471 research outputs found

    Spott : on-the-spot e-commerce for television using deep learning-based video analysis techniques

    Get PDF
    Spott is an innovative second screen mobile multimedia application which offers viewers relevant information on objects (e.g., clothing, furniture, food) they see and like on their television screens. The application enables interaction between TV audiences and brands, so producers and advertisers can offer potential consumers tailored promotions, e-shop items, and/or free samples. In line with the current views on innovation management, the technological excellence of the Spott application is coupled with iterative user involvement throughout the entire development process. This article discusses both of these aspects and how they impact each other. First, we focus on the technological building blocks that facilitate the (semi-) automatic interactive tagging process of objects in the video streams. The majority of these building blocks extensively make use of novel and state-of-the-art deep learning concepts and methodologies. We show how these deep learning based video analysis techniques facilitate video summarization, semantic keyframe clustering, and (similar) object retrieval. Secondly, we provide insights in user tests that have been performed to evaluate and optimize the application's user experience. The lessons learned from these open field tests have already been an essential input in the technology development and will further shape the future modifications to the Spott application

    Hierarchical Photo-Scene Encoder for Album Storytelling

    Full text link
    In this paper, we propose a novel model with a hierarchical photo-scene encoder and a reconstructor for the task of album storytelling. The photo-scene encoder contains two sub-encoders, namely the photo and scene encoders, which are stacked together and behave hierarchically to fully exploit the structure information of the photos within an album. Specifically, the photo encoder generates semantic representation for each photo while exploiting temporal relationships among them. The scene encoder, relying on the obtained photo representations, is responsible for detecting the scene changes and generating scene representations. Subsequently, the decoder dynamically and attentively summarizes the encoded photo and scene representations to generate a sequence of album representations, based on which a story consisting of multiple coherent sentences is generated. In order to fully extract the useful semantic information from an album, a reconstructor is employed to reproduce the summarized album representations based on the hidden states of the decoder. The proposed model can be trained in an end-to-end manner, which results in an improved performance over the state-of-the-arts on the public visual storytelling (VIST) dataset. Ablation studies further demonstrate the effectiveness of the proposed hierarchical photo-scene encoder and reconstructor.Comment: 8 pages, 4 figure

    Unsupervised Video Summarization via Attention-Driven Adversarial Learning

    Get PDF
    This paper presents a new video summarization approach that integrates an attention mechanism to identify the signi cant parts of the video, and is trained unsupervisingly via generative adversarial learning. Starting from the SUM-GAN model, we rst develop an improved version of it (called SUM-GAN-sl) that has a signi cantly reduced number of learned parameters, performs incremental training of the model's components, and applies a stepwise label-based strategy for updating the adversarial part. Subsequently, we introduce an attention mechanism to SUM-GAN-sl in two ways: i) by integrating an attention layer within the variational auto-encoder (VAE) of the architecture (SUM-GAN-VAAE), and ii) by replacing the VAE with a deterministic attention auto-encoder (SUM-GAN-AAE). Experimental evaluation on two datasets (SumMe and TVSum) documents the contribution of the attention auto-encoder to faster and more stable training of the model, resulting in a signi cant performance improvement with respect to the original model and demonstrating the competitiveness of the proposed SUM-GAN-AAE against the state of the art

    Query Twice: Dual Mixture Attention Meta Learning for Video Summarization

    Full text link
    Video summarization aims to select representative frames to retain high-level information, which is usually solved by predicting the segment-wise importance score via a softmax function. However, softmax function suffers in retaining high-rank representations for complex visual or sequential information, which is known as the Softmax Bottleneck problem. In this paper, we propose a novel framework named Dual Mixture Attention (DMASum) model with Meta Learning for video summarization that tackles the softmax bottleneck problem, where the Mixture of Attention layer (MoA) effectively increases the model capacity by employing twice self-query attention that can capture the second-order changes in addition to the initial query-key attention, and a novel Single Frame Meta Learning rule is then introduced to achieve more generalization to small datasets with limited training sources. Furthermore, the DMASum significantly exploits both visual and sequential attention that connects local key-frame and global attention in an accumulative way. We adopt the new evaluation protocol on two public datasets, SumMe, and TVSum. Both qualitative and quantitative experiments manifest significant improvements over the state-of-the-art methods.Comment: This manuscript has been accepted at ACM MM 202
    corecore