5,605 research outputs found

    Rational physical agent reasoning beyond logic

    No full text
    The paper addresses the problem of defining a theoretical physical agent framework that satisfies practical requirements of programmability by non-programmer engineers and at the same time permitting fast realtime operation of agents on digital computer networks. The objective of the new framework is to enable the satisfaction of performance requirements on autonomous vehicles and robots in space exploration, deep underwater exploration, defense reconnaissance, automated manufacturing and household automation

    A Survey on Formation Control of Small Satellites

    Get PDF

    FIRI - a Far-Infrared Interferometer

    Full text link
    Half of the energy ever emitted by stars and accreting objects comes to us in the FIR waveband and has yet to be properly explored. We propose a powerful Far-InfraRed Interferometer mission, FIRI, to carry out high-resolution imaging spectroscopy in the FIR. This key observational capability is essential to reveal how gas and dust evolve into stars and planets, how the first luminous objects in the Universe ignited, how galaxies formed, and when super-massive black holes grew. FIRI will disentangle the cosmic histories of star formation and accretion onto black holes and will trace the assembly and evolution of quiescent galaxies like our Milky Way. Perhaps most importantly, FIRI will observe all stages of planetary system formation and recognise Earth-like planets that may harbour life, via its ability to image the dust structures in planetary systems. It will thus address directly questions fundamental to our understanding of how the Universe has developed and evolved - the very questions posed by ESA's Cosmic Vision.Comment: Proposal developed by a large team of astronomers from Europe, USA and Canada and submitted to the European Space Agency as part of "Cosmic Vision 2015-2025

    Two-Stage Path Planning Approach for Designing Multiple Spacecraft Reconfiguration Maneuvers

    Get PDF
    The paper presents a two-stage approach for designing optimal reconfiguration maneuvers for multiple spacecraft. These maneuvers involve well-coordinated and highly-coupled motions of the entire fleet of spacecraft while satisfying an arbitrary number of constraints. This problem is particularly difficult because of the nonlinearity of the attitude dynamics, the non-convexity of some of the constraints, and the coupling between the positions and attitudes of all spacecraft. As a result, the trajectory design must be solved as a single 6N DOF problem instead of N separate 6 DOF problems. The first stage of the solution approach quickly provides a feasible initial solution by solving a simplified version without differential constraints using a bi-directional Rapidly-exploring Random Tree (RRT) planner. A transition algorithm then augments this guess with feasible dynamics that are propagated from the beginning to the end of the trajectory. The resulting output is a feasible initial guess to the complete optimal control problem that is discretized in the second stage using a Gauss pseudospectral method (GPM) and solved using an off-the-shelf nonlinear solver. This paper also places emphasis on the importance of the initialization step in pseudospectral methods in order to decrease their computation times and enable the solution of a more complex class of problems. Several examples are presented and discussed

    Manoeuvre Planning Architecture for the Optimisation of Spacecraft Formation Flying Reconfiguration Manoeuvres

    Get PDF
    Formation flying of multiple spacecraft collaborating toward the same goal is fast becoming a reality for space mission designers. Often the missions require the spacecraft to perform translational manoeuvres relative to each other to achieve some mission objective. These manoeuvres need to be planned to ensure the safety of the spacecraft in the formation and to optimise fuel management throughout the fleet. In addition to these requirements is it desirable for this manoeuvre planning to occur autonomously within the fleet to reduce operations cost and provide greater planning flexibility for the mission. One such mission that would benefit from this type of manoeuvre planning is the European Space Agency’s DARWIN mission, designed to search for extra-solar Earth-like planets using separated spacecraft interferometry. This thesis presents a Manoeuvre Planning Architecture for the DARWIN mission. The design of the Architecture involves identifying and conceptualising all factors affecting the execution of formation flying manoeuvres at the Sun/Earth libration point L2. A systematic trade-off analysis of these factors is performed and results in a modularised Manoeuvre Planning Architecture for the optimisation of formation flying reconfiguration manoeuvres. The Architecture provides a means for DARWIN to autonomously plan manoeuvres during the reconfiguration mode of the mission. The Architecture consists of a Science Operations Module, a Position Assignment Module, a Trajectory Design Module and a Station-keeping Module that represents a multiple multi-variable optimisation approach to the formation flying manoeuvre planning problem. The manoeuvres are planned to incorporate target selection for maximum science returns, collision avoidance, thruster plume avoidance, manoeuvre duration minimisation and manoeuvre fuel management (including fuel consumption minimisation and formation fuel balancing). With many customisable variables the Architecture can be tuned to give the best performance throughout the mission duration. The implementation of the Architecture highlights the importance of planning formation flying reconfiguration manoeuvres. When compared with a benchmark manoeuvre planning strategy the Architecture demonstrates a performance increase of 27% for manoeuvre scheduling and fuel savings of 40% over a fifty target observation tour. The Architecture designed in this thesis contributes to the field of spacecraft formation flying analysis on various levels. First, the manoeuvre planning is designed at the mission level with considerations for mission operations and station-keeping included in the design. Secondly, the requirements analysis and implementation of Science Operation Module represent a unique insight into the complexity of observation scheduling for exo-planet analysis missions and presents a robust method for autonomously optimising that scheduling. Thirdly, in-depth analyses are performed on DARWIN-based modifications of existing manoeuvre optimisation strategies identifying their strengths and weaknesses and ways to improve them. Finally, though not implemented in this thesis, the design of a Station-keeping Module is provided to add station-keeping optimisation functionality to the Architecture

    Space, the new frontier

    Get PDF
    Space program - high thrust boosters with greater payload capabilities, superior guidance and control, and astronaut trainin
    • …
    corecore