: any input  

c. Output Raster Dataset: Road_Buffer_Raster 



 

112 

 

d. Cell assignment type: CELL_CENTER 

e. Priority field: NONE 

f. Cellsize: after setting the cell size in Environments (in the next step), this value 

should correspond to the DEM resolution  

g. Within Environments: 

i. Processing Extent: 

1. Extent: DEM 

2. Snap Raster: DEM – this step ensures that the grid of the created 

raster matches the original DEM 

ii. Raster Analysis: 

1. Cell Size: DEM 

5. Use the ArcGIS Is Null tool – this tool will create a new raster of the road buffer. Cells 

with no road buffer have a value of 1 and cells with a road buffer have a value of 0 

a. Input raster: Road_Buffer_Raster  

b. Output raster: Road_Buffer_Raster_Null 

c. Within Environments…  

i. Raster Analysis: 

1. Mask: original DEM raster file 

6. Use the ArcGIS Set Null tool  

a. Input Conditional Raster: Road_Buffer_Raster_Null 

b. Expression: Value = 0 – this will set cells that were 0 to NoData, these cells 

would be located where the road buffers were  

c. Input false raster or constant value: original DEM – for any cell where the value is 

= 1, it will be given the value of the original DEM  

d. Output raster: DEM_Without_Buffer 

7. Use the ArcGIS Buffer tool – this 2nd buffer will be used to generate points that will be 

used to interpolate the elevations within the 1st road buffer area that was removed from 

the DEM 

a. Input Features: Road_Buffer_Polygons  

b. Output Feature Class: Road_Edge_Buffer_Polygons 

c. Linear unit: 32 m  
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d. Side Type: OUTSIDE 

e. End type: ROUND 

f. Method: PLANAR 

g. Dissolve type: NONE 

8. Use the ArcGIS Polygon to Raster tool 

a. Input Features:  Road_Edge_Buffer_Polygons  

b. Value field: any input  

c. Output Raster Dataset: Road_Edge_Buffer_Raster 

d. Cell assignment type: CELL_CENTER 

e. Priority field: NONE 

f. Cellsize: after setting the cell size in Environments, this value should correspond 

to the DEM resolution  

g. Within Environments… 

i. In Processing Extent, set the Snap Raster to the original DEM raster file, 

do not set the extent to the original DEM raster file 

ii. In Raster Analysis, set the Cell Size to the original DEM raster file 

9. Use the ArcGIS Raster to Point tool – this will generate points for each cell of the 

Road_Edge_Buffer_Raster grid. Generating points can take long processing time 

depending on the size of the study area 

a. Input Raster: Road_Edge_Buffer_Raster  

b. Output point features: Road_Edge_Buffer_Points 

10. Use the ArcGIS Extract Values to Points tool – in this step, the points will gain the 

elevation value for the cell that they overlie 

a. Input Features: Road_Edge_Buffer_Points  

b. Input raster: original DEM  

c. Uncheck/disable the following: 

i. Interpolate values at the point locations 

ii. Append all the input raster attributes to the output point features  

d. Output point features: Road_Edge_Buffer_Points_Elevations 

11. Use the ArcGIS Spatial Analyst IDW tool (Inverse Distance Weighting) – this step will 

interpolate the elevations of the areas between the road edge using inverse distance 
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weighting. This tool was chosen because a maximum distance can be set and so areas that 

do not need to be re-interpolated are not, which reduces computing time 

a. Input Point Features: Road_Edge_Buffer_Points_Elevations  

b. Z value field: RASTERVALU – this field will have been created in step 10 and 

reflects the elevations extracted from the DEM 

c. Output raster: Interpolated_Road_Elevations 

d. Power: 0.5 

e. Search radius: Variable 

f. Search Radius Settings: Number of points: 120 

g. Search Radius Settings: Maximum distance: 250 m  

h. Within Environments… 

i. Processing Extent set  

1. Snap raster: original DEM,  

2. Do not set Extent to the original DEM 

ii. In Raster Analysis:  

1. Cell size: original DEM. 

12. Use the ArcGIS Focal Statistics tool – this step will smooth the 

Interpolated_Road_Elevations. The IDW interpolation process causes a sharp difference 

along the center of the interpolated road areas which need to be smoothed 

a. Input raster:  Interpolated_Road_Elevations  

b. Output raster: Smooth_Interpolated_Road_Elevations 

c. Neighborhood: Rectangle  

i. Height: 30 m 

ii. Width: 30 m  

d. Statistics type: Mean  

e. Check/enable Ignore NoData in calculations 

f. For best results, this process should be repeated multiple times, although it was 

only done once for this study 

13. Use the ArcGIS Raster Calculator tool – this step will bind the 

Smooth_Interpolated_Road_Elevations to the DEM_Without_Buffer 
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a. Enter the Expression: Con(IsNull("DEM_Without_Buffer"),  

"Smooth_Interpolated_Road_Elevations", " DEM_Without_Buffer") 

i. This conditional statement states that if a raster cell in the 

DEM_Without_Buffer raster is NoData, it will be given the value of the 

Smooth_Interpolated_Road_Elevations raster output, if it has a value it 

will use the value of the DEM_Without_Buffer raster 

b. Output raster: DEM_Road_Removed 

c. Within Environments… 

i. Processing Extent:  

1. Extent: original DEM raster 

2. Snap Raster: original DEM raster  

ii. Raster Analysis: 

1. Cell Size: original DEM  

2. Mask: original DEM  

 

Appendix A-2: Delineate depression boundary polygons and determine depression depths 

Two methods were used to delineate depression boundary polygons; both methods involved 

determining the closed topographic depressions within the DEM. The first method determined 

the maximum closed topographic depressions. This method was tested for delineating depression 

boundaries in the model proposed in Chapter 3. This method was also used for the DSM study 

described in Chapter 4 to a) identify depressions for soil sampling and b) generate depression-

based predictor variables. The second method determined the nested closed topographic 

depressions found completely within the maximum closed topographic depressions. This method 

was tested for delineating depression boundaries in the model proposed in Chapter 3 and was 

used to identify wetlands for salinity testing for that study. For use in the model proposed in 

Chapter 3, the closed topographic depressions were determined from the road-removed 2-m 

DEM. For the depression boundary delineation used in the DSM study described in Chapter 4, 

the closed topographic depressions were determined from the original (roads not removed) 2-m 

DEM. For both studies, sampled depressions were selected to be away from roads and so the 

difference between boundaries for the sampled depressions determined from either the road-

removed or original DEMs were minor. The sample design for soil sampling was established 
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before the road-removed DEM was generated, and so the original DEM was used for all aspects 

of the DSM study to stay consistent with the sample design. The road-removed DEM was used 

for the study described in Chapter 3 to stay consistent with the methodologies used in that study.  

 

Delineate the maximum closed topographic depression boundaries  

1. Import the 2-m DEM (either road-removed or original) into ArcMap 

2. Use the ArcGIS Fill tool – this tool will fill all the closed topographic depressions within 

the DEM 

a. Input surface raster: 2-m DEM 

b. Output surface raster: DEM_filled 

c. Z limit: blank 

3. Use the ArcGIS Fill tool – this time, only closed topographic depressions that have 

depths less than 10 cm will be filled. This will allow for the delineation of closed 

topographic depressions that have depths greater than 10 cm 

a. Input surface raster: 2-m DEM 

b. Output surface raster: DEM_10cm_filled 

c. Z limit: 0.1 

4. Use the ArcGIS Cut Fill tool – this tool will delineate the closed topographic depressions 

that were filled in step 2 that were not filled in step 3 

a. Input before raster surface: DEM_10cm_filled 

b. Input after raster surface: DEM_filled 

c. Output raster: DEM_CutFill 

d. Z factor: 1 

5. Use the ArcGIS Reclassify tool  

a. Input raster: DEM_CutFill 

b. Reclass field: VOLUME 
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c. Reclassification:  

 

 

 

 

 

 

d. Output raster: DEM_CutFill_reclass 

e. Uncheck/disable Change missing values to NoData 

6. Use the ArcGIS Raster to Polygon tool 

a. Input raster: DEM_CutFill_reclass 

b. Field: VALUE 

c. Output polygon features: Max_Depression_Poly 

d. Uncheck/disable Simplify polygons 

7. Right-click the Max_Depression_Poly, select Edit Features and Start Editing 

8. Open the Max_Depression_Poly Attributes Table 

a. Select by Attributes 

i. gridcode = 2 and press Apply – this will select any area that is outside of a 

closed topographic depression 

b. Within the attribute table, right-click the block to the left of the observations and 

select Delete Features – this will delete any polygon that does not represent a 

closed topographic depression 

 

Delineate the nested closed topographic depression boundaries  

9. Use the ArcGIS Data Management Clip tool for raster clipping – this step will clip the 

DEM by the maximum closed topographic depression boundaries, so that the nested 

closed topographic depressions within those depressions can be determined 

a. Input raster: 2-m DEM 

b. Output Extent: Max_Depression_Poly 

c. Check/enable Use Input Features for Clipping Geometry 

d. Output Raster Dataset: Nested_DEM_1 
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e. NoData Value: Blank 

f. Uncheck/disable Maintain Clipping Extent 

10. Follow steps 2 – 8 using the Nested_DEM_1 raster as the input instead of the 2-m DEM 

and name the output Nested_Depression_Poly_1 – this step will determine the nested 

closed topographic depressions within the maximum closed topographic depressions.  

 

Some visual inspection was required to determine if the nested closed topographic depression 

polygons performed better for delineating the wetland boundaries than the maximum closed 

topographic depression polygons. Aerial imagery from 2008 – 2016 was retrieved from 

https://www.flysask2.ca/. The aerial imagery with the smallest wetland extents were compared to 

the nested closed topographic depressions and maximum closed topographic depressions. Nested 

closed topographic depression polygons were used to delineate wetland boundaries if through 

visual inspection, they were determined to better represent the wetland boundaries. However, the 

nested closed topographic depression polygons were only used if there were determined to be 

multiple closed topographic depressions within a maximum closed topographic depression 

polygon. Otherwise, if, through the procedure, the maximum closed topographic depression 

polygon was reduced to a single smaller closed topographic depression polygon, then the 

polygon boundary would not represent the spillover elevation of that depression and therefore, 

the maximum closed topographic depression boundary polygon should be used. The following 

steps determine if a maximum closed topographic depression contained only one nested closed 

topographic depression: 

11. Open the Nested_Depression_Poly_1 Attribute Table 

a. Within Table Options, Add Field  

i. Name: Count_1 

ii. Type: Short Integer 

12. Right-click on the Count_1 column heading, and select Field Calculator 

a. Within the blank box under Count_1 =  

i. Enter: 1 

ii. This step will give every polygon within the Nested_Depression_Poly_1 

file a count of 1  

https://www.flysask2.ca/
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13. Use the ArcGIS Spatial Join tool – this step will add a Count_1 column to the 

Max_Depression_Poly shapefile and will determine how many nested depressions were 

within the maximum closed topographic depressions 

a. Target Features: Max_Depression_Poly 

b. Join Features: Nested_Depression_Poly_1 

c. Output Feature Class: Max_Depression_Poly_w_Count 

d. Join Operation: JOIN_ONE_TO_MANY 

e. Check/enable Keep All Target Features  

f. Field Map of Join Features: Remove all Features except Count_1, Right-click the 

Count_2 Feature, Select Merge Rule, Select Sum  

g. Match Option: INTERSECT 

h. Search Radius: blank 

i. Distance Field Name: blank 

14. Any maximum closed topographic depression polygon with a Count_1 of only 1 or 

NULL, is used in the final nested closed topographic depression polygon shapefile. The 

single nested closed topographic depression polygon within the maximum closed 

topographic depression polygon need to be deleted: 

a. Open the Attribute Table of the Max_Depression_Poly, use Select By Attributes: 

i. Count_1 = 1 OR Count_1 Is Null 

b. Within the Selection option in ArcMap, use Select By Location:  

i. Selected method: Select features from 

ii. Target layer(s): Nested_Depression_Poly_1 

iii. Source layer: Max_Depression_Poly 

iv. Spatial selection method for target layer feature(s): intersect the source 

layer feature  

v. Uncheck/disable Apply a search distance 

c. Start Editing the Nested_Depression_Poly_1 and Open its Attribute Table  

d. Right-click a block beside the observations and select Delete Selected  

e. Stop editing and Save Edits  

15. The maximum closed topographic depression polygons that did contain multiple nested 

closed topographic depressions need to be deleted because the multiple nested closed 
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topographic depression polygons will be included in the final nested closed topographic 

depression polygon shapefile:  

a. Open the Attribute Table of the Max_Depression_Poly, use Select By Attributes: 

i. Count_1 = 1 OR Count_1 Is Null 

b. Within the Attribute Table, select Switch Selection 

c. Start Editing the Max_Depression_Poly and Open its Attribute Table  

d. Right-click a block beside the observations and select Delete Selected  

e. Stop editing and Save Edits  

16. Use the ArcGIS Merge tool  

a. Input Datasets:  

i. Max_Depression_Poly 

ii. Nested_Depression_Poly_1 

b. Output Dataset: Nested_Depression_Poly – This polygon shapefile now 

represents the nested closed topographic depression boundary polygons which 

includes the boundary polygon of the maximum closed topographic depressions 

that did not have nested depressions within 

c. Field Map: all Fields can be removed  

17. Option: If the Nested_Depression_Poly polygons are still too large to represent realistic 

wetland boundaries, then the steps from 9 – 16 can be repeated, using the 

Nested_Depression_Poly where the Max_Depression_Poly Input was used. These steps 

were repeated once to determine the nested closed topographic depressions used in the 

Chapter 3 study.  

 

Determine the depression depths  

18. Use the ArcGIS Spatial Analyst Zonal Statistics tool 

a. Input raster or feature zone data: specify the depression polygon file, either 

Nested_Depression_Poly or Max_Depression_Poly. For this tutorial, we will use 

Nested_Depression_Poly 

b. Zone field: Object_ID 

c. Input value raster: 2-m DEM raster file 

d. Output raster: Depression_Minimum 
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e. Statistics type: MINIMUM 

f. Check/enable Ignore NoData in calculations 

19. Use the ArcGIS Polygon to Line tool – this step will convert the depression boundary 

polygons into lines 

a. Input Features: Nested_Depression_Poly 

b. Output Feature Class: Nested_Depression_Line 

c. Check/enable Identify and store polygon neighboring information 

20. Use the ArcGIS Spatial Analyst Zonal Statistics tool – in this step, the minimum 

elevation of the polygon boundary will be determined, this represents the spillover 

elevation of the depression 

a. Input raster or feature zone data: Nested_Depression_Line 

b. Zone field: RIGHT_FID 

c. Input value raster: 2-m DEM raster file 

d. Output raster: Boundary_Minimum 

e. Statistics type: MINIMUM 

f. Check/enable Ignore NoData in calculations 

21. Use the ArcGIS Feature To Point tool 

a. Input Features: Nested_Depression_Poly 

b. Output Feature Class: Nested_Depression_Point 

c. Check/enable Inside  

22. Use the ArcGIS Extract Value to Point tool – this step will ascribe the depression 

minimum elevation value to the depression point 

a. Input Point Features: Nested_Depression_Point 

b. Input raster: Depression_Minimum 

c. Output point features: Nested_Depression_Point_with_MIN 

d. Uncheck/disable Interpolate values at the point locations 

e. Uncheck/disable Append all the input raster attributes to the output point features 

23. Open the Attribute Table of the Nested_Depression_Point_with_MIN shapefile and Add 

Field 

a. Name: DeprAbsoMIN (abbreviation for depression absolute elevation minimum) 

b. Type: Double 
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24. Right-click on the new Field and use Field Calculator  

a. Within Fields: double click the RASTERVALU to add it to the window below 

DeprAbsoMIN = 

b. Click OK 

25. Within the Attribute Table, right-click the RASTERVALU field and Delete Field 

26. Use the ArcGIS Spatial Join tool to ascribe depression absolute minimum elevation 

values to the depression polygons 

a. Target Features: Nested_Depression_Poly 

b. Join Features: Nested_Depression_Point_with_MIN 

c. Output Feature Class: Nested_Depression_Poly_with_MIN 

d. Join Operation: JOIN_ONE_TO_ONE 

e. Check/enable Keep All Target Features 

f. Field Map of Join Features: leave as is  

g. Match Option: INTERSECT 

h. Search Radius: blank 

i. Distance Field Name: blank 

27. Use the ArcGIS Feature To Point tool – this step will create the center point for the 

depression boundary lines  

a. Input Features: Nested_Depression_Line 

b. Output Feature Class: Nested_Depression_Line_Point 

c. Check/enable Inside  

28. Use the ArcGIS Extract Value to Point tool – this step will ascribe the boundary 

elevation minimum value to the Nested_Depression_Line_Point 

a. Input Point Features: Nested_Depression_Line_Point 

b. Input raster: Boundary_Minimum  

c. Output point features: Nested_Depression_Line_Point_w_BoundMIN 

d. Uncheck/disable Interpolate values at the point locations 

e. Uncheck/disable Append all the input raster attributes to the output point features 

29. Open the Attribute Table of the Nested_Depression_Line_Point_w_BoundMIN shapefile 

and Add Field 

a. Name: BoundMIN (abbreviation for boundary elevation minimum) 
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b. Type: Double 

30. Right-click on the new Field and use Field Calculator  

a. Within Fields: double click the RASTERVALU to add it to the window below 

BoundMIN = 

b. Click OK 

31. Within the Attribute Table, right-click the RASTERVALU field and Delete Field 

32. Use the ArcGIS Spatial Join tool to ascribe depression boundary minimum elevation 

values to the depression polygons 

a. Target Features: Nested_Depression_Poly 

b. Join Features: Nested_Depression_Line_Point_w_BoundMIN 

c. Output Feature Class: Nested_Depression_Poly_w_Abso_and_BoundMIN 

d. Join Operation: JOIN_ONE_TO_ONE 

e. Check/enable Keep All Target Features 

f. Field Map of Join Features: leave as is  

g. Match Option: CLOSEST 

h. Search Radius: 1 m 

i. Distance Field Name: blank 

33. Within the Nested_Depression_Poly_w_Abso_and_BoundMIN Attribute Table, in the 

Table Options, Add Field 

a. Name: Depth 

b. Type: Double 

34. Right-click on the Depth Field and select Field Calculator 

a. Enter Within the window below Depth = BoundMIN - DeprAbsoMIN 

b.  This step will calculate the depression depth by subtracting the depression 

absolute minimum elevation from the depression boundary minimum elevation  

35. Any unnecessary fields can be deleted from the 

Nested_Depression_Poly_w_Abso_and_BoundMIN shapefile to clean it and the file can 

be renamed Nested_Depression_Poly which now has the depression depth within a field 

in its attribute table 
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Appendix A-3: Create predicted active spill channel networks and ascribe Strahler order 

and terminal status to wetland polygons  

Five versions of the predicted active spill channel networks (PASCNs) were tested for use in the 

model for predicting the distributions of solute-rich versus fresh wetlands. The PASCNs differ in 

terms of the level of hydrologic connectivity expected within the landscape. The PASCNs can be 

used to determine Strahler orders and terminal statuses of the wetland polygons, which are 

variables considered in the fresh vs. solute-rich prediction model proposed in Chapter 3. The 

level of expected hydrologic connectivity of the PASCNs affects these variables. There were 5 

PASCNs tested in the model proposed in Chapter 3: Minimum, Near Minimum, Moderate, Near 

Maximum, and Maximum. There were 2 PASCNs used as predictor variables in the DSM 

models described in Chapter 4: Minimum and Maximum. For the PASCNs to properly 

characterize a wetland in terms of its Strahler order and terminal status, it must be generated 

from the wetland’s entire watershed, which includes potential runoff from upslope wetlands. 

Therefore, the DEM used in the methodology to generate the PASCNs must span the target 

area’s greater watershed. 

 

Resample the road-removed 1-m DEM to 5 m.  

1. Import the road-removed 1-m DEM raster (described in Appendix A-1) into ArcGIS 

2. Use the ArcGIS Block Statistics tool on the DEM. – this step averages the elevation 

values of the 1-m DEM for a 5 x 5 group of cells, the output will be used in the 

resampling tool to create a 5-m resolutions DEM  

a. Input raster: road-removed DEM  

b. Output raster: Block_5m_Mean 

c. Neighborhood: Rectangle 

i. Height: 5 m  

ii. Width: 5 m 

d. Statistics type: MEAN 

e. Check/enable Ignore NoData in calculations  

3. Resample the Block_5m_Mean raster to create a DEM with a 5-m resolution using the 

ArcGIS Resampling tool 

a. Input raster: Block_5m_Mean  
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b. Output raster: DEM_5m_NoRoad 

c. Output cell size of X and Y as 5 m  

d. Resampling Technique: NEAREST – this will use the averaged values provided 

in the block statistics output  

 

Create the Stream channel network polyline shapefile  

This is done using SAGA GIS software. SAGA GIS Software download and installation guides 

are available at http://www.saga-gis.org/en/index.html  

4. Export the DEM_5m_NoRoad as a geotiff from ArcGIS 

5. Import the DEM_5m_NoRoad to SAGA GIS  

a. Within the SAGA GIS Tool Libraries: 

i. Import/Export: GDAL/OGR  

1. Use the Import Raster tool to import the DEM_5m_NoRoad tif 

6. Run the Basic Terrain Analysis on the DEM_5m_NoRoad raster  

a. Within the SAGA GIS Tool Libraries: 

i. Terrain Analysis: Basic Terrain Analysis 

1. Grid system: that of the DEM_5m_NoRoad file 

2. >> Elevation: DEM_5m_NoRoad  

3. Options: Channel Density: 3 

7. Export the Channel Network as a shapefile 

a. Within the Data Tree, right-click the Channel Network and select save as, save as 

ESRI shapefile with the name Full_Stream_Channel_Network 

 

Generate the Wetland DEM Ponding Model (WDPM) runoff distribution output polygons  

As mentioned, 5 PASCNs were tested for the model proposed in Chapter 3. These were created 

by altering the Full_Stream_Channel_Network to reflect the runoff distribution outputs from the 

WDPM. However, the Maximum PASCN is the Full_Stream_Channel_Network unaltered by a 

WDPM output. Therefore, 4 PASCNs were created using the WDPM output. The WDPM output 

is an estimate of the runoff distribution on the landscape which can be used to determine 

connectivity between wetlands. A spill channel connection is predicted to be active if there is 

continuous runoff distributed along the spill channel. 2 runoff distribution outputs from the 

http://www.saga-gis.org/en/index.html
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WDPM (1st half and 2nd half) were used to create each version of the 4 PASCNs. Therefore, the 

model was run 8 times per study area. 

 

8. Use ArcGIS Spatial Analyst Raster to ASCII tool to export the road-removed 5-m DEM 

as an ascii file 

a. Input raster:  DEM_5m_NoRoad  

b. Output ASCII raster file: specify the output ASCII file, ensure the file extension is 

.asc and not .txt  

c. The output is referred to as the DEM_5m_NoRoad_ASCII 

9. To download the WDPM, send a download request here: 

https://www.usask.ca/hydrology/WDPM.php  

10. Installation guidelines and general information are found within the manual at the website 

listed above 

11. Run the WDPM.exe 

a. Specify the Working Directory the program will save the water distribution ascii 

files to  

b. Specify add as the Method, this will add water to the DEM  

c. DEM File: DEM_5m_NoRoad_ASCII  

d. Water File: NULL 

To create the Minimum PASCN, the WDPM needs to be run twice to create the 1st half and 2nd 

half runoff distribution, which will be combined later: 

12. Add components:  

a. Output File: Minimum_1st_half 

b. Depth of water (mm): 50 – this parameter specifies the depth of water added per 

cell to be re-distributed over the DEM 

c. Water runoff fraction: 1 

d. Elevation tolerance (mm): 2000 – this parameter essentially controls the number 

of iterations or steps that the runoff distribution is moved over. If the maximum 

change in water depth, at any position within the DEM in an iteration, is smaller 

than this value, then the model will stop, and the output of the runoff distribution 

is created. At the tolerance of 2000, the water is mostly redistributed to the 

https://www.usask.ca/hydrology/WDPM.php
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channel and depression positions. At this tolerance, not enough iterations will 

have been run for the runoff to be distributed throughout the spill channels. This 

creates the 1st half WDPM runoff output for the Minimum predicted active spill 

channel  

e. Do not need to set any Subtract or Drain settings, as only the Add method is used. 

f. Computation Settings: The WDPM can take very long run-times to create the 2nd 

half WDPM runoff outputs (discussed below) for large watersheds. This is a 

substantial drawback of using this method. Using OpenCL for parallel processing 

can significantly reduce runtimes. Using OpenCL with GPU reduced the runtimes 

of the WDPM for this study from days to hours, it is recommended to use this 

method.  

g. Press Start 

13. Follow the same steps for 11 and 12 to create the 2nd half WDPM runoff output for the 

Minimum PASCN, except: 

a. Output File: Minimum_2nd_half 

b. Elevation tolerance (mm): 10 – this will stop the model only after the runoff has 

settled over many iterations. The runoff has run enough iterations to complete the 

spill channel connections. This step can take very long, and so OpenCL is highly 

recommended for this step.  

14. Repeat steps 12. and 13. 3 times to create the WDPM runoff distribution outputs to create 

the remaining 3 PASCNs. All steps will be the same except the Output Files will need to 

be named according to the network to be created and the following Depth of Water (mm) 

values need to be used per level of connectivity: 

a. Near Minimum: 100 mm 

b. Moderate: 150 mm 

c. Near Maximum: 300 mm  

15. In ArcCatalog, specify the projection of each WDPM runoff distribution output raster   

16. Import the Minimum_1st_half and Minimum_2nd_half WDPM output rasters into 

ArcMap 

17. Within the properties of each raster, use Classified Symbology 

a. There should be one value field for the raster, which reflects the presence of water 
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b. Specify 2 classes 

c. Specify the ranges as 0 – 0.0001 as no water and 0.0001 – max value as water 

18. Use the ArcGIS Spatial Analyst Reclassify tool  

a. Input raster: Minimum_1st_half  

b. Reclass field: VALUE 

c. Reclassification: the tool should use the class parameters that were specified in 

the Symbology: 

 

 

 

 

d. Output raster: Min_1st_half_reclass 

e. Repeat steps for Minimum_2nd_half raster but save the output raster as: 

Min_2nd_half_reclass 

19. Use the ArcGIS Raster to Polygon tool  

a. Input raster: Min_1st_half_reclass 

b. Field: Value 

c. Output polygon features: Min_1st_half_poly 

d. Uncheck/disable Simplify polygons option 

e. Repeat steps for Min_2nd_half_reclass but name the output Min_2nd_half_poly 

20. Need to delete the polygons that represent no water 

a. Right-click the Min_1st_half_poly, select Edit Features, and Start Editing 

b. Open the Min_1st_half_poly attributes  

i. Select by attributes: gridcode = 2 – 

this highlights all the polygons that 

represent water 

ii. Select Switch Selection, now all 

polygons representing no water are 

highlighted  
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iii. Right-click a block to the left of a highlighted observation, and select 

Delete Selected  

c. In the Editor toolbar, select Stop Editing and Save Edits  

d. Repeat steps for Min_2nd_half_poly 

21. Combine the Min_1st_half_poly and Min_2nd_half_poly into one polygon file 

a. Use the ArcGIS Data Management Merge tool  

i. Input Datasets: Min_1st_half_poly & Min_2nd_half_poly 

ii. Output Dataset: Minimum_WDPM_Poly 

22. Buffer the Minimum_WDPM_Poly by a small amount – this step was done because in 

some places, some paths of the stream channel networks that will be clipped using the 

WDPM runoff poly deviated slightly from the path outline by the WDPM runoff polygon 

a. Use the ArcGIS Buffer tool 

i. Input features: Minimum_WDPM_Poly 

ii. Output Feature Class: Min_WDPM_Poly_Buff 

iii. Distance: Linear unit: 2.5 m 

iv. Side Type: FULL 

v. End Type: ROUND 

vi. Method: PLANAR 

vii. Dissolve Type: ALL 

23. Repeat steps 16 – 22 for the Near Minimum, Moderate, and Near Maximum WDPM 

runoff outputs  

 

Clip the Full_Stream_Channel_Network polyline files by the WDPM runoff outputs 

24. Import the Full_Stream_Channel_Network and each of the 4 WDPM runoff outputs into 

ArcMap 

25. Use the ArcGIS Clip tool  

a. Input Features: Full_Stream_Channel_Network 

b. Clip Features: Min_WDPM_Poly_Buff 

c. Output Feature Class: Min_Active_Spill_Channel_Network 

The Strahler Orders of the Min_Active_Spill_Channel_Network need to be reassigned to reflect 

relationships of the clipped stream channel network 
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26. Use ArcGIS Delete Fields tool  

a. Input Table: Min_Active_Spill_Channel_Network 

b. Drop Field:  

i. NODE_A  

ii. NODE_B  

iii. BASIN 

iv. ORDER 

v. ORDER_CELL 

27. Use the ArcGIS Multipart To Singlepart tool 

a. Input Feature: Min_Active_Spill_Channel_Network 

b. Output Feature Class: Min_Active_Spill_Channel_Network_Single 

28. To re-ascribe Strahler order to the PASCNs, Arc Hydro Tools (Maidment, 2002) will 

need to be installed. Download and installation information can be found here: 

http://downloads.esri.com/archydro/archydro/  

29. Enable the Arc Hydro Tools toolbar in ArcMap  

30. In the Arc Hydro Tools Attribute Tools use Assign HydroID: 

a. Dataframe: Layers 

b. Workspace: Specify where to save output 

c. Layers: Select the Min_Active_Spill_Channel_Network_Single 

d. Overwrite Existing HydroID: there should be none, so either  

e. Apply to: All Features 

31. In the Arc Hydro Tools Attribute Tools use Generate From/To Node for Lines: 

a. Line: Min_Active_Spill_Channel_Network_Single with HydroID 

32. In the Arc Hydro Tools Attribute Tools use Find Next Downstream Line: 

a. Line: Min_Active_Spill_Channel_Network_Single with HydroID and From/To 

Nodes 

33. In the Arc Hydro Tools Attribute Tools use Find Next Downstream Line: 

a. Line: Min_Active_Spill_Channel_Network_Single with HydroID and From/To 

Nodes 

34. Open the Min_Active_Spill_Channel_Network_Single Attribute Table and in the Table 

Options, Add Field:  

http://downloads.esri.com/archydro/archydro/
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a. Name: StrahlerOrder 

b. Type: Short Integer 

Not all the Arc Hydro Tools, like Assign River Order, are available in the toolbar. Need to access 

the Toolbox: 

35. Right-click in the ArcToolbox and Add Toolbox 

a. Locate where the Arc Hydro Tools were installed to 

b. Select Arc Hydro Tools 

36. Within the ArcToolbox, find the Arc Hydro Tools, Select Attribute Tools and use the 

Assign River Order Tool: 

a. Input Feature Class or Table: Min_Active_Spill_Channel_Network_Single  

b. Input River Order Field: StrahlerOrder 

c. River Order Type: Strahler 

d. Input Flow Split Table: None 

37. Rename the shapefile the Min_Active_Spill_Channel_Network 

38. Repeat steps 24 – 36 using the Near Minimum, Moderate, Near Maximum WDPM 

outputs created in Step 23 to generate the remaining PASCNs 

39. The Maximum PASCN was already created as it is the original stream channel network 

unaltered to reflect WDPM runoff distribution polygon outputs. However, the Strahler 

order for this network is located within the ORDER field, and not the ORDER_CELL 

field. To keep field name consistent with the other PASCNs: 

a. Open the Full_Stream_Channel_Network Attribute Table  

b. In the Table Options, Add Field 

i. Name: StrahlerOrder 

ii. Type: Short Integer 

c. Right-click on the Field Calculator and enter the ORDER field into the window 

below StrahlerOrder =  

40. Rename the Full_Stream_Channel_Network as Max_Active_Spill_Channel_Network 

41. Import the wetland boundary polygons, based on either nested or maximum closed 

topographic depressions described in Appendix A-2, into ArcMap. For this tutorial, the 

Nested_Depression_Poly shapefile will be used 
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Ascribe depression/wetland polygons Strahler order 

The Strahler order information from each PASCN will be joined to the wetland boundary 

polygons 

42. Use the ArcGIS Spatial Join tool to ascribe the maximum Strahler order value of the 

intersecting PASCNs to the wetland polygons. This tutorial will use the 

Min_Active_Spill_Channel_Network as an example 

a. Target Features:  Nested_Depression_Poly 

b. Join Features: Min_Active_Spill_Channel_Network 

c. Output Feature Class: Nested_Depression_Poly_Join2Min 

d. Join Operation: JOIN_ONE_TO_ONE 

e. Check/enable Keep All Target Features 

f. Field Map of Join Features: can remove all except StrahlerOrder 

i. Right-click StrahlerOrder and select Merge Rule = Max – the wetland 

polygons will only be ascribed the maximum Strahler order that they 

intersect with 

g. Match option: INTERSECT  

h. Search Radius: blank 

43. Within the Nested_Depression_Poly, in the Table Options, Add Field 

a. Name: StrahlOrder_Min – this specifies the Strahler order from the join is specific 

to the Min_Active_Spill_Channel_Network 

b. Type: Short Integer 

44. Right-click on the StrahlOrder_Min field and use the Field Calculator, specify the 

StrahlerOrder field in the window below StrahlOrder_Min =  

45. Delete the StrahlerOrder field 

46. Repeat steps 42 – 45 using the different PASCNs in the Spatial Join tool and specify 

different StrahlOrder_ fields for each PASCNs. The final Nested_Depression_Poly 

should have 5 StrahlOrd_ fields, each with the Strahler orders that reflect the maximum 

value that the polygons intersected with per PASCN 
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Determine wetland polygon terminal status  

Terminal status refers to whether a wetland is terminal or not. A terminal wetland receives runoff 

contributions from upslope wetlands and does not contribute runoff further downslope. The 

algorithms for creating the traditional stream channel networks fill all depressions before 

determining the networks to allow the stream channels to continue beyond any depressions. 

Therefore, they cannot be used to determine if the wetlands are terminal or not. The PASCNs 

allow for the wetland polygons to be characterized in terms of their potential for contributing 

runoff downslope. Here the wetland polygons are determined to be terminal or not based on the 4 

PASCNs: Minimum, Near Minimum, Moderate, Near Maximum. The methodology outlined 

here determines for each wetland polygon if any section of the PASCN exits out of the polygon, 

representing runoff moving out of the wetland. The Maximum PASCN cannot be used to 

determine if wetlands are terminal or not because it was generated using a traditional approach 

for determining stream channel networks. According to the Maximum PASCN, no wetland 

polygons would be terminal.  

 

47. Import the Min_Active_Spill_Channel_Network and the Minimum_WDPM_Poly created 

in step 21 – this version of the WDPM output is not buffered 

48. Use the ArcGIS Clip tool  

a. Input Features: Min_Active_Spill_Channel_Network 

b. Clip Features: Minimum_WDPM_Poly 

c. Output Feature Class: Min_Active_Spill_Channel_Network_Clip 

49. Use the ArcGIS Multipart To Singlepart tool 

a. Input Feature: Min_Active_Spill_Channel_Network_Clip 

b. Output Feature Class: Min_Active_Spill_Channel_Network_Clip_Single 

50. Use the ArcGIS Buffer tool – the wetland polygons are buffered a small amount to ensure 

that the channel networks actually move out of the wetland polygon boundary 

a. Input Features: Nested_Depression_Poly 

b. Output Feature Class: Nested_Depression_Poly_Buffer 

c. Distance: Linear Unit: 2.5 m 

d. Side Type: FULL 

e. End Type: ROUND 
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f. Method: PLANAR 

g. Dissolve Type: NONE 

51. Within ArcGIS Selection, use Select By Location 

a. Selection method: select features from 

b. Target layers: Min_Active_Spill_Channel_Network_Clip_Single 

c. Source layer: Nested_Depression_Poly_Buffer 

d. Spatial selection method for target layer feature(s): are crossed by the outline of 

the source layer feature – this will select any part of the channel network that 

either enters or leaves the wetland polygons 

52. Right-click the Min_Active_Spill_Channel_Network_Clip_Single within the Table Of 

Contents, select Selection, and Create Layer From Selected Features 

53. Use the ArcGIS Feature vertices to Points tool – this step will create points at the starts 

of the line segments that either leave or enter the wetland polygons 

a. Input Features: Min_Active_Spill_Channel_Network_Clip_Single_Selection – 

this was created in step 52 

b. Output Feature Class: Min_Active_Spill_Channel_Network_Start_Points 

c. Point Type: START 

54. Use the ArcGIS Feature vertices to Points tool – this step will create points at the ends of 

the line segments that either leave or enter the wetland polygons 

a. Input Features: Min_Active_Spill_Channel_Network_Clip_Single_Selection  

b. Output Feature Class: Min_Active_Spill_Channel_Network_End_Points 

c. Point Type: END 

55. Use Select Attributes By Location – this step will select any wetland polygon that has a 

stream segment exiting its boundaries 

a. Selection method: select features from 

b. Target layer(s): Nested_Depression_Poly not the 

Nested_Depression_Poly_Buffer 

c. Source layer: Min_Active_Spill_Channel_Network_Start_Points 

d. Spatial selection method for target layer feature(s): Contain the source layer 

feature 
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56. Open the Nested_Depression_Poly Attribute Table and select Switch Selection – now the 

selection shows the depression polygons that do not have stream segments exiting them. 

However, these do not necessarily reflect only terminal wetlands. Many of these 

depressions may not have stream channels entering them, and the stream channels that 

enter them may be of small Strahler order, and therefore, these depressions are not 

expected to receive substantial runoff contributions, as is required to be terminal.  

57. To select only depression polygons with stream channels entering them: 

a. Again, use Select By Location 

i. Selection method: select from the currently selected features in 

ii. Target layer(s): Nested_Depression_Poly 

iii. Source layer: Min_Active_Spill_Channel_Network_End_Points 

iv. Spatial selection method for target layer feature(s): Contain the source 

layer feature 

58. To ensure that these selected wetlands receive substantial upslope runoff contributions, 

the depressions polygons with Strahler orders less than three were removed from the 

selection. In this tutorial example, the terminal status is being determined from the 

Minimum PASCN, and so the depression polygon Strahler Order from the same PASCN 

must be used.  

a. Open the Nested_Depression_Poly Attribute Table, use Select By Attributes 

i. Method: Select from current selection 

ii. SELECT*FROM Nested_Depression_Poly WHERE: StrahOrder_Min > 2 

59. Now all the terminal wetlands based on the Minimum PASCN are selected for the 

Nested_Depression_Poly. Within the Nested_Depression_Poly Attribute Table, open 

Table Options, Add Field 

a. Name: Terminal_Min 

b. Type: Text 

i. Field Properties: Length: 20 

60. At the bottom of the Attribute Table, select Show selected records 

61. Right-click the Terminal_Min field and select Field Calculator 

a. Terminal_Min = Terminal 

b. Click OK 
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62. In the Attribute Table, press Switch Selection 

63. Make sure Show selected records is still selected and select Field Calculator  

a. Terminal_Min = Non_Terminal 

b. Click OK 

64. The steps 47 – 63 are repeated for each PASCN except the Maximum. Within each step, 

inputs associated with the particular PASCN are used and the fields should be named 

accordingly   

65. In the end, the wetland boundary polygon file should have 9 fields representing the 

Strahler orders and Terminal status based on the 5 PASCN 

a. StrahlOrder_Min 

b. StrahlOrder_NearMin 

c. StrahlOrder_Moderate 

d. StrahlOrder_NearMax 

e. StrahlOrder_Max 

f. Terminal_Min 

g. Terminal_NearMin 

h. Terminal_Moderate 

i. Terminal_NearMax 
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APPENDIX B: GIS METHODOLOGIES TO GENERATE NEW TOPOGRAPHIC 

ATTRIBUTES USED AS PREDICTOR VARIABLES IN THE DSM STUDY 
 
Note: the output files generated throughout the procedures (shapefiles, rasters, etc.) are given 

names in this document to clarify their origin and purpose, some names may be longer than 

ArcGIS allows for and abbreviations should be used.  

 

Calculate Elevation percentile topographic attribute raster 

This attribute calculates each grid cell’s elevation percentile in relation to the entire study area 

watershed from the DEM, and therefore the DEM must be representative of the study area’s 

entire watershed. 

1. Import the study area watershed DEM into ArcMap 

2. Open the DEM Symbology, select Classified 

a. Classify: 

i. Method: Natural Breaks (Jenks) 

ii. Classes: 100 

3. Use the ArcGIS Spatial Analyst Reclassify tool 

a. Input raster: DEM 

b. Reclass field: VALUE 

c. Reclassification: After setting the Classification settings in Symbology, the tool 

should identify the same classes here where New value = 1 should correspond to 

the smallest elevation class and New value = 100 should correspond to the highest 

elevation class 

d. Output raster: Elevation_Percentile 

 

Calculate Elevation from depression spillover topographic attribute raster 

4. Re-create the Max_Depression_Poly described in Appendix A-2, except use the non-

road-removed DEM and import into ArcMap  

5. Import the non-road-removed DEM into ArcMap (with the resolution of 2 m or 5 m, 

depending on the target resolution for the predictor variable.  

6. Use the ArcGIS Polygon to Raster tool 

a. Input Features: Max_Depression_Poly 

b. Value field: Object_ID 
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c. Output Raster Dataset: Max_Depression_Raster 

d. Cell assignment type: CELL_CENTER 

e. Priority field: NONE 

f. Within Environments:  

i. Processing Extent: 

1. Extent: DEM 

2. Snap Raster: DEM 

ii. Raster Analysis: 

1. Cell Size: DEM 

7. Use the ArcGIS Fill tool – this will remove any depressions with depths less than 10 cm 

from the DEM 

a. Input surface raster: DEM 

b. Output surface raster: DEM_10cmFill 

c. Z limit: 0.1 

8. Use the ArcGIS Spatial Analyst Flow Direction tool 

a. Input surface raster: DEM_10cmFill 

b. Output flow direction raster: Flow_Direction 

c. Uncheck/disable Force all edge cells to flow outward 

d. Output drop raster: blank 

9. Use the ArcGIS Spatial Analyst Watershed tool – this step will create a raster output 

which defines the individual contributing areas for each depression. Some areas along the 

edge of the DEM will not be assigned to a watershed because their associated depression 

is not within the DEM.  

a. Input flow direction raster: Flow_Direction 

b. Input raster or feature pout point data: Max_Depression_Raster 

c. Pour point field: blank 

d. Output raster: Depression_Watersheds_Raster 

10. Use the ArcGIS Raster to Polygon tool  

a. Input raster: Depression_Watersheds_Raster 

b. Output polygon features: Depression_Watersheds_Poly 

c. Uncheck/disable Simplify polygons 
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11. Use the ArcGIS Polygon to Line tool 

a. Input Features: Max_Depression_Poly 

b. Output Feature Class: Max_Depression_Line 

c. Check/enable Identify and store polygon neighboring information 

12. Use the ArcGIS Generate Points Along Lines tool 

a. Input Features: Max_Depression_Line 

b. Output Feature Class: Depression_Line_Points 

c. Point Placement: DISTANCE 

d. Distance: 2 meters 

e. Uncheck/disable End Points 

13. Use the ArcGIS Zonal Statistics tool to determine the minimum elevation along the 

boundaries of the wetland depression polygons. This represents the spillover elevation of 

each wetland polygon 

a. Input raster or feature zone data: Max_Depression_Line 

b. Zone field: RIGHT_FID 

c. Input value raster: DEM 

d. Output raster: Depression_Line_Min_Elevation 

e. Statistics type: MINIMUM 

f. Check/enable Ignore NoData 

14. Use the ArcGIS Extract Values to Points tool 

a. Input point features: Depression_Line_Points 

b. Input raster: Depression_Line_Min_Elevation 

c. Output point features: Depression_Line_Points_with_Spill_Elevation 

d. Uncheck/disable: Interpolate… and Append all…  

15. Open the Depression_Line_Points_with_Spill_Elevation Attribute Table and Add Field 

in the Table Options 

a. Name: Spillover_Elevation 

b. Type: Double 

16. Right-click the Spillover_Elevation field and use Field Calculator 

a. Enter the RASTERVALU field in the window below Spillover_Elevation = 

17. Delete the RASTERVALU field 
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18. Use the ArcGIS Spatial Join tool – this step is done to ascribe the spillover elevation 

values for the depressions to their watershed polygon 

a. Target Features: Depression_Watersheds_Poly 

b. Join Features: Depression_Line_Points_with_Spill_Elevation 

c. Output Feature Class: Depression_Watersheds_Poly_with_Spill_Elevation 

d. Join Operation: JOIN_ONE_TO_ONE 

e. Check/enable Keep All Target Features 

f. Field Map of Join Features: Right-click Spillover_Elevation, select Merge Rule, 

select Mode 

g. Match Option: Completely Contains 

h. Search Radius: blank 

i. Distance Field Name: blank 

19. Use the ArcGIS Polygon to Raster tool 

a. Input Features: Depression_Watersheds_Poly_with_Spill_Elevation 

b. Value field: Spillover_Elevation 

c. Output Raster Dataset: Depression_Watersheds_Raster_with_Spill_Elevation 

d. Cell assignment type: CELL_CENTER 

e. Priority field: NONE 

f. Within Environments… 

i. Processing Extent: 

1. Extent: DEM 

2. Snap Raster: DEM 

ii. Raster Analysis: 

1. Cell Size: DEM 

20. Use the ArcGIS Raster Calculator tool – this step will create a raster that reflects each 

grid cell’s elevation above or below the spillover elevation of its associated depression. 

Grid cells are associated to depressions by the depression contributing area that they fall 

within 

a. Enter the expression: “%DEM%” – 

“%Depression_Watersheds_Raster_with_Spill_Elevation%” 

i. The names need to match the raster files exactly 
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ii. If this expression does not work, enter the Layers manually by double-

clicking them in the Layers and variables window  

b. Output raster: Elevation_from_depression_spillover 

This output will have no data for watersheds on the edge of the DEM that were missing 

depressions. The raster surface cannot have no data cells to be used as a predictor variable. The 

areas with missing data were interpolated from the surrounding areas. This step was repeated for 

all the predictor variables that were based on the depression watersheds  

21. Use the ArcGIS Focal Statistics tool  

a. Input raster: Elevation_from_depression_spillover 

b. Output raster: Elevation_from_depression_spillover_interpolated 

c. Neighborhood: Rectangle 

d. Neighborhood Settings: - these may need to be adjusted if the no data areas on the 

edge of the DEMs are significant in size  

i. Height: 350 

ii. Width: 350  

e. Statistics type: MEAN 

f. Check/enable Ignore NoData in calculations 

22. Use the ArcGIS Raster Calculator tool – this step creates a raster where the values of 

Elevation_from_depression_spillover are used unless no data exists for a grid cell, if no 

data exists, then values from Elevation_from_depression_spillover_interpolated are used  

a. Enter the Expression: Con(IsNull("%Elevation_from_depression_spillover 

%"),"%Elevation_from_depression_spillover_interpolated%","%Elevation_from_

depression_spillover%") 

b. Output raster: Elevation_from_depression_spillover_filled 

23. Use the ArcGIS Extract by Mask tool 

a. Input raster: Elevation_from_depression_spillover_filled 

b. Input raster or feature mask data: DEM 

c. Output raster: Elevation_from_depression_spillover_final 
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Create the Elevation above basin bottom topographic attribute raster 

24. Use the ArcGIS Zonal Statistics tool – this step creates a raster with the minimum 

elevation values per depression watershed 

a. Input raster or feature zone data: 

Depression_Watersheds_Poly_with_Spill_Elevation 

b. Zone field: Id 

c. Input value raster: DEM 

d. Output raster: Watershed_Minimum_Elevation 

e. Statistics type: MINIMUM 

f. Check/enable Ignore NoData 

g. Within Environments… 

i. Processing Extent: 

1. Extent: DEM 

2. Snap Raster: DEM 

ii. Raster Analysis: 

1. Cell Size: DEM 

25. Use the ArcGIS Raster Calculator tool – this step creates a raster surface of the elevation 

for each grid cell above its associated depression minimum elevation 

a. Enter the expression: “%DEM%” – “%Watershed_Minimum_Elevation%” 

i. The names need to match the raster files exactly 

ii. If this expression does not work, enter the Layers manually by double-

clicking them in the Layers and variables window  

b. Output raster: Elevation_above_basin_bottom  

26. Repeat steps 21 – 23 but use the Elevation_above_basin_bottom raster and specify the 

final output as Elevation_above_basin_bottom_final 

 

Create the Depression Depth topographic attribute raster 

27. Use the ArcGIS Raster Calculator tool – this creates a raster surface where every grid 

cell within a contributing area will be given the depression depth value of the associated 

depression 
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a. Enter the Expression: 

“%Depression_Watersheds_Raster_with_Spill_Elevation%” - 

“%Watershed_Minimum_Elevation%” 

b. Output raster: Depression_Depth_1 

28. Use the ArcGIS Raster Calculator tool – for any cell with a depth less than 0.01, this step 

will set to 0.01 

a. Enter the Expression: Con("%Depression_Depth_1%" <= 0.01, 0.01, "% 

Depression_Depth_1%") 

b. Output raster: Depression_Depth 

29. Repeat steps 21 – 23 but use the Depression_Depth raster and specify the final output as 

Depression_Depth_final 

 

Create the Elevation above basin bottom / depth topographic attribute raster 

30. Use the ArcGIS Raster Calculator tool 

a. Enter the Expression: “%Elevation_above_basin_bottom%” / 

“%Depression_Depth%” 

b. Output raster: Elevation_above_basin_bottom_per_depth 

31. This output was smoothed using the ArcGIS Focal Statistics tool  

a. Input raster: Elevation_above_basin_bottom_per_depth 

b. Output raster: Elevation_above_basin_bottom_per_depth 

c. Neighbourhood: Rectangle 

d. Height: 3 

e. Width: 3 

f. Statistics type: MEAN 

g. Check/enable Ignore NoData in calculations 

32. Repeat steps 21 – 23 but use the Elevation_above_basin_bottom_per_depth raster and 

specify the final output as Elevation_above_basin_bottom_per_depth_final 

 

Create the Depression max catchment area topographic attribute 

33. Export the DEM from ArcGIS as a .tif 

a. Right-click on the DEM in the Table of Contents and select Data and Export Data 
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i. Specify a folder, not a geodatabase to save it to 

ii. Format: TIFF 

34. Import the DEM.tif into SAGA GIS  

a. Within the Tool Libraries 

i. Import/Export: GDAL/OGR: 

1. Import Raster 

35.  Generate the catchment area raster for the DEM  

a. Within the Tool Libraries 

i. Garden 

1. Introducing Tool Programming 

a.  08: Extended neighbourhoods – catchment areas (parallel) 

i. Grid systems: specify the grid system of the DEM 

ii. >> Elevation grid: DEM 

iii. << Catchment are: <create> 

iv. Method: MFD, not D8 

v. Press Okay 

36. Within the Tool Libraries 

a. Import/Export: GDAL/OGR: 

i. Export GeoTIFF 

1. Grid system: specify the grid system of the DEM and Catchment 

area rasters 

2. >> Grid(s): Move Catchment area to the right-window, press Okay 

3. File: Specify where to save the tif and name Catchment_area.tif 

37. Import the Catchment_area.tif into ArcMap 

38. Use the ArcGIS Zonal Statistics tool – this step will create a raster surface where every 

grid cell within a depression polygon will be given the maximum catchment area of the 

entire polygon 

a. Input raster or feature zone data: Max_Depression_Poly 

b. Zone field: OBJECTID 

c. Input value raster: Catchment_area.tif 

d. Output raster: Depression_max_catchment 
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e. Statistics type: MAXIMUM 

f. Within Environments… 

i. Processing Extent: 

1. Extent: DEM 

2. Snap Raster: DEM 

ii. Raster Analysis: 

1. Cell Size: DEM 

39. Use the ArcGIS Raster Calculator tool – this step will assign 0 to any area outside of the 

depression polygon boundaries 

a. Enter the expression: Con(IsNull("%Depression_max_catchment %"),0,"% 

Depression_max_catchment %") 

b. Output raster: Depression_max_catchment_with_0 

c. Within Environments… 

i. Processing Extent: 

1. Extent: DEM 

2. Snap Raster: DEM 

ii. Raster Analysis: 

1. Cell Size: DEM 

2. Mask: DEM 

d. Use the ArcGIS Extract by Mask tool – this step is taken because sometimes 

defining the mask within the environments does not work 

i. Input raster: Depression_max_catchment_with_0 

ii. Input raster or feature mask data: DEM 

iii. Output raster: Depression_max_catchment_final 

 

Create the Wetland Strahler order minimum and maximum topographic attribute rasters  

These topographic attributes were generated using the methodology developed for the model 

proposed in Chapter 3 described in Appendix A-3. These attributes characterize wetlands in 

terms of hydrologic contributions they potentially receive from their entire watershed, including 

potential contributions from upslope wetlands, which are not captured by the watershed 

calculation done in step 10. Therefore, the methodologies require a DEM input that spans the 



 

146 

 

study area’s entire watershed. Only the wetland Strahler orders determined from the Minimum 

and Maximum Predicted Active Spill Channel Networks (PASCNs) were incorporated into the 

DSM because the wetland Strahler orders determined from the other PASCNs do not differ 

substantially and would provide too many colinear predictor variables for the modelling. To use 

the wetland Strahler orders as predictor variables in the DSM models, they must be in raster 

format.  

40. Import the Max_Depression_Poly with the Strahler orders ascribed from the PASCNs 

through the methodology described in Appendix A-3 

41. Use the ArcGIS Polygon to Raster tool 

a. Input Features: Max_Depression_Poly 

b. Value field: StrahlOrd_Min 

c. Output Raster Dataset: Max_Depression_Strahl_Ord_Min_Raster 

d. Cell assignment type: CELL_CENTER 

e. Priority field: NONE 

f. Within Environments… 

i. Processing Extent: 

1. Extent: DEM 

2. Snap Raster: DEM 

ii. Raster Analysis: 

1. Cell Size: DEM 

42. Use the ArcGIS Raster Calculator tool – this step will change any grid cell not within a 

depression polygon boundary to have a value of 0 

a. Enter the Expression: Con(IsNull("Max_Depression_Strahl_Ord_Min_Raster 

"),0," Max_Depression_Strahl_Ord_Min_Raster ") 

b. Output raster: Wetland_Strahler_order_Min 

43. Repeat steps 41 – 42 using the StahlOrd_Max value for the Max_Depression_Poly within 

step 41 to create the Wetland_Strahler_order_Max 

 

Each topographic variable raster surface can be exported from ArcMap as a geotiff file: 

44. Right-click on the raster in the Table of Contents and select Data and Export Data 

a. Specify a folder, not a geodatabase to save it to, Format: TIFF 
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APPENDIX C: SOIL PROFILE INFORMATION 

Soil profile descriptions were uploaded to the Saskatchewan Soil Information System (SKSIS) at 

sksis.usask.ca (University of Saskatchewan, 2018). The soil pit descriptions are georeferenced 

and information for each pit can be accessed by selecting the point within the map. Future 

versions of SKSIS will allow for querying soil point data by uploader and project name, at which 

time the points would be under Jeremy Kiss Predictive digital soil mapping of wetland soil types 

in the Canadian Prairie Pothole Region. Until then, the maps below indicate the sample 

locations for the soil profiles taken for the DSM study described in Chapter 4.  

 

 

 

 

 

 

Fig. C.1 Soil profile locations at Swift Current study area. Legal land descriptions are formatted: 

Quarter section – section – township – range – west of the 3rd meridian. 

file:///D:/Documents/Google%20Drive/LWBSF%20-%20Jeremy%20Only/Thesis/Final%20thesis/Final%20Final%20Draft%202%20-%20w%20comm%20rev/sksis.usask.ca
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Fig. C.2 Soil profile locations at the St. Denis study area. Legal land descriptions are 

formatted: Quarter section – section – township – range – west of the 3rd meridian. 
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Fig. C.3 Soil profile locations at the Smith Creek study area. Legal land descriptions are formatted: 

Quarter section – section – township – range – west of the 1st meridian. 


