10 research outputs found

    Efficient Parallel Reinforcement Learning Framework using the Reactor Model

    Full text link
    Parallel Reinforcement Learning (RL) frameworks are essential for mapping RL workloads to multiple computational resources, allowing for faster generation of samples, estimation of values, and policy improvement. These computational paradigms require a seamless integration of training, serving, and simulation workloads. Existing frameworks, such as Ray, are not managing this orchestration efficiently, especially in RL tasks that demand intensive input/output and synchronization between actors on a single node. In this study, we have proposed a solution implementing the reactor model, which enforces a set of actors to have a fixed communication pattern. This allows the scheduler to eliminate work needed for synchronization, such as acquiring and releasing locks for each actor or sending and processing coordination-related messages. Our framework, Lingua Franca (LF), a coordination language based on the reactor model, also supports true parallelism in Python and provides a unified interface that allows users to automatically generate dataflow graphs for RL tasks. In comparison to Ray on a single-node multi-core compute platform, LF achieves 1.21x and 11.62x higher simulation throughput in OpenAI Gym and Atari environments, reduces the average training time of synchronized parallel Q-learning by 31.2%, and accelerates multi-agent RL inference by 5.12x.Comment: 10 pages, 11 figure

    Context-aware distribution of fog applications using deep reinforcement learning

    Get PDF
    Fog computing is an emerging paradigm that aims to meet the increasing computation demands arising from the billions of devices connected to the Internet. Offloading services of an application from the Cloud to the edge of the network can improve the overall latency of the application since it can process data closer to user devices. Diverse Fog nodes ranging from Wi-Fi routers to mini-clouds with varying resource capabilities makes it challenging to determine which services of an application need to be offloaded. In this paper, a context-aware mechanism for distributing applications across the Cloud and the Fog is proposed. The mechanism dynamically generates (re)deployment plans for the application to maximise the performance efficiency of the application by taking operational conditions, such as hardware utilisation and network state, and running costs into account. The mechanism relies on deep Q-networks to generate a distribution plan without prior knowledge of the available resources on the Fog node, the network condition, and the application. The feasibility of the proposed context-aware distribution mechanism is demonstrated on two use-cases, namely a face detection application and a location-based mobile game. The benefits are increased utility of dynamic distribution by 50% and 20% for the two use-cases respectively when compared to a static distribution approach used in existing research.Publisher PDFPeer reviewe

    From classical to quantum machine learning: survey on routing optimization in 6G software defined networking

    Get PDF
    The sixth generation (6G) of mobile networks will adopt on-demand self-reconfiguration to fulfill simultaneously stringent key performance indicators and overall optimization of usage of network resources. Such dynamic and flexible network management is made possible by Software Defined Networking (SDN) with a global view of the network, centralized control, and adaptable forwarding rules. Because of the complexity of 6G networks, Artificial Intelligence and its integration with SDN and Quantum Computing are considered prospective solutions to hard problems such as optimized routing in highly dynamic and complex networks. The main contribution of this survey is to present an in-depth study and analysis of recent research on the application of Reinforcement Learning (RL), Deep Reinforcement Learning (DRL), and Quantum Machine Learning (QML) techniques to address SDN routing challenges in 6G networks. Furthermore, the paper identifies and discusses open research questions in this domain. In summary, we conclude that there is a significant shift toward employing RL/DRL-based routing strategies in SDN networks, particularly over the past 3 years. Moreover, there is a huge interest in integrating QML techniques to tackle the complexity of routing in 6G networks. However, considerable work remains to be done in both approaches in order to accomplish thorough comparisons and synergies among various approaches and conduct meaningful evaluations using open datasets and different topologies

    From classical to quantum machine learning: survey on routing optimization in 6G software defined networking

    Get PDF
    The sixth generation (6G) of mobile networks will adopt on-demand self-reconfiguration to fulfill simultaneously stringent key performance indicators and overall optimization of usage of network resources. Such dynamic and flexible network management is made possible by Software Defined Networking (SDN) with a global view of the network, centralized control, and adaptable forwarding rules. Because of the complexity of 6G networks, Artificial Intelligence and its integration with SDN and Quantum Computing are considered prospective solutions to hard problems such as optimized routing in highly dynamic and complex networks. The main contribution of this survey is to present an in-depth study and analysis of recent research on the application of Reinforcement Learning (RL), Deep Reinforcement Learning (DRL), and Quantum Machine Learning (QML) techniques to address SDN routing challenges in 6G networks. Furthermore, the paper identifies and discusses open research questions in this domain. In summary, we conclude that there is a significant shift toward employing RL/DRL-based routing strategies in SDN networks, particularly over the past 3 years. Moreover, there is a huge interest in integrating QML techniques to tackle the complexity of routing in 6G networks. However, considerable work remains to be done in both approaches in order to accomplish thorough comparisons and synergies among various approaches and conduct meaningful evaluations using open datasets and different topologies

    Design and planning of flexible mobile Micro-Grids using Deep Reinforcement Learning

    Get PDF
    Ongoing risks from climate change have significantly impacted the livelihood of global nomadic communities and are likely to lead to increased migratory movements in coming years. As a result, mobility considerations are becoming increasingly important in energy systems planning, particularly to achieve energy access in developing countries. Advanced “Plug and Play” control strategies have been recently developed with such a decentralized framework in mind, allowing easier interconnection of nomadic communities, both to each other and to the main grid. Considering the above, the design and planning strategy of a mobile multi-energy supply system for a nomadic community is investigated in this work. Motivated by the scale and dimensionality of the associated uncertainties, impacting all major design and decision variables over the 30-year planning horizon, Deep Reinforcement Learning (DRL) Flexibility Analysis is implemented for the design and planning problem. DRL based solutions are benchmarked against several rigid baseline design options to compare expected performance under uncertainty. The results on a case study for ger communities in Mongolia suggest that mobile nomadic energy systems can be both technically and economically feasible, particularly when considering flexibility, although the degree of spatial dispersion among households is an important limiting factor. Additionally, the DRL based policies lead to the development of dynamic evolution and adaptability strategies, which can be used by the targeted communities under a very wide range of potential scenarios. Key economic, sustainability and resilience indicators such as Cost, Equivalent Emissions and Total Unmet Load are measured, suggesting potential improvements compared to available baselines of up to 25%, 67% and 76%, respectively. Finally, the decomposition of values of flexibility and plug and play operation is presented using a variation of real options theory, with important implications for both nomadic communities and policymakers focused on enabling their energy access
    corecore