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A B S T R A C T   

Spatially extensive high-resolution soil moisture mapping is valuable in practical forestry and land management, 
but challenging. Here we present a novel technique involving use of LIDAR-derived terrain indices and machine 
learning (ML) algorithms capable of accurately modeling soil moisture at 2 m spatial resolution across the entire 
Swedish forest landscape. We used field data from about 20,000 sites across Sweden to train and evaluate 
multiple ML models. The predictor features (variables) included a suite of terrain indices generated from a 
national LIDAR digital elevation model and ancillary environmental features, including surficial geology, climate 
and land use, enabling adjustment of soil moisture class maps to regional or local conditions. Extreme gradient 
boosting (XGBoost) provided better performance for a 2-class model, manifested by Cohen’s Kappa and Mat-
thews Correlation Coefficient (MCC) values of 0.69 and 0.68, respectively, than the other tested ML methods: 
Artificial Neural Network, Random Forest, Support Vector Machine, and Naïve Bayes classification. The depth to 
water index, topographic wetness index, and ‘wetland’ categorization derived from Swedish property maps were 
the most important predictors for all models. The presented technique enabled generation of a 3-class model with 
Cohen’s Kappa and MCC values of 0.58. In addition to the classified moisture maps, we investigated the tech-
nique’s potential for producing continuous soil moisture maps. We argue that the probability of a pixel being 
classified as wet from a 2-class model can be used as a 0–100% index (dry to wet) of soil moisture, and the 
resulting maps could provide more valuable information for practical forest management than classified maps.   

1. Introduction 

Soil moisture plays crucial roles in terrestrial ecosystem processes, 
including energy, water, and carbon cycles (Seneviratne et al., 2010). 
Thus, spatially explicit assessment of soil moisture is essential for un-
derstanding energy and water budgets at scales ranging from local to 
global (Ali et al., 2015). Remote sensors of various kinds (e.g., passive, 
active or thermal) are mainly used for spatially extensive soil moisture 
mapping now (Mohanty et al., 2017; Zeng et al., 2019). Soil moisture 
maps derived from previous generations of satellite remote sensing 
systems generally have much too low spatial resolution for practical 
purposes (Mohanty et al., 2017), even with the use of algorithms that 
can enhance resolution to 500–1000 m (Bauer-Marschallingere et al., 
2019; Sabaghy et al., 2020; Zeng et al., 2019). However, the European 
earth observation program Copernicus is providing radar and optical 
satellite data at higher (~10 m) resolution from the Sentinel mission. 

Moreover, recent integrations of Sentinel-1 and Sentinel-2 datasets have 
yielded landscape-scale soil moisture maps of several regions with 
10–100 m spatial resolution (El Hajj et al., 2017; Gao et al., 2017). 
Satellite data can also provide valuable temporal information, but even 
such high-resolution Sentinel data may not provide sufficient informa-
tion for many small-scale land use management purposes, such as 
assessment of soil’s bearing capacities to avoid damaging its structure 
during forestry and agricultural operations (Edwards et al., 2016). Thus, 
there are clear needs for alternative methods that can provide accurate 
soil moisture maps with high spatial resolution. 

For smaller areas, field observations can be utilized to produce high- 
quality soil moisture maps, but such an approach is highly laborious and 
costly for regional-scale mapping. An established method to map soil 
moisture in more detail is to model hydrological features from digital 
elevation models (DEMs) (Akumu et al., 2019; Lidberg et al., 2020; 
Tenenbaum et al., 2006). Modeling soil moisture from DEMs rather than 
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using satellite remote sensing methods is especially suitable in forested 
ecosystems where the tree canopy obscures the soils (Lidberg et al., 
2020). Following development of the topographic wetness index (TWI) 
by (Beven and Kirkby, 1979), several digital terrain indices have been 
introduced that can provide indications of soil moisture levels, such as 
the depth-to-water (DTW) index (Murphy et al., 2008), elevation above 
stream (EAS) index (Rennó et al., 2008) and downslope index (DI) 
(Hjerdt et al., 2004). Further, the DEMs’ resolution has increased from 
50 to 100 m two decades ago to a few meters, and even 0.5 m recently 
(Leempoel et al., 2015) with use of air-borne Light Detection and 
Ranging (LIDAR) measurements. Hence, soil moisture can now be 
modeled much more precisely, allowing more correct identification of 
smaller landscape elements. However, there has been little exploration 
of the possibilities offered by using a suite of terrain indices derived from 
high-resolution LIDAR data for high-resolution mapping of soil moisture 
over large landscapes. 

One of the most commonly applied topographical indices in maps 
used in practical land management is the DTW (Murphy et al., 2007). 
Maps based on this index are used for planning forest management in 
several northern boreal countries, such as Canada and Sweden, and have 
recently been released for Finland. They often show previously un-
mapped stream networks and associated wet soils, thereby enabling 
more ‘surprise-free’ operational forest management planning (Murphy 
et al., 2008). However, there are two key requirements for generating 
DTW maps. One is selection of an appropriate threshold for flow initi-
ation (the surface area needed for sufficient accumulation of water for 
transition from groundwater to surface water). A major complication is 
that this threshold varies substantially at both local and regional scales 
depending on soil transmissivity, topography, and weather conditions 
(Jaeger et al., 2019; Jensen et al., 2017). The other is to identify areas 
with wet soils using the DTW index. For this, a DTW threshold of 1 m is 
commonly used (Murphy et al., 2011; Ågren et al., 2014b), but the 
threshold should also be adjusted to local conditions to produce more 
accurate maps. Information on local conditions, including variation in 
soil transmissivity, topography, and local weather is crucial for accurate 
soil moisture mapping. 

High-resolution (~2 m) terrain indices derived from airborne LIDAR 
imaging can accurately capture fine-scale landscape variations for pre-
dicting soil moisture, but integrating LIDAR indices over a large land-
scape can become extremely data-intensive. However, machine learning 
(ML) provides an effective approach for analyzing large-scale, hetero-
geneous datasets. For example, Lidberg et al. (2020) used ML models for 
mapping soil moisture class by combining information from LIDAR- 
derived, high-resolution (2 m) topographic indices calculated at 
different scales with various thresholds. Four types of ML models 
(Artificial Neural Network, Random Forest, Support Vector Machine, 
and Naïve Bayes classification) were trained and tested, using classified 
field soil moisture from the Swedish National Forest Inventory (here-
after NFI) to produce soil moisture class maps. The results demonstrated 
the potential utility of the approach, but so far efforts to map soil 
moisture using digital terrain indices have mostly focused on locating 
soils at the wet end of the spectrum, as wet soils are most sensitive to rut 
formation during forestry operations (Lidberg et al., 2020; White et al., 
2012; Ågren et al., 2014b). Thus, areas in the final map generated by 
(Lidberg et al., 2020) were divided into only two classes: ‘wet’ areas 
where use of heavy machinery should be avoided or soils protected 
during off-road driving, and ‘dry’ areas with less sensitivity to soil 
disturbance. 

Maps showing more classes of soil moisture across the gradient from 
dry to wet would be valuable for both the research community and forest 
practitioners, for several reasons. Inter alia, soil’s bearing capacity 
largely depends on its moisture content (Ågren et al., 2014b), and multi- 
class or continuous soil moisture maps would be useful for diverse 
purposes such as optimizing tree production (Wei et al., 2018), road 
systems, off-road routes, riparian protection zones, ditches and other 
water management features (Erdozain et al., 2020; Kuglerová et al., 

2014a). Integration of LIDAR-derived terrain indices using multiple ML 
models for multi-class and continuous soil moisture mapping has sub-
stantial potential utility for such practical land management, but has 
received little attention to date. Incorporating ancillary spatial infor-
mation regarding surficial geology, soil, hydrology, and land use could 
also enhance soil moisture models’ predictions. Thus, in the study re-
ported here we applied a suite of LIDAR-derived high-resolution terrain 
indices, auxiliary environmental variables, and several ML algorithms to 
generate 2-, 3- and 5-class soil moisture maps of the entire Swedish 
forest landscape. The algorithms included the relatively new Extreme 
Gradient Boosting (XGBoost) presented by Chen and Guestrin, (2016), 
which to the best of our knowledge has not been previously applied for 
regional-scale soil moisture classification and mapping. Soil moisture 
varies seasonally depending on weather conditions, but our modeling 
focused on the spatial distribution of average soil moisture levels. Thus, 
the overall aims were to generate and evaluate national-scale pre-
dictions of soil moisture, covering the whole range from dry to wet soils, 
using information with high spatial resolution on key environmental 
variables and multiple ML algorithms. We addressed the following 
specific questions. In combination with data on related environmental 
variables, can LIDAR-derived high-resolution terrain indices provide 
accurate multi-class and continuous soil moisture maps covering the 
entire Swedish forest landscape? Which ML algorithm provides the best 
predictions? Is there any location-specific variability in model perfor-
mance across the study region? 

2. Material and methods 

The study involved analysis of data acquired from airborne LIDAR 
remote sensing, information on the NFI field plots, digital terrain 
indices, and ancillary environmental (pedological, geological, land use, 
and climatic) information. The data were integrated using several ML 
algorithms for soil moisture predictions (Fig. 1). 

2.1. Full study site – The Swedish forest landscape 

Sweden (latitude 55-70◦ N, longitude 11-25◦ E) is situated in 
Northern Europe, largely within the boreal zone (Fig. 2). Quaternary 
deposits dominated by glacial till cover most (75%) of the surface, and 
peat 13% of Sweden. Forest, agricultural land, heathlands, open mire, 
rock outcrops and urban areas respectively account for 69, 8, 8, 7, 5 and 
3% of the national land cover, excluding the ca. 9% (4 million ha) of 
surface waters (Schöllin and Daher, 2019). Annual precipitation in 
Sweden ranges from 400 to 2100 mm (1961–1990), with the moun-
tainous western region and southwestern parts receiving more precipi-
tation than eastern parts, according to Swedish Metrological and 
Hydrological Institute web maps. 

2.2. Field data – Swedish national forest Inventory 

The new multiclass ML models were trained using data pertaining to 
19,643 field plots monitored in the Swedish NFI (Fridman et al., 2014), 
which have a spatial accuracy of 5–10 m. The NFI compiles data on both 
productive forest land (defined as areas with a potential yield capacity 
of > 1 m3 mean annual increment per ha) and low-productivity forest-
land (with lower yield capacity), such as pastures, thin soils, peatlands, 
rock outcrops, and areas close to and above the tree line. Areas outside 
forest land, such as crop fields, urban areas, roads, rail roads and power 
lines are not included in the NFI’s sampling. Hence, the training dataset 
covered the soil moisture spectra in areas with all types of forest cover in 
Sweden (Fig. 2). 

Soil moisture classes registered in the NFI , are based on each plot’s 
average ground water level (estimated from its position in the land-
scape) and vegetation patterns. This approach reduces discrepancies 
caused by seasonal variation and provides indications of the general 
wetness regime, which is the key concern here. The NFI field plots are 
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categorized in five classes—mesic (the most common class), followed by 
mesic-moist, moist, dry and wet (Fig. 3)—which are described below 
and presented in more detail by (Fridman et al., 2014; Lidberg et al., 
2020). 

Wet Soils - Wet soils are normally located in open peatlands classified 
as bogs or fens, where trees may occasionally occur but not in dense 
stands. The groundwater table is close to the soil surface and permanent 
ponds are common. The soils are histosols or gleysols. The organic layer 
is often > 30 cm thick. Feet will be soaked when walking on wet soils in 
shoes, and it is often impossible for heavy machinery to cross them 
unless they are frozen during winter. 

Moist soils - Moist soils are in areas with shallow groundwater (<1 
m). Pools of standing water are visible in local pits. These areas can be 
crossed dry-footed in shoes if relatively high parts and tussocks are used, 
but a pool of water will form around the shoes in lower-lying areas, even 
after dry spells. The soils are histosols, gleysols, or regosols (weakly 
developed mineral soils that cannot be classified in any of the other 
World Reference Base reference groups). Vegetation is dominated by 
wetland mosses (e.g. Sphagnum spp., Polytrichum commune, Poly-
trichastrum formosum, Polytrichastrum longisetum) and Sphagnum spp. 
dominate local depressions. Trees have coarse root systems above 
ground and tussocks are common, indicating adaptation to high 
groundwater levels in these areas. The thickness of the organic layer is 
not used to define moist areas, but it is often > 30 cm. 

Mesic-moist soils – These soils are in areas where the groundwater 

table is < 1 m from the surface, normally with flat or low-lying ground, 
or on lower parts of hills. They become wet seasonally following 
snowmelt or rain, and the possibility to cross them dry-footed depends 
on the season. Wetland mosses (e.g. Sphagnum spp., Polytrichum 
commune, Polytrichastrum formosum, Polytrichastrum longisetum) are 
common and trees have coarse root systems above ground, indicating 
that groundwater levels are often high in these areas. Soils are humo- 
ferric to humus-podzols. The organic layer is thicker than in mesic 
soils, and while podzols are common the O-horizon is still often peaty. 

Mesic soils - Mesic soils consist of ferric podzols with a thin humus 
layer covered mainly by dryland mosses (e.g. Pleurozium schreberi, 
Hylocomium splendens, Dicranum scoparium). The groundwater table is 
1–2 m below the soil surface generally. They can be walked on dry- 
footed even directly after rain or shortly after snowmelt. The organic 
layers are normally 4–10 cm thick. 

Dry soils – In these soils the groundwater table is at least 2 m below 
the surface. They tend to be coarse-textured and can be found on hills, 
eskers, ridges and marked crowns. The soils are podzols (which have 
thin organic and bleached horizons), leptosols, arenosols, or regosols. 

The soil moisture classes were grouped to generate ML models with 
five, three or two classes, as shown in Table 1. The 5-class models were 
trained using each of the five NFI soil moisture classes. In the 3-class 
models, as there were relatively few observations of the most extreme 
classes (dry and wet) they were grouped with their neighboring classes. 
In the 2-class models the five classes were merged into two classes, 

Fig. 1. Schematic diagram showing the steps applied to produce a soil moisture map covering the entire Swedish forest landscape. Several measures of soil moisture 
and local topography were calculated from a high-resolution LiDAR-derived digital elevation model (2 × 2 m resolution). The map was regionally adjusted by 
including ancillary data on soils, climate etc. In total, maps of 28 features were used as inputs for the ML models, which were trained on soil moisture classes from 
80% of the NFI field plots. Several ML algorithms were evaluated, and the resulting models’ accuracy was evaluated by using the other 20% of the NFI plots as a test 
set and the best model was iteratively derived. We also evaluated the best model for a specific research catchment. The best ML model was applied to maps covering 
all of Sweden to predict soil moisture across the entire country. 
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simply called ‘dry’ and ‘wet’, following terminology used by Lidberg 
et al. (2020). 

2.3. Collating input features to the model 

In accordance with the context and approach of the study, we use the 
term features (from machine learning terminology), variables or mea-
sures (from general research terminology) or indices (from GIS termi-
nology) to denote inputs of the ML models. Geospatial data from several 
sources were combined to train the ML models to predict soil moisture 
classes (Table 2). First, we extracted a set of digital terrain indices from 
the Swedish National DEM generated from a 0.5–1 points per m2 LIDAR 

cloud by the Swedish Mapping, Cadastral and Land Registration Au-
thority. This DEM has 2 m spatial resolution and input features derived 
from it were described in detail by Lidberg et al. (2020). The measures of 
local topography were calculated from the raw DEM while the soil 
moisture measures (Table 2) were calculated from a DEM processed by 
burning streams from the topographic maps across roads (Lidberg et al., 
2017) and applying breaching as explained by (Lindsay, 2016). The soil 
moisture and local topography measures were all calculated from the 2 
m national DEM, apart from the Topographic Wetness Index (TWI), 
which has been found to give unrealistic results when calculated at high 
resolution (Sørensen and Seibert, 2007; Ågren et al., 2014b). Therefore, 
TWI was calculated at coarser resolutions (10–48 m) deemed sufficient 
to capture the macro-topographical control of hydrological pathways. 
By including different window sizes (6 × 6 m to 160 × 160 m) we 
evaluated both macro- and micro-topographic effects on these pathways 
(Table 2). However, as we were applying substantially higher resolution 
than many other studies, it also enabled us to evaluate the modeling 
utility of more ‘small-scale features’. For this purpose we incorporated 
the following digital terrain indices in addition to those described by 
(Lidberg et al., 2020)—the downslope index (Hjerdt et al., 2004), 
standard deviation of mean elevation within a moving window of 7 × 7 
DEM cells, standard deviation from slope with a moving window of 3 ×
3 cells, circular variance of aspect with a 3 × 3 moving window, and 
ruggedness index—all calculated from the 2 m DEM. For an explanation 
of these indices see the WhiteboxTools User Manual (Lindsay, 2020). By 
including more of these ‘small-scale features’ we aimed to improve the 
modelling of soil moisture in local pits and small-scale variability in 
riparian zones. Ancillary environmental variables used to capture vari-
ability in climatic and soil conditions were: quaternary deposits and soil 
depth from the Swedish Geological Survey; wetlands from the Swedish 
Mapping, Cadastral and Land Registration Authority; runoff from the 
Swedish Metrological and Hydrological Institute; and land-use from the 

Fig. 2. Locations of the 19 643 NFI field plots (black points). The density of 
field plots is higher in southern Sweden than in northern Sweden and the white 
regions in northwestern Sweden had not been scanned with LIDAR at the time 
of this study or indicate areas above the tree line. White parts in southern 
Sweden are large lakes or agricultural land. 

Fig. 3. Percentages of field plots in the soil moisture categories of the National 
Forest Inventory dataset (n = 19,643). 

Table 1 
Grouping of the NFI soil moisture data used in the 5-, 3- and 2-class models.  

5-class models 3-class models 2-class models 

Dry Dry-mesic ‘Dry’ 
Mesic 
Mesic-moist Mesic-moist ‘Wet’ 
Moist Moist-wet 
Wet  
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Table 2 
Input variables used to model soil moisture classes, including digital terrain indices and ancillary environmental variables, calculated as described by 1(Lidberg et al., 
2020) and 2(Lindsay, 2020). Abbreviations refer to the designations in Fig. 4. Features included in the final model are marked in black and features that were evaluated 
but excluded from the final model are marked in grey.  

(continued on next page) 
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Table 2 (continued ) 

(continued on next page) 
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Table 2 (continued ) 
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national land cover database as well as a 10 m resolution soil moisture 
index from the Swedish Environmental Protection Agency (SEPA). These 
data, summarized in Table 2, were resampled to 2 m grids to match the 
LIDAR-derived variables. 

2.4. Evaluation of ML algorithms 

We evaluated five ML algorithms commonly used for environmental 
modeling and remote sensing-based prediction—Extreme Gradient 
Boosting (Chen et al., 2020), Naïve Bayes (Bhargavi and Jyothi, 2009), 
Artificial Neural Networks (Ripley, 1996), Support Vector Machine 
(Chang and Lin, 2011), and Random Forest (Breiman, 2001). The cal-
culations were performed in R (R Core Team, 2020) using the software 
packages Caret 6.0–86 (Kuhn et al., 2012) and XGBoost 1.0.0.2 (Chen 
et al., 2020). In the following text, ML algorithms and ML models 
respectively refer to the algorithms per se, and the 2-, 3- and 5-clas 
models generated with them (Table 1). The NFI field plots were 
divided randomly into a training set and test set, respectively, including 
80 and 20% of the plots. Data pertaining to these sets were respectively 
used to train the ML algorithms, with default tuning parameters, and 
evaluate the final models. A 2.5 km × 2.5 km area was used to evaluate 
the processing time required for each ML algorithm to generate a pre-
dicted soil moisture map. The ML algorithms were evaluated using 
Cohen’s Kappa Coefficient (Cohen, 1960), hereafter Kappa, and Mat-
thews Correlation Coefficient (MCC) (Matthews, 1975), as well as the 
time required to acquire the predictions. 

2.5. Feature reduction 

In total, 44 features were evaluated as predictors for soil moisture in 
the ML models (Table 2). To avoid overparameterization, feature 
reduction is an integral part of any complex ML approach, and we 
applied three criteria for discarding the least influential variables: high 
correlation with other variables, minor contribution to the models based 
on variable importance scores, and manifestation in the predicted maps 
of inaccuracies related to overfitting or other unrealistic outcomes 
(Maxwell et al., 2018). The following features were removed. First, 
elevation above stream (Rennó et al., 2008), with all thresholds, was 
excluded because it showed similar patterns to DTW, but with lower 
accuracy. Depth-to-water (DTW) 10 and 15 ha, annual runoff, spring 
runoff, standard deviation from elevation with moving windows>5 × 5 
cells and 10 m × 10 m land use map (CORINE) were evaluated but 
excluded due to low contribution to the models or multicollinearity. The 
10 m × 10 m soil moisture index (SMI) from SEPA ranked high among 
predictor variables, but produced unrealistic outcomes (large pixels) on 
the maps and hence was excluded. Excluding SMI did not affect the 
overall performance of the models, possibly because TWI 10 m, DTW, 
and quaternary deposits (input data for the SMI) were included sepa-
rately among the 28 features. After the feature reduction step, 28 fea-
tures were included in the final predictive model. 

2.6. Calibration and validation of the ML models 

We concluded from the algorithm appraisal that XGBoost was the 
best ML algorithm (Table 3), so the rest of the article focuses on the 
analysis using it. XGBoost is a decision-tree-based ensemble algorithm 
that applies a gradient boosting framework. Gradient boosting is used to 
minimize errors by a gradient descent algorithm. XGBoost improves on 
this by using regularized gradient boosting. Great efforts have also been 
made to optimize parallelization and hardware to improve its compu-
tational performance. XGBoost (Chen and Guestrin, 2016) was applied 
with a dropout technique (gbDART), in which random trees are dropped 
to reduce overfitting (Rashmi and Gilad-Bachrach, 2015). 

The training dataset consisted of estimates of soil moisture class in 
the NFI field plots classified using the selected number of soil moisture 
classes (Table 1) and features (Table 2). For XGboost we applied more 

extensive tuning for the 2-, 3- and 5-class models. The optimal hyper-
parameters from the tuning process were selected by an iterative tuning 
approach (with 10-fold cross-validation using Kappa as a metric (SI 
1–3)). The final models were trained using the training dataset and 
tested using the test dataset (pertaining to 80% and 20% of the NFI field 
plots, respectively). The input features were split into 73 000 multiband 
raster tiles with 2.5 km × 2.5 km size and 2 m × 2 m resolution. This 
enabled multiple tiles to be predicted in parallel, dramatically reducing 
the required processing time. Even so, it took five days to predict soil 
moisture for all of the Swedish forest landscape using a 32-core (64- 
thread) processor running at 3.2 GHz. To spread this methodology we 
publish the entire R code (with explanations) for the three XGBoost 
models (SI 1–3). 

2.7. Evaluating the XGBoost models using 20% of the NFI plots 

The accuracy of the classified models was investigated using several 
measures (Table 4): overall accuracy (Story and Congalton, 1986), 
Kappa, MCC, recall (also known as sensitivity) and F1-values (the har-
monic mean of sensitivity and precision) (Powers, 2011) and others, 
including confusion matrixes, described in the supporting information. 
The measures were calculated in R 4.0 using Caret 6.0–86 and Yardstick 
0.07. The importance of specific input features in the XGBoost models 
was investigated using variable importance plots (Fig. 4). 

Further, the field plots were classified according to their location, 
presence (and nature) of quaternary deposits, and topography to eval-
uate if some parts of Sweden’s forest landscape were better predicted 
than others (Fig. 5). Their locations were defined as below or above the 
highest relict marine coastline (HC) and northern or southern Sweden. 
Sites and types of quaternary deposits were obtained from the 1:1 000 
000 map of quaternary deposits published by the Swedish Geological 
Survey. Fine sediment is defined as clay and silt while coarse sediment is 
defined as sand and gravel. Peat refers to areas with at least 30 cm thick 
peat and bedrock is defined as exposed bedrock with <30 cm thick soil. 
Standard deviations from the DEM with moving windows of 10 × 10 m 
and 160 × 160 m were used to define local topography. Values above 
and below the mean standard deviation of elevation were respectively 
classified as Steep and Flat (followed by 160 or 10 to indicate the size of 
moving windows used). Only the 2-class model was evaluated in this 
manner as the 3- and 5-class models had too few plots in some sub-
categories. For example, only 11 field plots in the 3-class model were 
classified as moist-wet on fine sediment. 

2.8. Transition from classified to continuous maps 

We also tested the possibility of using a probability raster for pre-
dicting soil moisture rather than classified data. This can only show the 
probability for one class at a time. In this study we generated a map 
showing the probability of each pixel being classified as ‘wet’. Clearly, 
when applying this approach to the 2-class model it can be inferred that 
cells with a low probability of classification as wet have a higher 
probability of being dry. Fig. 6 shows the relation between probability 
values in the resulting map and actual field-classified soil moisture of the 

Table 3 
Performance of the tested ML algorithms for predicting soil moisture class in 
terms of Cohen’s Kappa Coefficient (Kappa) and Matthews Correlation Coeffi-
cient (MCC), calculated using the test dataset (pertaining to 20% of the NFI 
plots). Prediction time refers to the time required for applying the tuned model 
to one 2.5 × 2.5 km2 raster tile.  

Algorithm Kappa MCC Prediction time 

Extreme Gradient Boosting  0.68  0.68 1.1 min 
Naïve Bayes  0.61  0.61 1.2 min 
Artificial Neural Network  0.66  0.67 1.4 min 
Support Vector Machine  0.67  0.67 5.1 min 
Random Forest  0.66  0.66 2.0 min  
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NFI sites. We tested the significance of differences between wetness 
classes using Kruskal-Wallis tests (Kruskal and Wallis, 1952) and applied 
Dunn-Bonferroni tests (Dunn, 1961) for post hoc comparison of all 
classes. 

2.9. Further evaluation of the ML models in the Krycklan catchment 

As well as evaluating ML models’ performance statistically, it is 
highly important to examine maps generated using them visually for 
inaccuracies related to overfitting and other unrealistic outcomes 
(Maxwell et al., 2018). Moreover, to evaluate maps rigorously ground 
truth is clearly essential. Therefore, to complement the statistical 
assessment described above we visually examined soil moisture maps for 
the Krycklan catchment – a 68 km2 experimental site (Lat. 64.150 N, 
Long. 19.460 E) in northern Sweden (Laudon et al., 2013). The catch-
ment was selected because a large empirical database and numerous 
previous studies are available for comparison (Kuglerová et al., 2014b; 
Leach et al., 2017; Ploum et al., 2018; Ågren et al., 2014a, 2015). 

In addition to the expert knowledge on the watershed, we exploited 
data from a forest survey conducted in 2014 including wetness classi-
fications following NFI protocols. The origial survey grid consisted of 
500 survey plots with a 10 m radius (314.1 m2) spaced 350 m apart in 
the catchment. The plots were positioned using a randomly chosen 
origin and oriented along coordinate axes of the SWEREF 99 TM pro-
jection. Centers of the plots were placed in the field at locations regis-
tered within 10 cm using a Trimble GeoXTR GPS receiver. Plots that 
could not be accurately positioned (where no differential signal could be 
detected), or plots located on arable land, roads, lakes and plots on or 
just outside the catchment boundaries were excluded in this study. In 
total, the Krycklan catchment evaluation dataset consisted of 398 plots 
with soil moisture classifications. The two evaluation datasets (20% of 
the NFI plots and 398 plots in the Krycklan Catchment) allowed evalu-
ation of the general predictions for the country and much more detailed 
tests for a smaller area, with sampling densities of 0.07 and 7.4 plots 
km− 1, respectively. The soil moisture classes in the two field datasets 
were determined following the same NFI protocol and thus are directly 
comparable. However, the Krycklan test set has a finer sampling density 
and provides detailed representation of a specific landscape with gentle 
topography (elevations ranging from 127 to 372 m a.s.l.) and poorly 
weathered gnesic bedrock. There are quaternary deposits dominated by 
glacial till soils in upper parts of the catchment and sorted sediments of 
sand and silt in lower parts. In terms of land cover, the catchment is 
dominated by forest (87%) with a mosaic of mires (9%), agricultural 
land (3%) and lakes (1%) (Laudon et al., 2013). 

3. Results 

3.1. Performance of the ML algorithms for mapping soil moisture 

The performance of the ML algorithms was similar in terms of Kappa 
and MCC statistics obtained from comparison of predicted and regis-
tered soil moisture classes for the NFI plots in the test set. However, we 
observed some differences in prediction time. XGBoost was the best al-
gorithm, in terms of all measures, while Naïve Bayes models had the 
lowest Kappa and MCC values, and the Support Vector Machine algo-
rithm was the slowest (it provided models with only 1% lower Kappa 
and MCC values than XGBoost, but took five times longer to generate 
them). The Random Forest algorithm took about twice as long to 
generate predictions, and yielded models with Kappa and MCC values 
that were 3% lower than those of XGBoost models. However, the Arti-
ficial Neural Network approach provided similar performance to the 
XGBoost algorithm in terms of all three metrics. 

3.2. Assessment of the XGBoost classified models 

3.2.1. Evaluation of the 5-, 3-, 2-class soil moisture maps using the NFI test 
plots 

Since XGBoost was both the fastest and most accurate of the ML al-
gorithms tested in this study (Table 3), we used it to generate predicted 
5-, 3-, and 2-class soil moisture maps then evaluated their accuracy using 
the test dataset (pertaining to 20% of the NFI field plots). The overall 
accuracy of the 5-, 3- and 2-class maps was 72, 78, and 85%, respec-
tively, indicating that the 2-class model was the most accurate. This was 
corroborated by the Kappa values (0.51, 0.58, and 0.69, respectively) 
and MCC values (0.52, 0.58, and 0.68, respectively). While overall ac-
curacy, Kappa, and MCC statistics provide strong indications of overall 
model performance, it is also important to evaluate the accuracy of 
specific classes for multi-class predictions. Thus, recall and F1 values 
were calculated for the classes in each of the classified maps (Table 4). 
Recall values were low for wet (32%) and dry (19%) classes in the 5- 
class model, but higher (suggesting reasonable accuracy) for the 
mesic, mesic-moist, and moist classes. Similarly, F1 values of the 5-class 
model suggested that its wet and dry class predictions may not be suf-
ficiently accurate for operational purposes. In contrast, recall and F1 
values for all the classes in the 3-class and 2-class models indicated 
sufficient accuracy (≥58% and 0.59, respectively). The values were 
substantially lower for the mesic-moist, and moist-wet classes of the 3- 
class model than for the dry-mesic class in that model and both classes 
of the 2-class model. However, the 3-class model could still have some 
advantages over the 2-class model for effective planning in practical 
forestry and land management. In addition to the model performance 
measures presented here, many others (including confusion matrixes) 
were calculated and are reported in SI 1–3. 

3.2.2. Assessment of feature importance 
We evaluated the importance of all the input features utilized in the 

XGBoost generation of 5-, 3-, and 2-class models. The DTW index with 
different flow accumulation thresholds, TWI from a 10 m DEM, and 
currently mapped wetlands were the most important predictors for all 
models (Fig. 4). Overall, the LIDAR-derived terrain indices were the 
most important predictors, as expected. Summer and autumn runoff, 
peat soil layer, and Y coordinate were also strong predictors. The lat-
itudinal variation from north to south, as reflected by the Y coordinate, 
strongly influenced the soil moisture distribution across Sweden. Inter-
estingly, surficial geological information (e.g. distributions of till, fine 
sediment, and thin soil) were less important for the predictions. The 
small-scale topographical measures did not have high VIP scores, but 
contributed somewhat to the model (STDV 5 cells most strongly). 

3.2.3. Location-specific accuracy assessment of the generated maps 
As well as evaluating the accuracy of the maps generated by the 

models against registered data for the test set of 20% NFI plots (see 
section 3.2.1), we investigated if predictions were better for some parts 
of Sweden’s forest landscape than others. For this, we used MCC values 
of the 2-class model (Fig. 5). We detected marginal effects of the plots’ 
location as the model performed slightly better for plots in the north and 
below the highest relict coastline than for those in the south and higher 
than the coastline, respectively (Fig. 5A). Quaternary deposits had 
mixed effects, as the model performed better for plots with glacial till 
and peat soils than for plots on coarse sediments (Fig. 5B). However, the 
local slope (at various scales) had the strongest effect on model perfor-
mance, with better accuracy for flat terrain than steep terrain (Fig. 5C). 
For example, the MCC value was 0.26 higher for plots in Flat 160 terrain 
than for plots in Steep 10 terrain (as defined in section 2.7). 

3.3. Transition from classified to continuous maps 

Analysis of the continuous map of soil moisture at the NFI sites 
generated, from the 2-class model using the probability raster are 
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presented in Fig. 6, which shows that Wet and Dry plots (blue and red 
boxes, respectively) had high and low probabilities of being classified as 
wet by the model. Probability ranges were narrow for Dry and Wet plots, 
while probabilities for the Mesic-Moist plots ranged from 0 to 100% but 
most fell in the middle range between mesic and moist. While there was 
some overlap between the classes generally, the probability map seems 
to capture the variation in soil moisture rather well. The Kruskal-Wallis 
test followed by the Dunn-Bonferroni test showed significant differences 

Table 4 
Performance of the 5-, 3-, 2-class models for predicting soil moisture in the test set of NFI field plots. Kappa and MCC refer to Cohen’s Kappa Coefficient and Matthews 
Correlation Coefficient, respectively. Recall (sensitivity) and F1 (the harmonic mean of sensitivity and precision) are measures of sensitivity and precision of specific 
predicted classes.  

5-class model (Kappa 0.51, MCC 0.52) 3-class model (Kappa 0.58, MCC 0.58) 2-class model (Kappa 0.69, MCC 0.68) 
Classes Recall F1 Classes Recall F1 Classes Recall F1 

Dry 19%  0.28 Dry-Mesic 90% 0.88 ‘Dry’ 89% 0.88 
Mesic 89%  0.84 
Mesic-moist 60%  0.61 Mesic - moist 58% 0.59 ‘Wet’ 79% 0.81 
Moist 46%  0.51 Moist-wet 59% 0.64 
Wet 32%  0.41  

Fig. 4. Variable importance of the 28 input features for the 2-class (A), 3-class (B), and (C) 5- class XGBoost models. The variable names are explained in Table 2. 
Note that the variable Coarse sediment was removed from the graph, as it was so close to 0 that the column became invisible. 

Fig. 5. Performance values (Matthews Correlation Coefficients) of the 2-class 
model for plots at different locations (A), on various quaternary deposits (B), 
and with different topography (C). HC, C sed, F Sed, refer to high coastline, 
coarse sediment, and fine sediment, respectively. Flat 160, Steep 10, Steep 160 
and Steep 10 refer to flat and steep terrain determined with 160 m × 160 m and 
10 m × 10 m moving windows. See section 2.7 for definitions. 

Fig. 6. Boxplot of probabilities of National Forest Inventory (NFI) test plots 
being classified as wet by the two-class model. The Kruskal-Wallis test followed 
by the Dunn-Bonferroni test showed that all five classes significantly differed (p 
< 0.05). 
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between all classes. 

3.4. Further evaluation of the 5-, 3-, and 2-class models in the Krycklan 
catchment 

Further evaluation of the 5-, 3-, 2-class models using 398 test plots in 
the Krycklan catchment resulted in similar performance patterns to the 
national patterns (Table 4). However, their predictions for the catch-
ment were generally poorer. Recall and F1 values of the dry and wet 
classes highlight the uncertainty of the 5-class model (Table 5, Fig. 7C). 
However, the 3-class model performed reasonably well in the Krycklan 
catchment (Fig. 7B). In fact, the dry-mesic and moist-wet classes were 
predicted with equally high or higher recall and F1 values to those ob-
tained in the national evaluation, but the mesic-moist class had rela-
tively low recall and F1 measures (Tables 4 & 5). Recall and F1 values for 
the 2-class model’s predictions for the catchment and NFI test plots were 
similar. However, there was a stark contrast in estimates of overall 
model accuracy between the two evaluations, especially for the 5-class 
model (for which the Kappa and MCC values were 0.28 and 0.29 
lower, respectively, for the Krycklan catchment than for the national- 
level predictions reported in Table 4). Similarly, Kappa and MCC 
values of the 3-class and 2-class models’ predictions were relatively low 
for the Krycklan catchment. These findings corroborated the finding that 
soil moisture class was predicted more accurately in some parts of 
Sweden’s forest landscape than others (Fig. 5). 

Fig. 7 shows the maps generated from the 2-, 3- and 5-class models 
and the probability map for Krycklan catchment. The maps show quite 
good agreement with the field measurements (which is more clearly 
displayed with higher zooming than possible here). For details of the 
maps’ accuracy see Table 5. The maps show quite good agreement with 
the field measurements (which is more clearly displayed with higher 
zooming than possible here). 

4. Discussion 

For decades, researchers have been developing terrain indices for 
modelling soil moisture (Beven and Kirkby, 1979; Hjerdt et al., 2004; 
Meles et al., 2020; Murphy et al., 2008; Rennó et al., 2008). Identifying 
optimal thresholds and spatial scales for predicting soil moisture in 
different regions has remained a major constraint and cause of predic-
tion uncertainty (Sørensen and Seibert, 2007; Ågren et al., 2014b). 
However, recent studies have demonstrated the potential of using ML 
techniques in combination with large sets of digital terrain indices for 
mapping soil drainage (Goldman et al., 2020), wetlands (Maxwell et al., 
2016) and wet areas (Lidberg et al., 2020) over large regions at high 
spatial resolution. In the study reported here we extended the work of 
Lidberg et al. (2020) by utilizing additional predictor variables using 
several LIDAR-derived topographical indices (with various scales and 
thresholds) and a set of ML algorithms, including one that has not been 
widely used for soil mapping, XGBoost (Chen and Guestrin, 2016), and 
also investigate multi-class and continuous soil moisture models. We 
obtained models that provided high-resolution (2 × 2 m) soil moisture 
maps and more accurate predictions than those obtained by Lidberg 
et al. (2020), e.g., a 2-class model covering the entire Swedish forest 
landscape with a Kappa value of 0.69 and overall accuracy of 85%. Thus, 
our approach can enhance the utility of ML algorithms for high- 
resolution soil moisture modelling using LIDAR-derived terrain 
indices. We also corroborated the utility of the relatively new XGBoost 
algorithm for environmental modelling, in accordance with previous 
studies on similar topics (Georganos et al., 2018; Jia et al., 2019; Niel-
sen, 2016). Before working with ML models we tried to develop 
regression models (based, for example, on logistic regression and several 
multivariate methods) to adjust the maps to local conditions, but we 
were not successful. Thus, although ML requires numerous samples and 
intensive computation we found that it provided much more accurate 
models than regression models. Several other authors (Chen et al., 2019; 

Nussbaum et al., 2018) have also reported that ML models provide 
better predictions than geostatistical and statistical approaches, espe-
cially for regional-scale analyses of heterogeneous landscapes. 

With ongoing increases in climatic variability and consequent 
complexity of land management, landscape-scale soil moisture maps 
have become extremely important for effective management of natural 
resources. While maps based on satellite data can capture the temporal 
variability of soil moisture (through up to ca. 3.5 scans per week), poor 
spatial resolution often limits their utility for practical applications 
(Zeng et al., 2019). Moreover, tree canopies in forested landscapes can 
severely hinder soil moisture measurements by satellite remote sensing 
(Gao et al., 2017), and thus reduce the accuracy of satellite-based soil 
moisture maps. We incorporated land use information derived from 
SENTINEL-2 satellite images with 10 m spatial resolution acquired in the 
European earth observation program Copernicus (Table 2), but they 
were subsequently excluded due to low importance. Therefore, we 
concluded that LIDAR-derived terrain indices are stronger predictors of 
landscape-scale variation in soil moisture, and ML modeling based on 
the indices can provide accurate, spatially extensive, high-resolution soil 
moisture maps. 

In a recent Canadian study the ML algorithm Random Forest was 
used to predict a 5-class natural soil drainage map from high-resolution 
LIDAR-derived digital terrain indices (Goldman et al., 2020). The model 
obtained, for a Canadian wetland forest landscape, had lower overall 
accuracy (70%) and Kappa value (0.54) than the best models we ob-
tained. While a similar overall approach was applied in both studies, 
several methodological differences may have contributed to the differ-
ences in prediction accuracy. For example, Goldman et al. (2020) 
extracted indices from a 3 m resampled DEM instead of a 2 m DEM as we 
did, and only used the Random Forest algorithm, while we found that 
XGBoost provided the best models of four evaluated ML algorithms 
(including Random Forest). Another major difference between the 
studies was in the training datasets, as we utilized data pertaining to 
19,643 field plots at locations recorded with 5–10 m accuracy by a 
Differential Global Positioning System (DGPS) system, while Goldman 
et al. (2020) applied field data from 382 pedon descriptions, with esti-
mated locations based on handwritten notes and/or points indicated in 
aerial photographs. Moreover, DTW was the most important feature in 
our study but it was not evaluated in the Canadian study. Thus, we 
concluded that to obtain accurate predictions of soil moisture over 
extensive landscapes it is important to: test a group of ML algorithms 
rather than relying on one; use the most informative, high-resolution 
terrain indices as input features; and apply large datasets with highly 
accurately located and extensively distributed field plots. However, 
there is a misconception among non-experts that expensive field mea-
surement programs can be completely replaced with remote sensing 
observations and ML models for environmental monitoring. In reality, 
ML approaches are excellent for upscaling and generating wall-to-wall 
maps based on point observations, but the success of any ML model 
hinges on the quality and size of the field datasets (Biswas and Zhang, 
2018). Thus, we urge decision-makers to expand field measurement 
programs to strengthen the ML-based prediction of environmental pa-
rameters, including soil moisture. 

4.1. Evaluation of classified models 

To increase the applicability of the digital classified soil moisture 
maps in practical land-use management, it is important to predict soil 
moisture across the whole range from dry to wet. Hence, we produced 
several multi-class (5-, 3-, and 2-class) soil moisture maps capturing the 
whole spectrum of soil wetness in the Swedish forest landscape. When 
constructing classification models the relative costs of omitting and 
over-predicting classes depend on the context and applications. For 
example, in cancer research it is better to accept some over-prediction 
(false positives) to avoid missing any cancerous cells (true positives). 
However, as we are equally interested in all soil moisture classes, we 
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value recall and precision equally, so Kappa values are suitable measures 
of performance as they provide balanced indications in this respect. The 
findings that the 2-class map was the most accurate and 5-class map the 
least accurate, in terms of Kappa, were consistent with expectations as 
the risk of mis-classifying a pixel increases with the number of classes. In 

addition, we obtained very low Recall and F1 values for dry and wet 
classes in the 5-class model (Tables 3 and 4), probably because few field 
plots of these classes were available for the modeling (Fig. 3). A common 
approach for dealing with such issues is to generate a balanced dataset 
by under-sampling from the dominant classes (Chicco, 2017), but in our 

Table 5 
Performance of the ML models when applied to the field plots in Krycklan catchment. All models provided less accurate soil predictions for the catchment than the 
national-scale predictions.  

5-class model (Kappa 0.23, MCC 0.23) 3-class model (Kappa 0.46, MCC 0.47) 2-class model (Kappa 0.56, MCC 0.57) 
Class Recall F1 Class Recall F1 Class Recall F1 

Dry 13%  0.15 Dry-Mesic 83% 0.88 ‘Dry’ 81% 0.67 
Mesic 72%  0.75 
Mesic-moist 48%  0.43 Mesic - moist 46% 0.56 ‘Wet’ 83% 0.88 
Moist 20%  0.16 Moist-wet 82% 0.49 
Wet 0%  –  

Fig. 7. Maps of soil moisture predicted by the XGBoost models overlain with the classified soil moisture for 398 field plots in Krycklan catchment. A) Soil moisture 
predicted in two classes (‘Dry’ and ‘Wet’), B) Soil moisture predicted in three classes, C) Soil moisture predicted in five classes. D) Probability of wet classification 
(0–100%) from the 2-class model. The classified models are defined in Table 1. 
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case that would have left too few samples to represent the Swedish forest 
landscape. Instead, we argue that a better approach is to merge poorly- 
represented classes, as the recall and F1 values may be much better for 
the combined classes (as we found when we generated a 3-class model 
from our 5-class model). Kappa values have been considered better 
measures for imbalanced datasets (Fig. 3) than overall accuracy and 
they are widely used in evaluations of maps. Recently, however, it has 
been shown that Kappa also exhibits an undesired behavior on unbal-
anced datasets (Delgado and Tibau, 2019). The MCC is the most reliable 
statistical measure as it is only high if the predictions are good in terms 
of all four confusion matrix categories (true positives, false negatives, 
true negatives, and false positives). Therefore, MCC provides the most 
informative and truthful measure for evaluating binary (Chicco and 
Jurman, 2020), and multi-class classifications (Delgado and Tibau, 
2019). Hence, in our detailed analysis of the predictions for different 
parts of Sweden’s forest landscape we focused solely on MCC values 
(Fig. 5). However, it should be noted that for most cases Kappa and MCC 
values were identical (Table 3), indicating that lack of balance in the 
dataset did not seriously influence Kappa values in our study. 

In addition, the 2-class model was further analyzed to investigate 
potential variations in its performance associated with variations in 
sites’ locations, quaternary deposits, and topographic settings (Fig. 5). 
We found that there was no large bias along the latitudinal gradient, or 
above/below the highest relict coastline (Fig. 5A), indicating that the 2- 
class model adapted the map to climatic gradients from north to south 
and along the elevation gradient from the Caledonian mountains in the 
northwest to the low-lying areas in the south and east. However, the 
model’s performance was influenced by the quaternary deposits 
(Fig. 5B), in accordance with expectations as many of the input digital 
terrain indices (e.g. DTW, TWI, DI) are based on the assumption that 
topography controls groundwater flowpaths (Rinderer et al., 2014). 
Such an assumption is usually valid for soils with low hydraulic con-
ductivity, for example, glacial till soils and fine sediments where most of 
the groundwater flowpaths are in upper levels of the soils (Beven and 
Germann, 2013; Nyberg et al., 1999). However, coarse sediments have 
much higher hydraulic conductivity, enabling deeper infiltration of 
water, which decreases the topographical control on groundwater flows 
and thus could explain the poorer model performance (MCC, 0.52) for 
plots on coarse sediments (Fig. 5B). The model performance was poorest 
in areas where the local topography was steep (MCC, 0.42), which 
provides potentially important indications for practitioners that the 
developed maps should be used with caution for sites on coarse sedi-
ments and steep terrain. 

The finding that modeling of soil moisture in the Krycklan catchment 
(Table 5) was poorer than the national mapping (Table 4) was probably 
due to the large amounts of coarse sediments in the lower part of the 
catchment (Fig. 7), as predictions for sites on such sediments were 
relatively poor across the country (cf. Fig. 5B). Remnants of a large post- 
glacial delta cover most of the low-lying part of the catchment, mostly 
consisting of sand and silt, which hinders accurate soil moisture 
modeling. Models often predict that this area is wetter than the empir-
ical records suggest, because an assumption underlying many digital 
terrain indexes is that flat areas are wetlands (Grabs et al., 2009). 
However, the 5-class model seemed to overcompensate for the sediment 
effects, and predicted that some areas were drier, and others wetter, 
than in reality (Fig. 7C). The relatively poor predictions for this un-
usually large flat area with contrastingly coarse soils is likely the main 
reason for the difference in model performance with the national dataset 
(Table 4) and Krycklan dataset (Table 5). 

Another shortcoming of the maps was observed while viewing the 
map of the Krycklan catchment on-screen, which revealed in-
consistencies at the road-stream intersections. This is a known issue 
when working with high-resolution DEMs, in which roads are elevated 
above the surrounding terrain causing roadside impoundments in the 
models. This issue could be partially resolved during the preprocessing 
and calculation of the digital terrain indices. We previously found that 

breaching the Swedish national DEM produced the best outcomes for 
hydrological calculations (Lidberg et al., 2017). Despite utilizing this 
approach in the study presented here, we found inconsistencies at 
approximately 25% of the road-stream intersections in the Krycklan 
catchment, based on our expert knowledge from a field survey of all 
culverts in the catchment. 

DTW maps have contributed to significant changes in various aspects 
of forest management, such as: placement of access roads and extraction 
road networks, wood landing sites, and stream crossings; division into 
summer and winter harvest blocks; judging if logging residues are 
needed for ground protection or can be harvested for bioenergy; pro-
tection of riparian zones during fertilization; and site preparation 
(Mohtashami et al., 2017; Murphy et al., 2008; Ring et al., 2020; White 
et al., 2012; Ågren et al., 2015). However, although they have major 
advantages over conventional maps for efficient land-use management, 
they have some important limitations (Lidberg et al., 2020; Ågren et al., 
2014b). Inter alia, calculation of DTW maps involves selection of a 
specific threshold for stream initiation, while in reality the threshold 
varies substantially both locally and regionally (Elmore et al., 2013; 
Jaeger et al., 2019; Jensen et al., 2017; Julian et al., 2012; Ågren et al., 
2014). Here we calculated the digital terrain indices using diverse 
thresholds and the XGBoost model to adapt the maps to different land-
scapes, thereby combining use of the NFI field dataset and ML to enable 
data-driven improvement of the soil moisture mapping. Comparison of 
the 2-class XGBoost map with a 2-class DTW map (Lidberg et al., 2020), 
using data pertaining to 20% of the NFI plots, shows that this approach 
improved overall accuracy from 79% to 85% and the Kappa value from 
0.56 to 0.69. 

4.2. Transition from classified to continuous maps 

Categorization is a fundamental mechanism of human construction 
of knowledge of the world (McGarty, 2015). By learning which category 
a soil belongs to, one also learns about relationships between soils. 
However, in nature there are no clear boundaries between soil moisture 
classes (as indicated by the map in Fig. 8A). The categories refer to 
average soil moisture conditions for sets of sites, while in reality soil 
moisture varies seasonally depending on local weather conditions, and 
both stream networks and associated areas of wet soils expand and 
shrink during the year (Jaeger et al., 2019; Lyon et al., 2004; Quinn and 
Beven, 1993; Ågren et al., 2015). The ML method XGBoost can also 
generate maps of the probability of each pixel being classified as wet. 
Similar probability maps have been used to classify soil moisture in 
Alberta, Canada (Delancey et al., 2019; Hird et al., 2017). However, 
instead of classifying it, using a multicolored map with smooth transi-
tions between the colors makes it easier for practitioners to infer this 
seasonal variability. In simplified terms, NFI defines wet and moist areas 
as those that have a shallow water table and are wet most of the year 
(with peat accumulation and species that thrive in wet conditions), 
while moist-mesic soils are seasonally wet following snowmelt or rain. 
In practice, this means that blue and turquoise areas in Fig. 7B are more 
or less wet throughout the year while green areas have high ground-
water levels and high hydrological connectivity during high-flow pe-
riods. Therefore, it is more rational to utilize raw probability maps for 
practical management (Fig. 8B), such as wetland restoration (Goldman 
et al., 2020) or forestry operations (Murphy et al., 2008). In efforts to 
facilitate application of our results in practice and provide better plan-
ning tools for land-use management in Sweden both maps in Fig. 8 were 
released as open geodata for all of Sweden (www.slu.se/mfk). Future 
further development of this national scale soil moisture map could entail 
incorporation of distance to ditches data (O’Neil et al., 2020), but most 
of the ditch networks in Sweden have not been mapped (Kuglerová 
et al., 2017). 

Finally, it should be noted that calculation of soil moisture on a 2 m 
DEM requires substantial data storage and processing power. For some 
landscapes it may be worth aggregating the DEMs to the order of 5, 10 or 
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even 15 m resolution, to reduce the amount of data and these re-
quirements. However, according to a recent study, the average width 
(±SE) of retained forest buffers along streams was 15.9 ± 2.1 m in 
British Columbia, 15.3 ± 1.4 m in Finland, and just 4 ± 0.4 m in Sweden 
(Kuglerová et al., 2020). Thus, as one of the main purposes of the 
developed maps is to provide planning tools for hydrologically adapted 
protection zones (Kuglerová et al., 2014) we had to maintain very high 
resolution (2 m) to derive a relevant soil moisture map for practical 
forest management in Sweden. 

5. Conclusions 

LIDAR-derived terrain indices and ML models provided an effective 
and accurate approach for modeling soil moisture in the Swedish forest 
landscape at high spatial resolution (2 × 2 m). We tested multiple ML 
methods, including Artificial Neural Network, Random Forest, Support 
Vector Machine, Naïve Bayes classification, and Extreme Gradient 
Boosting (XGBoost, which provided the best predictions in terms of both 
accuracy and prediction time). We generated a 3-class soil moisture map 
with sufficient quality for use in practical land use management. We also 
generated a 5-class map, which did not have enough training data in the 
wet and dry classes to provide reasonably accurate predictions. How-
ever, for practical forest management we argue that the probability map, 
showing predictions of soil moisture from 0% (dry) to 100% (wet), 
provided more valuable information. The 3-class map and probability 
map we produced have been released for practitioners. While the 
probability map outperforms other available soil moisture maps, it 
should be used with caution near roads, at sites on coarse sediments, and 
in areas with steep local topography. 
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Ploum, S.W., Leach, J.A., Kuglerová, L., Laudon, H., 2018. Thermal detection of discrete 
riparian inflow points (DRIPs) during contrasting hydrological events. Hydrol 
Process 32 (19), 3049–3050. https://doi.org/10.1002/hyp.13184. 

A.M. Ågren et al.                                                                                                                                                                                                                                

https://doi.org/10.1145/1961189.1961199
https://doi.org/10.1145/1961189.1961199
http://refhub.elsevier.com/S0016-7061(21)00360-8/h0070
http://refhub.elsevier.com/S0016-7061(21)00360-8/h0070
http://refhub.elsevier.com/S0016-7061(21)00360-8/h0070
http://refhub.elsevier.com/S0016-7061(21)00360-8/h0070
https://doi.org/10.1186/s13040-017-0155-3
https://doi.org/10.1186/s12864-019-6413-7
https://doi.org/10.1177/001316446002000104
https://doi.org/10.1371/journal.pone.0218165
https://doi.org/10.1371/journal.pone.0218165
https://doi.org/10.1371/journal.pone.0222916
https://doi.org/10.1371/journal.pone.0222916
https://doi.org/10.1016/j.still.2015.08.013
https://doi.org/10.3390/rs9121292
https://doi.org/10.3390/rs9121292
https://doi.org/10.1002/eap.2077
https://doi.org/10.14214/sf.1095
https://doi.org/10.3390/s17091966
https://doi.org/10.1109/LGRS.2018.2803259
https://doi.org/10.1109/LGRS.2018.2803259
https://doi.org/10.1016/j.geoderma.2020.114420
https://doi.org/10.1016/j.geoderma.2020.114420
https://doi.org/10.1016/j.jhydrol.2009.03.031
https://doi.org/10.3390/rs9121315
https://doi.org/10.3390/rs9121315
https://doi.org/10.1029/2004WR003130
https://doi.org/10.1016/j.hydroa.2018.100005
https://doi.org/10.1016/j.hydroa.2018.100005
https://doi.org/10.1002/hyp.11259
https://doi.org/10.3390/rs11141655
https://doi.org/10.3390/rs11141655
https://doi.org/10.2307/2280779
https://doi.org/10.2307/2280779
https://doi.org/10.1016/j.foreco.2014.08.033
https://doi.org/10.1002/hyp.11281
https://doi.org/10.1890/13-0363.1
https://doi.org/10.1890/13-0363.1
https://doi.org/10.1002/wrcr.20520
https://doi.org/10.1002/2016WR019804
https://doi.org/10.1002/2016WR019804
https://doi.org/10.1111/2041-210X.12427
https://doi.org/10.1111/2041-210X.12427
https://doi.org/10.1007/s13280-019-01196-9
https://doi.org/10.1002/hyp.11385
https://doi.org/10.1002/hyp.10648
https://doi.org/10.1002/hyp.10648
http://refhub.elsevier.com/S0016-7061(21)00360-8/h0225
http://refhub.elsevier.com/S0016-7061(21)00360-8/h0225
https://doi.org/10.1002/hyp.1494
https://doi.org/10.1002/hyp.1494
https://doi.org/10.1016/0005-2795(75)90109-9
https://doi.org/10.1080/01431161.2018.1433343
https://doi.org/10.1016/S0099-1112(16)82038-8
https://doi.org/10.1016/S0099-1112(16)82038-8
https://doi.org/10.1093/acrefore/9780190236557.013.308
https://doi.org/10.1093/acrefore/9780190236557.013.308
https://doi.org/10.1016/j.jenvman.2019.109863
https://doi.org/10.1016/j.jenvman.2019.109863
https://doi.org/10.2136/vzj2016.10.0105
https://doi.org/10.2136/vzj2016.10.0105
https://doi.org/10.14214/sf.2018
https://doi.org/10.5558/tfc84568-4
https://doi.org/10.1672/0277-5212(2007)27[846:MWACOT]2.0.CO;2
https://doi.org/10.1672/0277-5212(2007)27[846:MWACOT]2.0.CO;2
https://doi.org/10.1016/j.ecolmodel.2011.01.003
https://doi.org/10.1016/j.ecolmodel.2011.01.003
https://doi.org/10.5194/soil-4-1-2018
https://doi.org/10.5194/soil-4-1-2018
https://doi.org/10.1002/(SICI)1099-1085(19990815)13:11<1557::AID-HYP835>3.0.CO;2-S
https://doi.org/10.1002/(SICI)1099-1085(19990815)13:11<1557::AID-HYP835>3.0.CO;2-S
https://doi.org/10.1016/j.envsoft.2020.104665
https://doi.org/10.1002/hyp.13184


Geoderma 404 (2021) 115280

16

Powers, D.M.W., 2011. Evaluation: from Precision, Recall and F-measure to ROC, 
Informedness, Markedness and Correlation. J. Mach. Learn. Technol. 2 (1), 37–63. 
https://doi.org/10.9735/2229-3981. 

Quinn, P.F., Beven, K.J., 1993. Spatial and Temporal Predictions of Soil-Moisture 
Dynamics, Runoff, Variable Source Areas and Evapotranspiration for Plynlimon. 
Mid-Wales. Hydrol Process 7 (4), 425–448. https://doi.org/10.1002/ 
hyp.3360070407. 

Rashmi, K.V., Gilad-Bachrach, R., 2015. DART: Dropouts meet Multiple Additive 
Regression Trees, 18th International Conference on Artificial Intelligence and 
Statistics (AISTATS). W&CP, San Diego, CA, USA, JMLR.  
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