5 research outputs found

    MoFA: Model-based Deep Convolutional Face Autoencoder for Unsupervised Monocular Reconstruction

    Get PDF
    In this work we propose a novel model-based deep convolutional autoencoder that addresses the highly challenging problem of reconstructing a 3D human face from a single in-the-wild color image. To this end, we combine a convolutional encoder network with an expert-designed generative model that serves as decoder. The core innovation is our new differentiable parametric decoder that encapsulates image formation analytically based on a generative model. Our decoder takes as input a code vector with exactly defined semantic meaning that encodes detailed face pose, shape, expression, skin reflectance and scene illumination. Due to this new way of combining CNN-based with model-based face reconstruction, the CNN-based encoder learns to extract semantically meaningful parameters from a single monocular input image. For the first time, a CNN encoder and an expert-designed generative model can be trained end-to-end in an unsupervised manner, which renders training on very large (unlabeled) real world data feasible. The obtained reconstructions compare favorably to current state-of-the-art approaches in terms of quality and richness of representation.Comment: International Conference on Computer Vision (ICCV) 2017 (Oral), 13 page

    Neural Scene Decomposition for Multi-Person Motion Capture

    Get PDF
    Learning general image representations has proven key to the success of many computer vision tasks. For example, many approaches to image understanding problems rely on deep networks that were initially trained on ImageNet, mostly because the learned features are a valuable starting point to learn from limited labeled data. However, when it comes to 3D motion capture of multiple people, these features are only of limited use. In this paper, we therefore propose an approach to learning features that are useful for this purpose. To this end, we introduce a self-supervised approach to learning what we call a neural scene decomposition (NSD) that can be exploited for 3D pose estimation. NSD comprises three layers of abstraction to represent human subjects: spatial layout in terms of bounding-boxes and relative depth; a 2D shape representation in terms of an instance segmentation mask; and subject-specific appearance and 3D pose information. By exploiting self-supervision coming from multiview data, our NSD model can be trained end-to-end without any 2D or 3D supervision. In contrast to previous approaches, it works for multiple persons and full-frame images. Because it encodes 3D geometry, NSD can then be effectively leveraged to train a 3D pose estimation network from small amounts of annotated data. Our code and newly introduced boxing dataset is available at github.com and cvlab.epfl.ch

    Deep disentangled representations for volumetric reconstruction

    No full text
    We introduce a convolutional neural network for inferring a compact disentangled graphical description of objects from 2D images that can be used for volumetric reconstruction. The network comprises an encoder and a twin-tailed decoder. The encoder generates a disentangled graphics code. The first decoder generates a volume, and the second decoder reconstructs the input image using a novel training regime that allows the graphics code to learn a separate representation of the 3D object and a description of its lighting and pose conditions. We demonstrate this method by generating volumes and disentangled graphical descriptions from images and videos of faces and chairs

    Deep disentangled representations for volumetric reconstruction

    No full text
    Item does not contain fulltextWe introduce a convolutional neural network for inferring a compact disentangled graphical description of objects from 2D images that can be used for volumetric reconstruction. The network comprises an encoder and a twin-tailed decoder. The encoder generates a disentangled graphics code. The first decoder generates a volume, and the second decoder reconstructs the input image using a novel training regime that allows the graphics code to learn a separate representation of the 3D object and a description of its lighting and pose conditions. We demonstrate this method by generating volumes and disentangled graphical descriptions from images and videos of faces and chairs.Computer Vision - ECCV 2016 Workshops, Amsterdam, The Netherlands, October 8-10 and 15-16, 201
    corecore