17,072 research outputs found

    Contextual Attention Recurrent Architecture for Context-aware Venue Recommendation

    Get PDF
    Venue recommendation systems aim to effectively rank a list of interesting venues users should visit based on their historical feedback (e.g. checkins). Such systems are increasingly deployed by Location-based Social Networks (LBSNs) such as Foursquare and Yelp to enhance their usefulness to users. Recently, various RNN architectures have been proposed to incorporate contextual information associated with the users' sequence of checkins (e.g. time of the day, location of venues) to effectively capture the users' dynamic preferences. However, these architectures assume that different types of contexts have an identical impact on the users' preferences, which may not hold in practice. For example, an ordinary context such as the time of the day reflects the user's current contextual preferences, whereas a transition context - such as a time interval from their last visited venue - indicates a transition effect from past behaviour to future behaviour. To address these challenges, we propose a novel Contextual Attention Recurrent Architecture (CARA) that leverages both sequences of feedback and contextual information associated with the sequences to capture the users' dynamic preferences. Our proposed recurrent architecture consists of two types of gating mechanisms, namely 1) a contextual attention gate that controls the influence of the ordinary context on the users' contextual preferences and 2) a time- and geo-based gate that controls the influence of the hidden state from the previous checkin based on the transition context. Thorough experiments on three large checkin and rating datasets from commercial LBSNs demonstrate the effectiveness of our proposed CARA architecture by significantly outperforming many state-of-the-art RNN architectures and factorisation approaches

    Neural Ranking Models with Weak Supervision

    Get PDF
    Despite the impressive improvements achieved by unsupervised deep neural networks in computer vision and NLP tasks, such improvements have not yet been observed in ranking for information retrieval. The reason may be the complexity of the ranking problem, as it is not obvious how to learn from queries and documents when no supervised signal is available. Hence, in this paper, we propose to train a neural ranking model using weak supervision, where labels are obtained automatically without human annotators or any external resources (e.g., click data). To this aim, we use the output of an unsupervised ranking model, such as BM25, as a weak supervision signal. We further train a set of simple yet effective ranking models based on feed-forward neural networks. We study their effectiveness under various learning scenarios (point-wise and pair-wise models) and using different input representations (i.e., from encoding query-document pairs into dense/sparse vectors to using word embedding representation). We train our networks using tens of millions of training instances and evaluate it on two standard collections: a homogeneous news collection(Robust) and a heterogeneous large-scale web collection (ClueWeb). Our experiments indicate that employing proper objective functions and letting the networks to learn the input representation based on weakly supervised data leads to impressive performance, with over 13% and 35% MAP improvements over the BM25 model on the Robust and the ClueWeb collections. Our findings also suggest that supervised neural ranking models can greatly benefit from pre-training on large amounts of weakly labeled data that can be easily obtained from unsupervised IR models.Comment: In proceedings of The 40th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR2017

    CEDR: Contextualized Embeddings for Document Ranking

    Get PDF
    Although considerable attention has been given to neural ranking architectures recently, far less attention has been paid to the term representations that are used as input to these models. In this work, we investigate how two pretrained contextualized language models (ELMo and BERT) can be utilized for ad-hoc document ranking. Through experiments on TREC benchmarks, we find that several existing neural ranking architectures can benefit from the additional context provided by contextualized language models. Furthermore, we propose a joint approach that incorporates BERT's classification vector into existing neural models and show that it outperforms state-of-the-art ad-hoc ranking baselines. We call this joint approach CEDR (Contextualized Embeddings for Document Ranking). We also address practical challenges in using these models for ranking, including the maximum input length imposed by BERT and runtime performance impacts of contextualized language models.Comment: Appeared in SIGIR 2019, 4 page

    Training Curricula for Open Domain Answer Re-Ranking

    Full text link
    In precision-oriented tasks like answer ranking, it is more important to rank many relevant answers highly than to retrieve all relevant answers. It follows that a good ranking strategy would be to learn how to identify the easiest correct answers first (i.e., assign a high ranking score to answers that have characteristics that usually indicate relevance, and a low ranking score to those with characteristics that do not), before incorporating more complex logic to handle difficult cases (e.g., semantic matching or reasoning). In this work, we apply this idea to the training of neural answer rankers using curriculum learning. We propose several heuristics to estimate the difficulty of a given training sample. We show that the proposed heuristics can be used to build a training curriculum that down-weights difficult samples early in the training process. As the training process progresses, our approach gradually shifts to weighting all samples equally, regardless of difficulty. We present a comprehensive evaluation of our proposed idea on three answer ranking datasets. Results show that our approach leads to superior performance of two leading neural ranking architectures, namely BERT and ConvKNRM, using both pointwise and pairwise losses. When applied to a BERT-based ranker, our method yields up to a 4% improvement in MRR and a 9% improvement in P@1 (compared to the model trained without a curriculum). This results in models that can achieve comparable performance to more expensive state-of-the-art techniques.Comment: Accepted at SIGIR 2020 (long
    • …
    corecore