2 research outputs found

    Highly interpretable hierarchical deep rule-based classifier

    Get PDF
    Pioneering the traditional fuzzy rule-based (FRB) systems, deep rule-based (DRB) classifiers are able to offer both human-level performance and transparent system structure on image classification problems by integrating zero-order fuzzy rule base with a multi-layer image-processing architecture that is typical for deep learning. Nonetheless, it is frequently observed that the inner structure of DRB can become over sophisticated and not interpretable for humans when applied to large-scale, complex problems. To tackle the issue, one feasible solution is to construct a tree structural classification model by aggregating the possibly huge number of prototypes identified from data into a much smaller number of more descriptive and highly abstract ones. Therefore, in this paper, we present a novel hierarchical deep rule-based (H-DRB) approach that is capable of summarizing the less descriptive raw prototypes into highly generalized ones and self-arranging them into a hierarchical prototype-based structure according to their descriptive abilities. By doing so, H-DRB can offer high-level performance and, most importantly, full transparency and human-interpretability on various problems including large-scale ones. The proposed concept and generical principles are verified through numerical experiments based on a wide variety of popular benchmark image sets. Numerical results demonstrate that the promise of H-DRB

    Deep Rule-Based Aerial Scene Classifier using High-Level Ensemble Feature Descriptor

    Get PDF
    In this paper, a new deep rule-based approach using high-level ensemble feature descriptor is proposed for aerial scene classification. By creating an ensemble of three pre-trained deep convolutional neural networks for feature extraction, the proposed approach is able to extract more discriminative representations from the local regions of aerial images. With a set of massively parallel IF...THEN rules built upon the prototypes identified through a self-organizing, nonparametric, transparent and highly human-interpretable learning process, the proposed approach is able to produce the state-of-the-art classification results on the unlabeled images outperforming the alternatives. Numerical examples on benchmark datasets demonstrate the strong performance of the proposed approach
    corecore