
Applied Energy 335 (2023) 120707

Available online 6 February 2023
0306-2619/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Design and planning of flexible mobile Micro-Grids using Deep 
Reinforcement Learning 

Cesare Caputo a, Michel-Alexandre Cardin a,*, Pudong Ge b, Fei Teng b, Anna Korre c, 
Ehecatl Antonio del Rio Chanona d 

a Dyson School of Design Engineering, Imperial College London, United Kingdom 
b Department of Electrical and Electronics Engineering, Imperial College London, United Kingdom 
c Department of Earth Science and Engineering, Imperial College London, United Kingdom 
d Department of Chemical Engineering, Imperial College London, United Kingdom   

H I G H L I G H T S  

• The impacts of climate change on global migratory patterns must be addressed in light of their energy access needs. 
• Plug and Play control developments allow nomadic communities to operate in stand-alone mode or connect to the main grid. 
• Flexibility in Design and Deep Reinforcement Learning are implemented for their energy systems planning under uncertainty. 
• The proposed method outperforms baseline systems on expected cost, equivalent emissions and unmet load over 30 years. 
• Results have important implications for policy, design, planning, and adaptable operations of future mobile energy systems.  
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A B S T R A C T   

Ongoing risks from climate change have significantly impacted the livelihood of global nomadic communities 
and are likely to lead to increased migratory movements in coming years. As a result, mobility considerations are 
becoming increasingly important in energy systems planning, particularly to achieve energy access in developing 
countries. Advanced “Plug and Play” control strategies have been recently developed with such a decentralized 
framework in mind, allowing easier interconnection of nomadic communities, both to each other and to the main 
grid. Considering the above, the design and planning strategy of a mobile multi-energy supply system for a 
nomadic community is investigated in this work. Motivated by the scale and dimensionality of the associated 
uncertainties, impacting all major design and decision variables over the 30-year planning horizon, Deep 
Reinforcement Learning (DRL) Flexibility Analysis is implemented for the design and planning problem. DRL 
based solutions are benchmarked against several rigid baseline design options to compare expected performance 
under uncertainty. The results on a case study for ger communities in Mongolia suggest that mobile nomadic 
energy systems can be both technically and economically feasible, particularly when considering flexibility, 
although the degree of spatial dispersion among households is an important limiting factor. Additionally, the 
DRL based policies lead to the development of dynamic evolution and adaptability strategies, which can be used 
by the targeted communities under a very wide range of potential scenarios. Key economic, sustainability and 
resilience indicators such as Cost, Equivalent Emissions and Total Unmet Load are measured, suggesting po-
tential improvements compared to available baselines of up to 25%, 67% and 76%, respectively. Finally, the 
decomposition of values of flexibility and plug and play operation is presented using a variation of real options 
theory, with important implications for both nomadic communities and policymakers focused on enabling their 
energy access.   
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Nomenclature 

Acronyms 
ACER Actor Critic with Prioritized Experience Replay 
BD1/2/3/4 Baseline Rigid Design 1/2/3/4 
BESS Battery Energy Storage System 
DGs Distributed Generators 
DNNs Deep Neural Networks 
DRL Deep Reinforcement Learning 
EH Electric Heating/Heater 
ENPC Expected Net Present Cost 
EoS Economies of Scale 
FD Flexible Design 
FND Flexible Nanogrid Design 
GA Genetic Algorithm 
GBM Geometric Brownian Motion 
LFS Load Following Strategy 
MDP Markov Decision Process 
ML Machine Learning 
MS Mobility Scenario 
MSSP Multi-Stage Stochastic Programming 
NPC Net Present Cost 
PP Plug and Play 
REAP Rural Electricity Access Project 
RES Renewable Energy System 
SDG Sustainable Development Goal 
SHS Small Home Solar 
SWS Small Wind Systems 
TUL Total Unmet Load 
UB Ulaanbaatar 

Indices and Sets 
t ∈ T Index and set of general time steps 
m ∈ M Index and set of monthly decision time steps 
h ∈ H Index and set of operational simulation time steps 
s ∈ S Index and set of scenarios 
i ∈ I Index and set of technological components 
x ∈ X Index and set of GBM modeled variables 
n ∈ N Index and set of nanogrids/nodes in PP microgrid 

Model Variables and Parameters 
T Evaluation horizon (months) 
ξ Uncertainty vector 
θ Installed nominal capacity (kW or kWh) 
λ Financial discount rate 
R Revenue Function 
C Cost Function 
H Expansion Cost Function 
CAPEX Initial Capital Investment 
NCF Net cash flow (USD) 
NPC Net present cost (USD) 
ENPCes Energy system ENPC (USD) 
C Energy system cost (USD) 
s State vector 
a Action vector 
A Action space 
R Reward 
γ DRL discount rate 
π DRL agent policy 
VoF Value of flexibility 

Model Variables and Parameters (continued) 
Pul,es Unmet total load for PP microgrid (kWh) 
Pdist,es Total distributed electricity in PP microgrid (kWh) 
θPP,es Total PP microgrid distribution capacity limits (kW) 

Pdist,es,max Constraint on maximum PP microgrid distribution (% of 
ED) 

Pdist Active power distribution requirements per nanogrid (kW) 
Ldist Distance distribution requirements per nanogrid (kW) 
Rdist Distribution resistance requirements per nanogrid (Ω) 
Vdist Voltage distribution requirements per nanogrid (V) 
Idist Current distribution requirements per nanogrid (amp) 
αcb Material temperature coefficient 
Pdl,es Active power distribution losses for PP microgrid (kW) 
DL Total distribution loss % 
Pgrid Active exchanged with main grid for PP microgrid (kW) 
θgrid Total main grid distribution capacity limits (kW) 
ρgrid Binary variable on grid availability 
Puhl,es,ppp Unmet heating load after PP microgrid distribution (kW) 
Pres,exc,pp Excess electricity after PP microgrid distribution (kW) 
Pcoal,es Power coal requirements for PP microgrid (kW) 
Mcoal Coal mass requirements for PP microgrid (kg) 
μlocalcoal Local lignite coal energy density 
ηcoalstove Coal stove net efficiency (%) 
CO2eq.emissions,es Equivalent CO2 emissions generated (tonnes) 
EF Weighted average emission factor 
Cinv Total investment costs (USD) 
Copex Operational costs (USD) 
Cgrid Grid active power exchange costs or revenue (USD) 
CCO2 Carbon emissions equivalent costs or revenue (USD) 
Ces,max Budget constraint (USD) 
CC Communication costs (USD) 
EC Expansion costs (USD) 
RC Replacement costs (USD) 
IC Infrastructure costs (USD) 
PEC Power electronics costs (USD) 
ccc Communication costs factor (USD/ kWh) 
cic Cabling costs factor (USD/ km) 
cpe Power electronics cost factor (USD/ kW) 
K Investment constant in EoS model 
α EoS factor in EoS model 
εpe Power electronics requirement ratio 
sfpe Safety factor 
Mbatt Battery total weight (kg) 
Mpe Power electronics total weight (kg) 
Mcb Distribution cabling total weight (kg) 
EV Expected Value 
VoPP Value of Plug and Play Operation 
μ Drift 
σ Volatility 
W Weiner process stochastic deviation 
Nn Number of community dwellings 
rcluster Nomadic community cluster radius (km) 
Lcb Cabling length (km) 
Pwind Active Wind power (kW) 
Ppv Active PV power (kW) 
PNEL Net electricity load (kW) 
PNHL Net heating load (kW) 
ED Electricity demand (kW) 
HD Heating demand (kW) 
Pres RES active power (kW) 
Peh,max Maximum EH capacity (kW) 
ηinv Inverter roundtrip efficiency (%) 
Pba,in,max Maximum battery charging capacity (kW) 
Pba,out,max Maximum battery discharging capacity (kW) 
Eba Battery storage level (kWh) 
Eba,min Minimum battery storage level (kWh) 
Eba,max Maximum battery storage level (kWh) 
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1. Introduction 

1.1. Climate change and migration 

The climate crisis experienced in recent years is inducing significant 
changes in temperature, precipitation, and extreme weather event pat-
terns [1]. This is impacting the livelihood of nomadic communities, as it 
is highly dependent on local environmental conditions in areas unsuit-
able for sedentary agriculture [2]. As such, most of them are dependent 
on following an approximately fixed seasonal pattern of movements to 
sustain their agricultural activities, transporting some form of mobile 
dwelling. It is estimated that there are currently a least 30–40 million 
rural nomads, primarily found across Sub-Saharan Africa, South-Asia, 
and Central America [3]. On the other hand, areas where sedentary 
agriculture can be sustainably practiced are rapidly decreasing, leading 
to climate-change induced mobility worldwide [4]. Recent models 
suggest that around 143 million more people will be displaced by 2050, 
likely impacting vulnerable communities the most [5,6]. 

Climate driven migration is also recognized as one of the major 
causes of urbanisation worldwide [7]. Urban migrants are normally 
composed primarily of unskilled workers associated with the informal 
sector, where the lack of proper steady housing has limited their inte-
gration into the formal sector. They typically create informal settlements 
on the outskirts of major cities, housed in small tent-like structures. As 
such, they are normally unable to access services such as electricity or 
district heating. The resulting energy poverty impacts the livelihood of 
urban migrants significantly, having to spend long periods of time and a 
high proportion of their disposable income in the search for more 
rudimentary power sources, such as dung or biomass [8]. Furthermore, 
it was estimated that globally there are at least 208 million urban mi-
grants completely lacking access to energy, primarily due to infra-
structure limitations or lack of access to the formal government sector 
[7,9]. 

While the UN Sustainable Development Goals (SDGs) do not 
explicitly link climate change and migration, it is becoming increasingly 
important to develop policies and technologies which help mitigate the 
impacts of climate induced mobility [10]. Energy access is very complex 
in this context, as the current infrastructure is not compatible with such 
mass migratory movements, particularly in lower income countries 
[11]. In order to address SDG 7 (Affordable and Clean Energy for All) it is, 
therefore, imperative to develop energy system solutions which are 
compatible with a migratory lifestyle, as opposed to the “static” 
approach used in energy systems planning thus far [12]. 

1.2. Need for Plug and Play based flexible and sustainable energy systems 

1.2.1. Overview 
Given the current high costs for national grid extensions, mini-grid 

and micro-grid solutions are expected to be the main driver of electri-
fication for almost half of all households currently lacking energy access 
[13]. The rapid cost decline for renewable energy systems (RES) over the 
past few years has already increased their rate of deployment, providing 
electricity to 140 million people as of 2020 [9]. Similarly, there are 

ongoing trends towards more distributed generators (DG) as RES are 
increasingly installed closer to their respective loads, helping reduce 
transmission power losses. The uncertainties and intermittence of RES 
generation, however, lead to several technical challenges for their 
integration into the main grid. At higher levels of RES penetration in 
particular, maintaining operational parameters such as voltage and 
frequency within their allowable limits can become increasingly prob-
lematic [14]. 

Nomadism represents a more extreme example of the above issues, as 
both loads, and generation are not only distributed but also changing 
over different temporal and spatial scales. Simultaneously, remote 
working policies implemented as a result of the COVID-19 pandemic 
have led to a global increase in “digital nomads” [15]. As a lot of these 
individuals move around in campers or recreational vehicles, they 
contribute to increasingly decentralized and spatially unpredictable 
electricity generation and demand. Based on the above and the trends 
mentioned in Section 1.1, there is a growing need to develop flexible and 
mobile energy systems - which are able to switch operation between a 
centralized and decentralized manner to accommodate both rural and 
urban migration. 

Recent advancements in distributed control algorithms have enabled 
the consideration of mobile and decentralized energy system solutions 
in the context with a migratory lifestyle [16,17]. In most regions 
currently practicing nomadism, in fact, family clusters tend to be rela-
tively close to each other, following similar seasonal migration patterns 
[3]. This creates the possibility for temporary interconnection among 
them to form a mobile herder household energy supply system (i.e. 
micro-grid), or allowing flexible plug-in operations with the main grid. 
This sort of plug and play (PP) operation can be highly advantageous as 
it allows the smoothing out of load/generation imbalances among 
various households, with potentially different electricity generation and 
storage capacities. Plug-in operations with the main grid, on the other 
hand, could be beneficial by providing an additional energy supply to 
nomadic communities when available, while helping improve main grid 
stability through a more distributed storage capacity [18]. Additionally, 
market engagement opportunities may be generated, potentially helping 
to reduce the total electrification costs for nomadic communities. 

Moreover, PP holds potential to accelerate the decarbonization of 
heating supply systems for nomadic communities living in colder re-
gions. Their traditional heating systems rely on inefficient combustion of 
fossil fuels and could be replaced by electric-heating (EH) technologies if 
a reliable and sufficient level of sustainable electrification can be ach-
ieved. This may be particularly attractive if implemented at a commu-
nity rather than single household level, as a higher degree of modularity 
can be integrated in system capacity evolution strategies [7]. Currently, 
however, all PP studies have focused on fine timestep resolution control 
operations to guarantee network reliability. Furthermore, none have 
analysed it through a multi-energy vector perspective to accelerate the 
transition to sustainable heating. Given the potential long-term impli-
cations of PP as climate induced migration increases, a novel modelling 
and planning framework which integrates mobility considerations is 
needed to quantify its long-term impact, and develop policy recom-
mendations for both rural and urban migrants. 

ηbatt Battery roundtrip efficiency (%) 
Pres,PL Available RES capacity post meeting nanogrid load (kW) 
Ndeficit Nanogrid units with electricity deficit 
Nsurplus Nanogrid units with electricity surplus 
Peg,es Excess PP microgrid electricity generation (kWh) 
L Functional operational life (years) 
SV Salvage value (USD) 
θsv Abandoned capacity (kW) 
k Depreciation factor 
Ccoal Total coal costs (USD) 

ccoal Coal cost factor (USD/kg) 
Com Total O&M costs (USD) 
com O&M cost factor (USD/kW) 
Cul Total unmet load costs (USD) 
cul Unmet load cost factor (USD/kWh) 
Cgrid Total grid interaction costs (USD) 
cgrid Grid tariff (USD/kWh) 
pgrid Grid RES subsidy (USD/kWh) 
MRES RES total weight (kg)  
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1.2.2. Plug and Play (PP) operation 
PP operation can be allowed without control law changes in the 

power-electronic-level devices, guaranteeing system stability and syn-
chronisation (in terms of frequency and voltage), as detailed in Section 
2.1.3. As such, it is compatible with operational control strategies 
including predictive Machine Learning (ML) methods, advanced control 
algorithms, or heuristic-based approaches [14,19–23]. Nonetheless, 
recent studies suggest that for smaller scale systems with no dis-
patchable generator, a simple Load-Following Strategy (LFS) is likely to 
result in similar conclusions on initial design capacities and total costs as 
more complex methods [23–25]. Its logic prioritises renewable gener-
ation, followed by battery energy storage and grid interactions, if 
available, to meet any remaining load/demand – adopting simple heu-
ristics to operate the system. Accordingly, it is well suited to the tech-
nological and communication capacity limitations associated with a 
nomadic mobile energy supply system. Based on the more limited con-
trol opportunities available, a flexible capacity planning strategy under 
uncertainty is, therefore, more likely to impact the distribution of total 
system costs (as well as other performance metrics) obtained through 
long-term PP operation. 

1.2.3. Energy system planning and role of flexibility 
General micro-grid planning over a long horizon is a complex 

problem that has been extensively investigated in the literature, and is 
closely related to rural electrification objectives [26–29]. The aim is 
typically minimisation of Net Present Cost (NPC) although there are a 
few works which have more closely looked into sustainability [30,31] 
and resilience [17,32,33] considerations too. Traditionally, to help 
reduce the computational expense of the optimisation, planning prob-
lems can be simplified to single-year approaches, where the perfor-
mance of the system over the entire planning horizon is determined 
based on the simulation of only one “representative” year [34]. While 
the computational simplifications are substantial, this kind of approach 
does not account for load growth or corresponding energy system evo-
lution. These are key elements when considering rural electrification 
objectives, where load growth can be particularly uncertain, thus multi- 
year approaches are more applicable in the targeted context [35,36]. 

The majority of these approaches are based on either Mixed-Integer- 
Linear Programming (MILP), Linear Programming (LP), Multi-Stage 
Stochastic Programming (MSSP), or evolutionary methods such as the 
genetic algorithm (GA). In most works, however, to address the non- 
linearities of certain model components and problem dimensionality, 
significant simplifications are made – particularly in terms of uncer-
tainty recognition and quantification. These may also include consid-
ering only a specific component of the system (i.e., battery in [37] for 
example), static energy system capacities through project duration or 
only using a few representative days for each year [28,29]. The manu-
script in [38], for example, implemented a multi-year approach for the 
planning of a microgrid with no dispatchable generator, but did not 
account for any stochastic elements nor a complete planning horizon. 
Similarly, other works focused on rural electrification, while modelling 
load growth stochastically, do not account for uncertainty on energy 
generation over the project duration [39]. Typically, only one or two 
sources of uncertainty are considered, and their realizations limited to a 
predefined set of scenarios. Furthermore, the majority of these ap-
proaches limit decision-making flexibility options through the project 
lifetime, primarily to maintain computational tractability. Generally, in 
fact, only one level of expansion is considered for each technology, and 
expansion decisions are only made based on scenario realizations, with 
limited generalizability [24,25,39,40]. 

The planning and design of a nomadic energy supply system, how-
ever, must balance delicate trade-offs between mobility, security, effi-
ciency, sustainability, and economic feasibility in light of the extensive 
associated operational uncertainties. Flexibility is a potential value 
enhancing paradigm to help address some of the above-mentioned 
limitations of common energy system planning approaches [41,42]. 

Flexibility in Design explicitly considers decision-making possibilities 
over a systems lifetime, allowing for more cost-effective adaptability, 
sustainability, and resilience under uncertainty. This is highly applicable 
for evolvability in complex energy systems projects. This field aims to 
produce computational tools to support early conceptual design phases 
as part of a holistic framework, with primary applications across un-
certainty modelling, concept generation, and design space exploration 
[41]. These methods help produce modularised designs with decreased 
exposure to downside risks while capitalizing on upside opportunities, 
shifting the distribution of performance as compared to standard ap-
proaches. Improvements typically range from 10 to 30 %, although 
several energy system application studies suggest even greater expected 
performance enhancements may be achievable, depending on the 
problem at hand [43–46]. Planning a PP based mobile energy system 
through a Flexibility in Design approach can, therefore, likely help miti-
gate investment risk and fiscal burdens incurred by the targeted low- 
income nomadic communities under uncertainty. 

Given the degree of uncertainty these rural isolated energy system 
planning problems normally face, it is essential to consider a greater 
level of decision-making flexibility to enable adaptability to different 
encountered conditions. Deep Reinforcement Learning (DRL), while 
widely investigated and proven for applications in energy systems 
management and control [47], has yet to be directly applied to multi- 
year microgrid planning and design under several sources of uncer-
tainty. The closest work would be that by [48], however DRL was only 
used by the authors for the dispatch problem, and components were 
sized through evolutionary methods. Additionally, energy system ca-
pacity planning or decision-making flexibility under uncertainty were 
not considered. An important motivation for this work is, therefore, that 
a data-driven approach may help address some of the bottlenecks and 
simplifications required by current state of the art methods such as MILP 
or MSSP. A DRL based approach, it follows, is likely to enhance the 
planning and optimisation process of future energy systems by allowing 
an expanded design, strategy, and uncertainty space - which is more 
realistic of the actual conditions encountered, while maintaining 
reasonable computational expense. 

1.3. Data-Driven energy systems design for flexibility 

Standard methods for Flexibility in Design, however, present many of 
the same computational limitations as the planning approaches 
mentioned in the former section. Typically, they are also based on an 
MSSP or decision tree formulation over a long time horizon [50]. At each 
stage, the possible actions represent system adaptability options, and the 
optimal solution quickly becomes intractable if several uncertainty 
sources or flexibility strategies are considered [51]. Path independence 
must be assumed, which is unrealistic in the context of a nomadic energy 
system. The solution procedure has also been criticized, as one that is 
difficult to understand and implement in practice for decision makers 
[52]. Decision rules help address some of these issues, by mapping 
system evolution strategies to physical design variables in a way which 
is intuitive for decision makers [41]. Although they have been shown to 
estimate similar values of flexibility as more complex alternatives, 
strategies are still limited to generic real options or domain specific ones. 

A data-driven approach to Flexibility in Design may help address some 
of these limitations, by more systematically evaluating the potential 
decision rule space, as shown recently by Caputo and Cardin [49]. Their 
results on an example energy systems design and planning case study 
suggest that Deep Reinforcement Learning (DRL) can enhance solution 
expected value under uncertainty, leading to several potentially inter-
esting applications. DRL is a subset of ML defined by a sequential de-
cision making process, and is best known for its state of the art results on 
game-like environments [53,54]. In recent years, however, it has been 
successfully implemented in several engineering domains with signifi-
cant variations in action and state spaces, as well as objectives 
[53,55–59]. In the energy systems field, it has been extensively 
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investigated for management and control [47], but it has yet to be 
directly implemented on micro-grid design and capacity planning for 
rural electrification. 

Generally, the aim would be to iteratively find the best adaptability 
strategies under a wide range of scenarios by balancing exploration and 
exploitation in the learning process. Deep Neural Networks (DNNs) can 
be used to accurately approximate a complex decision-making policy 
and corresponding value of each flexibility strategy over time. This al-
lows for the tractable integration of several sources of uncertainties and 
mobility considerations associated with a mobile energy supply system. 
The design and uncertainty space relevant to an energy system planning 
problem, it follows, can be significantly expanded as opposed to 
analytical methods such as MSSP [49]. Consequently, a data-driven 
approach may also help identify novel, unintuitive and more dynamic 
adaptation strategies outside of the standard generic real options 
framework. This is particularly valuable in the case of a unique, com-
plex, and highly uncertain context such as the one tackled in this work, 
where there is limited domain expertise. As a result, energy system de-
signs and flexibility strategies developed through a data-driven 
approach are likely more compatible with (and representative of) the 
range of real-world conditions potentially faced by mobile energy sys-
tems in the future. 

1.4. Contributions 

In light of the pressing issues discussed above, this paper presents the 
design and planning of a mobile multi-energy supply system which is 
compatible with a nomadic lifestyle, seeking to integrate both electri-
fication and heating supply decarbonisation objectives. To address de-
ficiencies of common “static” energy planning approaches in this 
context, a new modelling framework is proposed where the spatial 
dispersion (and network configuration) among nomadic dwellings var-
ies based on seasonal requirements, as well as main grid availability. In 
order to tackle the resulting highly complex and dimensional stochastic 
optimisation problem, a novel DRL based data-driven approach is pro-
posed to avoid the simplifications and compromises associated with 
typical planning methods mentioned in Section 1.2.3. The primary 
contributions are summarized below.  

1. Development of a novel modelling framework for the design and 
planning of mobile multi-energy supply systems, focused on 
achieving SDG7 for global nomadic communities, but applicable to 
general trends in increasing decentralization of energy systems. This 
represents the first study integrating considerations of seasonal 
centralized to decentralized operation over a long planning horizon, 
enabled by PP operation. To these authors’ knowledge, the novel 
approach proposed is the first allowing for changing network to-
pologies and/or spatial dispersion over time, while capturing the 
fiscal and mobility constraints faced by a typical targeted nomadic 
community. The framework is developed to be generic and easily 
scalable to the design and capacity planning optimisation of different 
communities wishing to operate a mobile energy supply system.  

2. Implementation of a new DRL based approach optimising long-term 
flexibility strategies for nomadic communities, marking the first time 
DRL is used in an energy access planning context. Several sources of 
uncertainty are, as a result, able to be tractably integrated, including 
on energy generation and demand, spatial dispersion, and main grid 
availability. This approach enables for the first time the consider-
ation of monthly adaptability strategies, capturing the interactions 
between mobility and seasonality on optimal system design. 
Resulting policies can be highly dynamic, and are more generalizable 
than those obtained using only a few select scenarios. Results are 
benchmarked against baseline rigid designs with better economies of 
scale to estimate the values of decision-making flexibility in the 
context of a migratory lifestyle across economic, sustainability and 
resilience metrics.  

3. Multi-objective assessment of value of PP operation and “breakeven” 
spatial dispersion point to determine investment guidelines and 
policy insights to accelerate nomadic energy access. This is per-
formed using a variation of real-options theory and represents the 
first study focusing on long term planning of mobile PP enabled 
energy systems enabled. As such, it yields important quantitative 
results on its practical feasibility and global impact potential. 

The novel modelling framework and methodology is exemplified 
through a case study based on Mongolian herder communities, devel-
oped in collaboration with local energy sector stakeholders. The general 
approach, however, may be easily extended to other nomadic commu-
nities worldwide, or to the overall needs to better understand the 
feasibility of mobile energy systems which switch periodically between 
centralised and decentralised operation to increase network reliability. 

The rest of the paper is organized as follows. Section 2 details the 
novel modelling framework developed to account for mobility. Section 3 
introduces the novel proposed DRL based design and planning optimi-
sation methodology, as well as the benchmark rigid stochastic capacity 
planning model, including the different optimisation parameters 
implemented. Section 4 gives a more in-depth overview of the applica-
tion case study which initially motivated this work. Finally, Section 5 
presents the results of the study, accompanied by discussions and con-
clusions for future work in Sections 6 and 7, respectively. 

2. Mobile Micro-Grid model formulation 

2.1. Problem statement 

2.1.1. Introduction 
This section describes the formulation of the model for the planning 

of mobile-multi energy networks for nomadic communities over a long- 
term horizon. The integrated model accounts for changing and uncertain 
movement patterns over time, micro-grid distribution losses, variation 
in renewable energy output, and different heating generation sources. 
Furthermore, it considers the possibility of connection/ market 
engagement with the main distribution grid when available, allowing 
switching between centralized and decentralized operation based on 
seasonality and user requirements. Hourly resolution is used for power 
flow calculations to tractably approximate generation, distribution, and 
losses at the system level. On the other hand, monthly resolution is 
implemented for cost calculations within the flexible capacity planning 
model. This allows for adaptation strategies based on changing climatic 
conditions and intra-year seasonality, while considering the impact of 
long-term realisations of uncertainty on mobile micro-grid performance. 

Two different mobility scenarios (MS) are thus developed to reflect 
the diversity in movement pattern. MS1 depicts operation of the micro- 
grid in the rural or decentralized setting, typically in the summer months 
for nomadic communities as they migrate to maintain their livestock. 
MS2, on the other hand, represents operation in a centralized setting, or 
when connection to the main grid is available, typically in winter 
months for nomads - when pasture productivity is lowest. 

2.1.2. Objectives 
Two primary alternatives are compared based on the model pre-

sented in the following sections for a community operated mobile micro- 
grid. Firstly, an inflexible baseline is considered where all capacity is 
installed at project start and no adaptation strategies in response to 
uncertainty are possible. Secondly, a flexible design exercising modular 
deployment of different technologies over time based on realised oper-
ating conditions is developed. The baseline rigid design presents lower 
unit costs due to economies of scale and reduced transport charges, 
while the flexible design allows for the deployment of resources only if 
and when needed. The objective for both designs is minimization of 
Expected Net Present Costs (ENPCes) for the energy system (es) over 30 
years (T). 
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Nonetheless, this work is also motivated by the UN SDGs and asso-
ciated sustainability (i.e., Scope 1 and 2 emissions) and reliability en-
ergy access objectives. Emissions are thus found from the direct 
combustion of coal for heating and environmental footprint of the 
electricity purchased from the main distribution grid, respectively [60]. 
Additionally, 30-year horizon total unmet load (TUL) is used as a proxy 
for estimating system resilience and energy security, considering at a 
higher level the impact of demand and generation uncertainty. It should 
be noted that these metrics are not explicitly optimised, but are used for 
the qualitative evaluation of design alternatives in 5.3. 

2.1.3. PP control and operation 
A core enabler of this kind of analysis and system design method-

ology is the novel potential for PP operation, one of the key function-
alities benefitting from the high-penetrated power electronic devices, e. 
g., inverter. PP operation enables the mobility of energy sources by 
implementing intelligent algorithms to guarantee operational stability, 
which is essential for compatibility with a nomadic or migratory lifestyle 
[17,61]. This creates an opportunity for economic, sustainability and 
energy security benefits, even in the rigid baseline design, as further 
discussed in Section 5.4. The concept of PP operations only requires real- 
time power-electronic level control design that has been widely inves-
tigated in [62,63]. The control objective within the micro-grid system is 
to guarantee that frequency and voltage converge to their reference 
values (i.e., frequency of 50 Hz and voltage of 220√2 V) to maintain 
network stability. This is achieved through active power sharing across 
DGs connected to the microgrid energy supply system. The images on 
the left of Fig. 1 demonstrate the changing microgrid configurations and 
respective estimated time resolutions for a typical operational scenario 
encountered. Starting from normal conditions (1), one of the DGs is 
disconnected in (2) as a family decides to migrate, and it eventually 
reconnects to the microgrid in (3). The right sub-plots (a)-(d) in Fig. 1 
demonstrate that PP operation is able to maintain appropriate values for 
frequency f(Hz), active power ratio mP, active power P(kW), and voltage 
Vmag(V), respectively, across scenarios (1)-(3). Over the simulated 5 s 
horizon, it should be noted, some minor transients are still recorded at a 
fine resolution due to the changing system loads. Nonetheless, the 

demonstration results suggest PP operation should be an effective and 
reliable solution to allow temporary interconnection among nomadic 
community members. 

2.2. Nanogrid and network configuration 

The architecture of the energy system proposed in this paper is a 
distributed form of mobile micro-grid. A single herder family nanogrid (i. 
e. sub-microgrid) unit (Nn) which moves and settles very close to each 
other is used as a building block for the simulation, allowing for 
improved scalability and compatibility with PP operation [64]. The term 
nanogrid is justified as each herder family unit is normally expected to 
be able to produce, store and distribute electricity in fully self-sustaining 
or islanded manner- as sometimes necessary during migration. Through 
interconnection with other community members, however, the aim is to 
reduce the total system cost by more efficiently managing supply and 
demand. Fig. 2 graphically captures the network configuration, both at 
the level of an individual herder family nanogrid unit (Nn-left) and the 
PP mobile micro-grid (right). 

The typical nanogrid unit consists of energy generating units – in this 
case solar PV and wind – as well as a storage system (BESS). While both 
DC and AC loads may be present in the system (more details in Section 
4.4), interactions among nodes connected through the PP configuration 
is designed to be 3-phase AC, thus converters and inverters are included 
where appropriate. Heating demand may be present during the winter 
months which must be fully met using either a traditional coal stove 
(left) or electric heater (right). Moreover, it is assumed for it to be 
possible for a group of nomads, perhaps from the same extended family 
or community, to operate as a “cluster”. The cluster radius variable rcluster 
is thus defined as the smallest possible circle which could encompass 
them all – as shown in Fig. 2. It is estimated that this is not likely to vary 
significantly within a single season, although there may be important 
year-to-year differences based on the impacts of climate change. Sto-
chastic realizations for a single month m are thus obtained proportion-
ally to average seasonal values at project start, directly impacting the 
distance Lcb

t required to connect the mobile energy system, as shown in 
(1). 

Fig. 1. PP operation demonstration including typical (1) ~ (3) operational scenarios (left) and performance evaluation of frequency, active power ratio, active 
power, and voltage, in (a)-(d), respectively, over the same time horizon (right). 
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Lcb
t = 2πrcluster

t (1) 

The different nodes are assumed to be configured in a fixed, ring-like 
interconnection, evenly spaced across the outer circumference obtained 
from rcluster. This configuration was previously reported to optimise dis-
tribution efficiency under a similar decentralised setting as depicted 
above [14,19,21,65,66]. The proposed approach can, therefore, account 
for changing migration distances over time, while also integrating social 
considerations on spacing among family units. Conditional connection 
to the main grid during MS2 is approximated as an additional node in 
the network (blue in Fig. 2). 

2.3. Renewable energy generation 

The renewables.ninja platform [67] is used for the simulation of 
wind (Pn,t

wind) and solar PV (Pn,t
pv ) intermittent generation for each nano-

grid n at an hourly resolution t, based on locations representative of each 
MS. The closest matches in terms of technical performance parameters 
were used since the small-scale systems considered are not available for 
direct simulation within the platform. More specifically, Solar PV gen-
eration is found through the Global Solar Energy Estimator, with default 
tilt and azimuth (β = 35◦, ϕ = 180◦), an assumed additional system loss 
fraction of 10 %, and no tracking mechanism implemented [68]. Small 
scale wind generation is computed through the Virtual Wind Farm 
model and historical wind speeds obtained from NASA’s MERRA-2 
dataset, implementing bias-corrected reanalysis to increase the accu-
racy of prediction, at the lowest recorded height [69]. Moreover, to 
investigate the impact of RES intermittency, random Gaussian noise is 
added to the baseline deterministic profiles. Respective stochastic pa-
rameters for wind and PV during MS1/2 are found from their historical 
hourly generation potential [70]. 

2.4. Power flow calculations 

2.4.1. Nanogrid operation 
The LFS is implemented for operational control simulation of the 

design alternatives evaluated. For any hourly timestep t, the net elec-
tricity demand load PNEL

n,t at node n is calculated from the hourly 
electricity demand EDn,t and on-site renewables generation Pn,t

res (ac-
counting for inverter and converter efficiencies). EH loads are prioritised 
over BESS charging, limited by installed capacity θn,t

eh , hourly maximal 

output Peh,max
n,t, and power available from total generation Peh,res

n,t. The 
remaining power Pn,t

res,PL and heating demand Pn,t
NHL, if any, dictate BESS 

operation at each node, which is prioritised over PP distribution to 
minimise distribution losses. The energy flows into the BESS capacity θt

ba 
are then determined from their technical parameters, namely charging 
Cin and discharging Cout rates as well as maximum nominal input 
Pn,t

ba,in,max and output Pn,t
ba,outmax power. They are also bounded by the 

minimum Et
ba,min and maximum Et

ba,max storage capacities for the selected 
BESS. The battery storage level Et

ba is thus computed as the sum of the 
stored energy from the previous timestep Et− 1

ba , storage energy flow Pt
ba 

and any potential additional installed storage capacity during that 
period Et

ba,new. Note that newly purchased batteries are assumed to arrive 
fully charged, and conversion losses are accounted for via the battery 
roundtrip efficiency parameter ηba. Remaining excess energy Pn,t

eg after 
nanogrid operation is then used to engage in PP operation. 

2.4.2. PP Micro-grid distribution 
Distribution requirements are calculated at the entire system level 

from each node, which are classified as either Ndeficit or Nsurplus, based on 
the obtained energy balance. The system wide unmet load Pt

ul,es and 
available extra generation Pt

eg,es are thus used to roughly estimate micro- 
grid distribution requirements Pt

dist,es at an hourly resolution. The micro- 
grid power distribution potential is limited by the capacity of the cables 
connecting the different units θt

PPmg, and is capped at no more than 30 % 
of the system wide electricity load Pt

dist,es,max, aiming to balance network 
reliability with increasing infrastructure cost, as shown in (2). 

Pt
dist, es = min

(
Pt

ul.es,P
t
eg,es, θ

t
PPmg, Pt

dist, es, max

)
(2) 

Furthermore, to tractably approximate performance, it is assumed 
that the distribution of power is spread homogenously across the micro- 
grid network, as both loads, and generation should be well distributed 
spatially in light of migration compatibility objectives. More specif-

ically, representative power (Pt,n
dist =

Pt
dist,es
N ) and length (Ldist

t,n =
Lt

cb
N ) re-

quirements for PP distribution per each node n are developed for 
preliminary loss calculations. Dwellings are assumed to be connected via 
3-phase transmission rated at 220/380 V through low-cost copper cables 
[17]. Interconnection resistance per node Rt,n

dist is thus found from the 

Fig. 2. Multi energy vector block diagram of herder nanogrid (left) and PP microgrid (right).  
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manufacturer reported reference value and tuned to the actual operating 
conditions through the material temperature coefficient αcb. Cable 
resistance is used to estimate energy system losses, Pt

dl,es according to (3), 
neglecting reactive power and only focusing on thermal losses associ-
ated with the induced current It,n

dist in each line. Finally, distribution loss 
proportion DL% is found from (4), seeking to capture overall network 
efficiency. The balance of power flows in the network after PP operation 
is ensured by computing the final excess electricity generation Pt

res,exc,pp, 
unmet electricity load Pt

uel,es,ppp and/or unmet heating load Pt
uhl,es,ppp. These 

values then dictate utility grid interactions, as detailed in the following 
section. 

Pt
dl, es =

∑

n∈N
3Rt, n

dist I
t, n
dist

2 (3)  

DL (%) = 100
Pt

dl, es

Pt
dist, es

(4)  

2.4.3. Utility grid interaction and coal requirements 
The potential to buy electricity from the distribution grid during MS2 

is considered in this section. Interconnection is simulated at a system 
level through simple heuristics (i.e. market engagement is not explicitly 
considered) to focus on flexibility strategies. Interactions with the main 
distribution grid, limited by line capacity θt

Grid, unmet heating load 
Pt

uhl,es,ppp, and availability ρgrid, are calculated based on system energy 
balance, as shown by (5) below. Note that ρgrid is a binary variable 
representing grid availability for that timestep, sampled from a beta 
distribution. Case (i) then represents timesteps when blackouts are 
happening so no interactions happen. Case (ii) shows situations when 
demand has not been fully met, thus electricity is purchased from the 
grid. For case (iii), on the other hand, the excess generation after 
meeting micro-grid loads Pt

res,exc,pp is sold back to the main grid. Note that 
excess generation Pt

ex which cannot be captured by grid interactions is 
assumed wasted at this stage. Please refer to Appendix I for the complete 
power flow model equations. 

Pt
grid =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 , (i)

min
(

θt
Grid ,Peh,max

t,Pt
uhl,es,ppp

)
,
(

ii
)

− min
(

θt
Grid,P

t
res,exc,pp

) (
iii
)

ρgrid = 0(i)

Pt
uhl,es,ppp ≥ 0, ρgrid = 1 (ii)

Pt
uhl, es, ppp ≤ 0 ; ρgrid = 1 (iii) (5)  

2.5. Emissions generation 

Based on the above, the heating demand not met via EH, and 
therefore mass of coal required for the entire nomadic community, is 
calculated as shown in (6)-(7). Pt

coal,es captures the thermal energy re-
quirements after PP distribution Pt

uhl,es,ppp and grid interactions Pt
grid. The 

associated coal mass Mcoal
t is estimated from its average energy density 

μlocalcoal and thermal efficiency of the traditional stove used for com-
bustion ηcoalstove. Energy system carbon footprint over time is estimated 
from the mass of raw coal burned and grid purchased electricity ac-
cording to (8), using their respective weighted average emissions factors 
(EFgrid and EFcoal). 

Pt
coal,es = max

(
Pt

uhl,es,ppp − Pt
grid , 0

)
(6)  

Mcoal
t =

Pt
coal,es

ηcoalstoveμlocalcoal
(7)  

CO2
t
eq.emissions,es = EFgridPt

grid +EFcoalMcoal
t (8)  

2.6. System costs 

The model presented thus far ultimately seeks to calculate system 
costs at a monthly m resolution Cm

es in each uncertainty scenario. As 
shown in (9) below, the formulation accounts for investment costs Cm

inv, 
operational costs Cm

opex, any expenses (or revenues) incurred through 
interactions with the distribution grid Cm

grid, as well any potential penalty 
(or credit) associated with generated emissions Cm

CO2. Representing 
liquidity and economic limitations faced by these communities, a 
constraint is formulated to cap monthly household energy system 
expenditure at the cluster level, as shown by (10). The modelling of each 
of these cost components is discussed in more details below. 

Cm
es = Cm

inv +Cm
opex +Cm

grid +Cm
CO2 (9)  

Cm
es,max ≤ Cm

es,maxNn (10)  

2.6.1. Investment costs 
Investment costs in each timestep, as shown in (11), are calculated 

from the communication CCn,i
m, infrastructure ICm

es, expansion ECn,i, and 
replacement costs RCn,i, net the residual value (if any) SVn,i recorded 
across all nodes and technologies evaluated. Communication infra-
structure costs CCm

es required for the safe operation and control of the PP 
microgrid are preliminarily estimated through a simplified model based 
on system distribution requirements Pm

dist,system and a cost constant factor 
ccc, as shown in (12). Assuming a 2G/3G/4G base station is already 
present, the communication infrastructure needed is thus simply an add- 
on support enabling peer-to-peer communication among nanogrid units. 
They are considered as a one-off investment incurred only in timesteps 
where Pm

dist,es is higher than monthly distributed electricity in all previous 
periods Pm,max,past

dist,es , representing the need for infrastructure upgrade - 
neglecting the effect of EoS. Similarly, ICm

es – which represent the need 
for additional cabling to connect the various nanogrid units- are recor-
ded for timesteps when the current cluster radius is higher than that 
recorded in any of the previous simulation months rcluster

max,past . It is thus 
assumed that cabling infrastructure purchased at any point during 
project life will remain available for connection if needed again. The 
cost of required extra cabling is computed according to (13), using a unit 
length cost factor cic obtained from regional manufacturers [71], 
invariant with time or scale. 

The formulation of ECn,i in (14), on the other hand, accounts for both 
economies of scale (EoS) and cost of transportation in the targeted set-
tings. The estimations for the investment constant Ki and EoS factors αi 
are, therefore, slightly reduced and increased respectively in MS2 as 
compared to the MS1 [72], and based on specifications from regional 
manufacturers per component [73–79]. Coal stove capacity is an 
exception to this, where it is assumed that no starting stage investment is 
required, although replacement costs are incurred every 7-years [80]. As 
such, stove capacity is not explicitly optimised, and it is simply assumed 
one will be needed per family at a fixed (and nearly negligible) cost over 
time. Any other given capacity decision θm,new

n,i is expected to yield 
additional power electronics requirements θm,new

n,pe , assumed to be pro-
portional to expansion magnitude. This is based on reported ratios of 
nominal power electronic to system component i capacity, εpe,i, averaged 
over several micro-grids from the literature [14,19–21,81,82]. A safety 
factor sfpe of 1.3 is included to further ensure no undersized components, 
as shown in (15), yielding total power electronics costs PECn,i

m through a 
constant cost factor cpe,i. 

Replacement costs RCn,i are incurred when a system component i 
reaches the end of its predicted operational life Li, using the same pa-
rameters as (14). As such, RCn,i may be experienced for multiple 
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technologies in the same month- in contrast to ECn,i, which is limited to a 
single system component i per timestep. The asset salvage value SVn,i is 
included for cases where capacity abandonment decisions are made, or 
for NPC calculations at the end of each simulated episode. As shown in 
(16), it is a function of remaining estimated functional hours Li

θ for a 
component with an original maximal lifetime Li

max, and initial invest-
ment cost based on the salvaged capacity amount θm

sv,n,i, corrected 
through a depreciation factor ksalv

i which is smaller than 1. 

Cm
inv = CCm

es + ICm
es +

∑

i∈I

∑

n∈N
ECn,i

m +RCn,i
m − SVn,i

m (11)  

CCm
es =

⎧
⎨

⎩

ccc

(
Pm

dist,es − Pm,max,past
dist,es

)
, Pm

dist,es > Pm,max,past
dist,es

0, Pm
dist,es ≤ Pm,max,past

dist,es

(12)  

ICm
es =

{
cic(rcluster

m − rcluster
max,past) , rcluster

m > rcluster
max,past

0 , rcluster
m ≤ rcluster

max,past (13)  

ECn,i
m = Ki

(
θm

n,i − θm− 1
n,i

)αi
+PECn,i

m = Ki

(
θm,new

n,i

)αi
+PECn,i

m (14)  

PECn,i
m = cpe,iθm,new

n,pe = cpe,isf peεpe,iθm,new
n,i (15)  

SVn,i
m = ksalv

i
Li

θ

Li
max Ki

(
θm

sv,n,i

)αi
(16)  

2.6.2. Operational costs 
The operational costs Cm

opex detailed in (17)-(21) below account for 
expenses due to heating via a traditional coal stove Cm

coal, maintenance of 
fees associated with each energy system component Cm

om and the eco-
nomic value of unmet electricity load Cm

ul. Expenses associated with 
space heating are found through the required monthly coal mass Mcoal

m 

and the local average price by weight ccoal – assumed invariant with time 
[80]. O&M costs are found as a function of total energy system installed 
capacity θi,es

m and respective periodic estimated maintenance fee com,i 

for each component i, using recently reported average values for small 
scale systems [83]. To compute the economic value of energy not served, 
the total monthly unmet load EDm

ul,es,final for the entire system is multi-
plied by the curtailment fee cul, as shown in (20). It is assumed that a 5 % 
monthly shortage is allowed, thus no charges are associated below that 
level. The value for cul is estimated through the Willingness to Pay (WTP) 
approach, which relates perceived marginal benefits to the maximal 
price a customer would be willing to pay for a service [84]. It is, 
therefore, assumed equivalent to the local cost of diesel which would be 
needed to supply the unmet load – neglecting generator investment cost 
and assuming standard conversion efficiencies. Cash flows resulting 
from grid interactions can be either positive or negative, based on the 
monthly energy balance Pm

grid, and are computed using either the re-
ported discounted tariff cgrid or subsidized price received pgrid. 

Cm
opex = Cm

coal +Cm
om +Cm

ul (17)  

Cm
coal = ccoalMcoal

m (18)  

Cm
om =

∑

i∈I
com,iθi,es

m (19)  

Cm
ul = culEDm

ul,es,final (20)  

Cm
grid =

{
cgridPm

grid , Pm
grid ≥ 0

pgridPm
grid , Pm

grid < 0
(21)  

2.7. System mass 

The total system mass Mm
es can be found from (22) for any month m as 

the sum of the weight of the installed renewables Mm
res, batteries Mm

batt, 
power electronics Mm

pe, and cabling length required for connection Mm
cb. 

To reflect mobility considerations associated with a migratory lifestyle, 
an upper limit on energy system weight Mm

es,max may be imposed, 
captured by (23). 

Mm
es = Mm

res +Mm
batt +Mm

pe +Mm
cb (22)  

Mm
es,max ≤ Mm

es,maxNn (23)  

2.8. Uncertainty simulation 

Geometric Brownian Motion (GBM) models are developed to esti-
mate stochastic evolutions of the most important sources of uncertainty 
integrated in the energy system planning problem. This form of sto-
chastic model is chosen as it can represent, for any variable x, both 
overall long-term trends (if any), and the potential for tail event or low 
probability scenarios. This is deemed highly compatible with most of the 
uncertainties considered in this work. It should be noted, however, that 
if available data were to suggest otherwise, alternative, and more 
complex stochastic model formulations should be explored outside this 
proof-of-concept work. Mathematically, the model involves drift μx and 
volatility σx variables, respectively. dWt models the random Wiener 
process, or stochastic deviations from the mean as sampled from a 
normal distribution, and dt the time resolution implemented. These 
values, typically based on historical data, allow one to fine-tune the 
stochasticity of the model, while not limiting the potential total evolu-
tion scenarios [85–87]. They can then be used to simulate uncertainty 
for any variable x as shown by (24)–(25) below. 

dXt = μxXtdt + σxXtdWt (24)  

Xt = X0exp(
(
μx − σ2

x

/
2
)
t+ σxWt (25)  

2.9. Energy system model overview 

Fig. 3 captures the interaction among different model components 
detailed in the former sections, leading to calculations of total monthly 
net system cash flow (NCFt = Cm

es) and emissions CO2
m
eq.emissions across 

different simulations. Changes or upgrades to the energy system state 
are determined by the DRL agent policy captured by the green box, as 
detailed in Section 3.2, impacting both investment and operational costs 
incurred in the remaining simulation steps. For the baseline rigid sys-
tems, on the other hand, cost calculations are based purely on uncer-
tainty realizations. 

3. Methodology 

3.1. Rigid stochastic capacity planning model 

3.1.1. Mathematical formulation 
This section introduces the generic formulation of the rigid capacity 

planning model under uncertainty. It is later used to benchmark the 
performance of the proposed DRL approach on an example mobile en-
ergy supply system. Considering a discrete finite time horizon planning 
period of T, with discount rate λ, let ξ = (ξ1, ξ2,⋯ξT) be a scenario of 
uncertainty, where ξt is a vector capturing the uncertainty observed in 
period t, thus able to account for multiple uncertainty sources and 
relevant variables. S defines the set of all possible uncertainty scenarios s 
used for evaluation, assumed to be finite at Ss for simplicity, with equal 
probability of occurrence. The baseline single objective rigid stochastic 
planning model for the mobile energy system considered can thus be 
formulated as shown by (26)-(28).θi

t represents the installed nominal 
capacity for various system components i, invariant with time t. R t ( θi

t ,

ξt
s
)

is the revenue function for the installed technologies and C t ( θi
t , ξt

s
)
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the cost function for the same technologies in period t. Initial investment 
costs for each of these components CAPEXi are included as a zero-stage 
decision, while periodic energy system costs under uncertainty Ct

s,es, 
detailed in Section 2.6, are captured by (27). 

minENPC =
1
Ss

∑S

s=1

(

CAPEXi +
∑T

t=1

(
1

1 + λ

)t[
R

t ( θi
t, ξt

s

)

− C
t ( θi

t, ξt
s

) ]
)

) =
1
Ss

∑S

s=1
NPCs (26)  

Ct
s,es = R

t ( θi
t, ξt

s

)
− C

t( θi
t, ξt

s

)
(27)  

∀t ∈ T, s ∈ S, i ∈ I (28)  

3.1.2. Optimisation 
The optimal sizing of the baseline inflexible systems is found through 

the genetic algorithm (GA) implementation in Python [88]. GA is a well- 
known and widely used approach to global optimisation compatible 
with mixed continuous/discrete variables, inspired from the selection 
process found in natural biological systems [89,90]. Solutions are iter-
atively improved within the design space through operations such as 

crossover, mutation, and fitness selection to try and imitate the natural 
evolution process. Initially, candidate solutions for different baseline 
mobile energy systems (or “chromosomes”) are generated probabilisti-
cally with a random component across the design space. This helps 
explore a wide range of capacities for the different technological option 
baselines considered, as clarified in Section 5.1. These candidates are 
then refined and or/discarded sequentially through the genetic opera-
tions mentioned. The fitness function this process seeks to optimise is 
given by (26), or the minimisation of ENPC over 2,000 (fixed) simulated 
scenarios. A penalty function is implemented to ensure constraint- 
feasible solutions, as presented in [91]. 

3.2. DRL flexible capacity planning model 

3.2.1. Background and notation 
DRL is designed to make decisions in Markov Decision Process (MDP) 

and is intuitive in nature. It involves an agent interacting with a system 
(or environment) over time through a large number of iterations as part 
of a sequential decision-making problem, with the aim of reward 
maximization [92]. Generally, at each time step t, the agent finds itself 
at state st, and selects an action at following a decision-making policy π. 
As a result of taking the action, the agent transitions to a successive state 

Fig. 3. Model flowchart showing complex interactions among system components and simulations.  

C. Caputo et al.                                                                                                                                                                                                                                 



Applied Energy 335 (2023) 120707

11

st+1 receiving a corresponding scalar reward Rt, which are governed by 
the environment’s dynamics and reward function R (st ,at), respectively 
[93]. This repeated interaction, has the objective to improve the accu-
racy of expected value estimations for either each state Vπ(st) or state- 
action pair Qπ(st , at). They refer to the total expected value of being in 
a particular state or the decomposed expected value by each action 
available to the agent in that state, as shown in (29) and (30) respec-
tively. Based on the above, the agent can map and rank state-action pairs 
through their relative value. Ultimately, the aim is to develop an optimal 
decision-making policy π*, as captured in (31), which maximizes dis-
counted (through γ) accumulated rewards per episode. In a flexibility 
planning application, an episode is equivalent to a simulation of the full 
project horizon. 

Vπ(st) = E[Qπ(st, at) |st] (29)  

Qπ(st, at) = E[Rπ(st, at)] (30)  

π* = argmaxπEτ π(τ)

[
∑

t
R (st, at)

]

= argmaxπEτ π(τ)
∑

t
γRt (31) 

The optimal policy (or flexibility strategy) is then typically itera-
tively approximated inside a DNN through either value based or policy- 
based methods. The DNN often consists of several layers to improve the 
granularity of value (or policy) function representation over the training 
process (as shown inside the agent in Fig. 4), with optimal architectures 
varying based on the problem at hand [94]. Approaches belonging to the 
former, such as Q-learning, normally follow the trajectory of the highest 
value estimates to formulate the optimal policy. This allows for off- 
policy learning, as each update can use data collected during all 
training interactions, although potentially leading to estimation bias and 
improper credit assignment [55,95]. Policy based methods, on the other 
hand, parametrize the policy directly by creating an underlying action 
selection probability distribution, making them generally more effective 
in high-dimensional stochastic environments [96]. Most modern DRL 
algorithms, nonetheless, implement hybrid actor-critic formulations to 
combine aspects of both for state-of-the-art results on benchmark tasks 
[53,93,97,98], motivating their selection for this work. Generally, they 
are defined by an actor which determines which action to take under a 
policy, and a critic which approximates how good the actor’s selection 
was based on value function estimates. The actor-critic architecture 
implemented in this study is further detailed in Section 3.2.4. 

3.2.2. DRL problem formulation 
A DRL based approach is used to evaluate and optimize an implicit 

form of decision rules to act as a triggering signal for making a particular 
flexibility decision during system operation, as captured by a policy π 
within a DNN. The major difference compared to alternative methods 

presented in Section 1.2.3 is that π can be characterized by a much larger 
set of parameters, and thus actions need not be restricted to a static pre- 
determined form. The primary steps required to formulate an energy 
system design and planning optimisation through the DRL Flexibility 
Analysis framework are problem formulation, uncertainty recognition, 
and action space creation. 

More generally, it is assumed that the condition of the energy system 
for any t ∈ T can be defined by a state observation, st ∈ X ⊆ Rnx , where 
st captures the installed capacities for each component i, in addition to 
other factors. Based on the information given to stakeholders at each 
evaluation time step, they can sequentially select a system evolution 
decision, at ∈ A ⊆ Zna , changing the capacity of a component if deemed 
necessary. Considering the targeted objective, a reward function, R : X×

A× X→R, can be defined to capture the impact of different available 
actions over time. This is based on a series of periodic revenue R t(st , ξt)

and cost C
t
(st , ξt) functions, approximated through environment in-

teractions, as well as a deterministic expansion cost function H t(at , st), 
including a zero-stage decision on starting system configuration. 

The energy system state is then updated as a function of the previous 
state, action selected, and realisations of stochastic variables. As such, 
the system is identified to hold the Markov Property, and can be 
formulated within the MDP framework. The objective, as for the base-
line design, is minimisation of ENPC (or maximization of negative 
reward) through the development of a system evolution policy, 
π : X→A. Note that at is then obtained from π by using st as an input, as 
shown in Fig. 4. The generic model for DRL based energy system flexible 
capacity planning is defined according to (32), and can be implemented 
on the same scenarios Ss as in (26) above. Furthermore, as π (∅,⋅) is 
approximately captured by a DNN with parameters ∅ ∈ Rn∅ , the ca-
pacity planning problem simplifies to obtaining optimal network pa-
rameters, or ∅*. 

P (π) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
π

Eπ [ − NPC]

s.t.

NPCs =
∑T

t=0

(
1

1 + λ

)t

Rt
s

Rt
s = Ct

s,es = R
t ( st, ξt

s

)
− C

t ( st, ξt
s

)
− H

t
(at, st)

st+1 = f
(
st, at, ξt

s

)

at = π(st)

∀t ∈ T, s ∈ S

(32)  

3.2.3. Environment creation 
Central to the applicability of DRL flexibility analysis is the devel-

opment of an agent-environment interaction framework which is 
representative of the targeted objective. The Open AI gym format 
environment [99] is implemented for the optimization of the mobile 
system given by (32). In this context, the system evolution strategy is 
primarily dependent on the periodic demand for different energy ser-
vices, installed generating capacities and migratory patterns, among 
other factors. With the aim of reflecting this, the states for the agent are 
defined through a box observation set as: 

st =
[
EDt,HDt, rt

cluster,Lcb
t, θpv

t
, θwind

t , θeh
t, θbess

t, EDt
ul,es,final,M

t
es

]
(33)  

where EDt and HDt represent the electricity and heating stochastic de-
mand realizations in timestep t, respectively. rt

cluster and Lcb
t measure the 

uncertain spatial dispersion of the mobile system investigated and are 
used in cabling investment and distribution loss calculations. As in the 
former section, θi

t represents the installed nominal capacity for each 
system component i considered. EDt

ul,es,final is included to stimulate the 
explicit consideration of unmet load, outside of charges incurred, while 
Mt

es is used to account for increases in system mass as it evolves over 
Fig. 4. Graphical overview of DRL agent-environment interaction.  
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time. Budget constraints are implicitly evaluated based on recorded 
rewards. All state variables are normalized based on the maximum and 
minimum values obtained for them over 10,000 simulated scenarios, 
independent of the environment. Furthermore, although not shown in 
(33), time limit awareness is included to improve end of episode policy 
performance and training stability [100]. 

The decision-making possibilities for the agent are also selected with 
the aim of reflecting the ones available to a ger community, through a 
multi-discrete action set (∈ Ai,j). Through this formulation, the DRL 
decision space is such that, at any given time step, the agent may decide 
to leave the energy system configuration unchanged. On the other hand, 
based on estimated value function and policy, a decision enabled by 
flexibility may be made to alter the state of the microgrid. In that case, 
the multi-discrete set means a decision is made on which technology i to 
act on, and whether to pursue capacity abandonment, expand by 500 W 
or expand by the (rounded) maximum number of modules θt

Budget 

possible under the budgetary constraints Ct
Budget for that period. As ac-

tions are selected at the entire system level, a simple heuristic is 
implemented to determine which node to implement the capacity 
adaptability decision on. For expansion decisions on solar PV, wind or 
BESS, additional component capacity is assumed to be installed at the 
node with the largest unmet load in the previous month EDn,t− 1

uel,max. 
Abandonment actions or EH expansions, on the contrary, are allocated 
to the node with the largest excess generation Pn,t− 1

res,excess prior to imple-
menting the flexibility option. 

Fig. 5 below captures the internal evaluation process, going from 
state observation (left) to action selection (right) using a DNN parame-
trized agent policy, where components are evaluated within the envi-
ronment technological boundaries. The iterative interaction feedback 
loop guiding policy updates during training, is visualized through the 
changes in system state, reward and policy driven by a capacity 
expansion decision made at time t on t + 1. 

3.2.4. Algorithmic approach 
Considering the dimensionality and computational expense of the 

problem tackled, the ACER (Sample Efficient Actor Critic with Prioritized 
Experience Replay) algorithm is implemented [101]. Each component is 
captured by a separate neural network, allowing different strategies to 
be implemented in policy as compared to value function updates. 
Experience replay allows agents to focus on the interactions most 

significant to experienced reward, improving convergence rate during 
training [102]. Sample efficiency was motivated by the complexity of 
the model, evaluated with different timestep resolutions for operation 
and decision making, meaning each environment episode simulation is 
relatively expensive computationally. This is achieved in ACER by 
combining several ideas from previous works with novel developments. 

More specifically, multi-step impacts on state-action value function 
Qret(st , at) approximations for each generated trajectory are found 
recursively using the Retrace algorithm [103], as shown in (34). Multi- 
step returns used allow for significant reductions in policy gradient bias 
and learning iterations needed for the Critic component of the algo-
rithm. A duelling architecture is implemented, through which the vec-
torized value function estimates Q∅

(
st+1, at+1) as well as the policy 

π∅(at |st), are outputs of the DNN with parameters ∅. As shown in (29), 
the estimate V∅(st+1) is then easily found as the expectation of Q∅ under 
π∅. Additionally, note that γ is mathematically equivalent to the finan-
cial discount factor 1

1+λ shown in the problem formulated in (32). It is 
used to in DRL to account for the different value of immediate rewards 
compared to long term ones. The truncated importance weight ρt under 
current behaviour policy μ, is thus computed as shown in (35) [104]. 

Qret(st, at) = Rt + γρt+1[Qret
(
st+1, at+1) − Q∅

(
st+1, at+1) ]+ γV∅

(
st+1) (34)  

ρt =
π∅(at|st)

μ(at|st)
(35) 

Policy updates are then conducted in a very similar manner to Trust- 
Region Policy Optimization [105], although using the running average 
policy network as a baseline instead. The policy is thus decomposed into 
a probability distribution f , and network capturing the properties of the 
policy distribution τ∅, with the update split into two stages. In the first 
stage, a linearized Kullback–Leibler (KL) divergence constraint is com-
bined with a standard loss minimization optimization. In the second 
stage, backpropagation is used to compute the derivatives with respect 
to the policy parameters, adopting a trust region based on the distri-
bution f and advantage function. The gradient of ACER is thus defined as 
shown by (36) below, where c is the correction term coefficient for cases 
with very high variance. Please refer to the original publication for 
further details and definitions [106]. 

Fig. 5. a) Graphical overview of DRL system level decision making process going from microgrid state space input (left) to action selection output (right) b) Simple 
heuristic used for allocation of system level DRL actions to individual microgrid nodes, either the ones with either largest unmet load in previous month (top) or 
greatest total excess electricity generation (bottom). 
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ĝACER
t
= ρt∇τ∅(st)

logf (at|τ∅(st)[Qret(st, at)

− V∅(st)]+ Ea π

([
ρt(a) − c

ρt(a)

]

∇τ∅(st)
logf (at|τ∅(st)[Q∅(st, at)

− V∅(st)]

)

(36)  

3.2.5. DRL agent training and testing 
The DRL agent described in the former section is trained using a 

budget of 6 million monthly decision timesteps, equivalent to 500,000 
simulated full 30-year episodes. As performed on a standard laptop Intel 
(R) Core(TM) i7-8665U CPU @ 1.90 GHz, the complete training process 
takes approximately 7–8 h. All training scenarios are stochastically 
generated to be i.i.d from each other, thus leading to an infinite amount 
of potential scenario evolutions and state-action pairs. This was moti-
vated by the need to develop a more generalizable adaptability strategy 
under different realizations of uncertainty. No exactly equal trajectories 
are thus possible inside the environment, and training process is fully 
non-anticipative, with all operational decisions based purely on recor-
ded observations at a particular timestep. Hyperparameters are found 
through Optuna [107], with final training conducted using 50 envi-
ronment steps per policy update, parallelized through 4 processes, a 
correction term of 12.3 and a replay ratio of 5. The replay ratio and 
denotes the average relative replay learning per policy learning – which 
only kicks in after 20,000 replay starts in this case. 

The DNN architectures implemented for both the actor and critic 
component of the algorithm are fully connected, with input layers 
matching the problem feature space described above. The output layer 
for the actor is composed of twelve neurons, representing the multi- 
discrete action selection process depicted in Fig. 5 above, whereby- 
four independent SoftMax distributional operators are then used to 
characterize decisions for each component. Additionally, six hidden 
layers with 64 neurons each are implemented to approximate the 
complex stochastic functions in each. Crucially, it should be noted that 
this approximation derived from the DNN captured by (32) does not 
always guarantee the optimality of the results obtained - especially when 
considering the non-convexity of the function evaluated. Nonetheless, 
several studies suggest strong convergence properties for DRL to low 
lying local minima when using gradient-based techniques, which 
employ a number of heuristics to reduce the likelihood of obtaining sub- 
optimal solutions [53,108–114]. The Stochastic Gradient Descent Mo-
mentum method [115] is thus implemented for DNN training parameter 
updates, using the exponentially moving average of the trust-region 
adjusted values from (36). 

Two versions of the environment are developed to separate agent 
training and evaluation. In the training environment, a negative reward 
penalty (-USD 1,000) is included for timesteps where either the 
budgetary or mobility constraints presented in Section 4.2 are violated. 

This allows the DRL agent to implicitly learn their form, looking for 
system solutions which are able to minimise the occurrence of constraint 
violation, and is the most commonly used method. While more advanced 
approaches are available to ensure constraints are robustly met, 
particularly in safety critical applications [116–118], they are typically 
associated with a high computational expense and are complicated to 
implement. As such, given in this setting the constraints represent socio- 
cultural considerations rather than safety issues, the simpler constraint 
violation penalty method is deemed justified. 

This penalty is then removed in the testing environment, allowing 
evaluation of the true ENPC rather than the one obtained through the 
modified training reward function. Furthermore, to evaluate flexible 
system performance as compared to the baseline designs, all results are 
reported using the same 2,000 simulated out of sample episodes. This 
means that while trained on the same stochastic model parameters, no 
complete scenario used in testing would have been encountered during 
training. The different time step resolutions implemented are summar-
ised by Fig. 6 below. 

3.3. Value of flexibility and Plug and Play operation 

The total value of flexibility for the energy system considered 
VoFz

Total, on any metric z, is captured by (37). In essence, it comes from 
the combination of tactical system planning flexibility VoFz

Strategic, and 
the added value enabled by the PP control developments VoFz

Operational. 
As shown in (38), it is thus estimated as the difference between the 
expected value for the flexible DRL PP solution EVFlexible

z and the best 
performing inflexible benchmark EVBestBaseline

z. For z = ENPC, as 
formulated in 3.1 and 3.1.2, VoFENPC

Total represents the maximum that 
should be paid to embed said flexibility in the energy system design. 
Furthermore, (39) is used to decompose the operational flexibility VoPPz 

generated by PP control possibilities from the DRL based decision- 
making flexibility proposed in this work. The value of operational 
flexibility is thus approximated from the difference in performance for 
baseline designs EVz

NoPP as compared to ones integrating PP operation 
EVz

WithPP. While it is recognized the values for these flexibility sources 
may not be purely additive, they are considered separately in this work 
to determine whether or not the infrastructure investment required to 
enable PP operation is worthwhile in the targeted context. Decomposing 
relative performance improvements by source may also be beneficial for 
various policy-making objectives. It gives relevant decision makers 
important quantitative insights across different metrics Z. These can 
then be used to help develop market support instruments or incentive 
programmes, with the aim of maximizing added value from flexible PP 
operation for nomadic communities. Please note these estimates are 
calculated over 2000 out of sample scenarios, as further detailed in 5.1. 

VoFz
Total = VoFz

Strategic +VoFz
Operational (37) 

Fig. 6. Different timestep resolutions implemented for the proposed DRL approach.  
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VoFz
Total = EVFlexible

z − EVBestBaseline
z (38)  

∀z ∈ Z (39)  

4. Application case study 

4.1. Background and previous work 

Nomadic energy access and mobile energy systems are highly rele-
vant in Mongolia, where it is estimated that 25–40 % of the national 
population continues to live a migratory lifestyle, normally moving 
between 4 and 30 times a year [119]. Changing climatic conditions, 
however, have increased the frequency of “zhuds” – extremely cold 
winters followed by extremely dry summers – making the traditional 
way of life more difficult for nomadic communities. This has resulted in 
an explosion of population migration to UB, where out of the approxi-
mately 1.4 million residents around 60 % live in “ger areas” [119]. A 
“ger” refers to the traditional Mongolian herder dwelling, comprised of a 
basic wooden frame and a number of insulating layers to allow for 
mobility. On the other hand, “ger areas” represent the urban regions 
surrounding UB where the majority of these low-income communities 
now settle in the winter [120], and normally migrate to rural sur-
roundings during the summer months, with annual movement ranges of 
around 7–8 km [119]. Previous studies estimate nomadic community 
clusters are typically separated by 3.8 km in the spring, 2.0 km in the 
summer and 2.3 km away in the autumn [121]. Fig. 7 below graphically 
captures the migration patterns investigated, where MS1 represents 
operation in the area between UB and Hently in the summer, while MS2 
is defined by migration to ger areas in UB during winter months, as in 
2.1. 

4.1.1. Electrification 
The national network infrastructure is largely unsuitable to provide 

reliable and sustainable electrification across the potential MS encoun-
tered. It currently relies primarily on coal (71 %) and oil (25 %) for 
centralised generation, with a large associated carbon footprint [122]. 
More specifically, during MS1 the Northern Energy System is the pri-
mary option for herder electricity connection [119]. Highly underde-
veloped and unstable it mainly relies on imports from Russia [123]. It 
also only covers a fraction of the potential migration range, with 45 % of 
rural gers unable to access electricity services consistently [124]. During 
MS2, on the other hand, gers are normally able to connect to the dis-
tribution grid in UB. This network, however, also experiences very 
frequent load shedding and blackouts, leading to limited energy security 
for ger communities [125]. 

In light of the above, household or community-based decentralised 
power supply systems are likely the most cost-effective option for 
achieving SDG7 in Mongolia [126]. In fact, more than 100,000 Small 
Home Solar (SHS) systems and 5,000 small wind systems (SWS) have 

already been distributed through the Renewable Energy and Rural 
Electricity Access Project (REAP), with capacities typically ranging from 
20 to 100 W per ger [123,126]. REAP, however, was primarily based on 
capital investment subsidies and very low interest financing, thus not 
considering load evolution, mobility, or local resource assessment in 
capacity planning. Most of the systems currently installed are, as a 
result, either no longer in use or significantly undersized [126]. 

4.1.2. Heating supply decarbonisation 
Electrification of nomadic communities has a very strong link with 

Mongolian government heating supply decarbonisation objectives, as 
residents of ger areas normally are unable to connect to the district 
heating network [80]. With the majority of the country in the extreme 
cold zone, there is substantial demand for space heating over a long 
winter season. As a result, it is estimated that ger areas contribute about 
45 % to 75 % of UB’s annual average fine particulate matter (PM2.5) 
emissions [80,127]. This is driven by the inefficient combustion of raw 
coal, biomass, or household waste, the dominant heating supply sources 
for low-income gers, making UB one of the worlds most polluted cities in 
winter months, with significant associated health issues [128]. Based on 
a median income of only around 350 USD ger-1 month− 1, costs for space 
heating also contribute around 15–20 % of annual ger expenditures 
[80,129]. During winter, up to half of their limited monthly income may 
be spent on meeting heating demand alone, prioritising the cheapest 
source available. 

Given the severity of and urgency of the air pollution issue, most 
previous works on ger energy systems seek to address decarbonisation of 
the heating supply under the extreme climatic conditions typically 
experienced [80,120,130]. Traditional coal-stoves are used in most gers, 
thus these studies normally focus on either benefits from using improved 
stove designs [131,132] and/or better thermal insulation [80,130]. 
Partly, this is because these works are centred on ger areas in the out-
skirts of UB where the grid capacity is a limiting factor to alternative 
electricity-based heating solutions, and the pollution is particularly se-
vere. Most recently, however, [133] presented the experimental inves-
tigation and simulation of a solar PV generator combined with an EH for 
a single ger in UB, as compared to one using a traditional coal stove. The 
results from the study over a single year suggest a transition to 
electricity-based heating supply system can lead to improved indoor 
environmental quality, cost reductions, and significantly lower heat 
energy consumption. 

4.2. Local context constraints 

Given the mean monthly coal expenditure reported by [80], the total 
energy systems max expenditure Cm

es,max,ger is limited to USD 110 
month− 1 ger-1. This results in approximately USD 20–60 month− 1 ger-1 

available for capacity expansion, depending on the respective coal 
expenditure, formulated at the entire 18-ger energy system level. 

Fig. 7. Spatial boundaries for typical migration pattern (left) and example multi-ger PP configurations (right).  
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Furthermore, it is well established that a typical 5-wall Mongolian ger 
weighs 250–400 kg, with an additional 75–100 kg for a standard coal 
stove and at least one 20 kg bag of raw coal normally used during 
migration [120,130]. Considering the above, an upper limit on total 
energy system weight Mm

es,max,ger of 120 kg ger-1 is preliminarily 
estimated. 

4.3. Herder migration 

The assumptions used to model ger migration patterns and spatial 
dispersion uncertainty were developed and validated through direct 
engagement with a team of local consultants [72] and an interactive 
workshop with regional energy sector stakeholders [134]. Conse-
quently, it was identified that 18 gers is representative of a typical ger 
nomadic community. Recent studies suggest that the average area 
occupied by such a community over the migration season is around 147 
km2 , leading to an average seasonal cluster radius of 6.85 km at project 
start [72,121]. Furthermore, previous works suggest climate change is 
likely to lead to growth in overall migration distance and spatial 
dispersion over the 30-year horizon [119]. With the aim to capture how 
this uncertainty may influence optimal energy system configurations, 
mean annual growth rate and volatility are preliminarily estimated 
based on available data. The annual cluster radius rcluster

y evolutions are 
thus simulated according to (24)–(25). The resulting potentially large 
difference between projected (dashed line) and realised (solid lines) 
cluster spatial dispersion is shown in Fig. 8, capturing the uncertainty 
space considered. 

4.4. Electricity demand (ED) 

The baseline daily electricity load profile for a typical ger household 
was estimated through interactions with a local consulting team [72], 
given the limited literature data available. These values suggest most 
nomadic households continue to follow a more traditional way of life for 
now, typically only consuming enough electricity to operate a 20 W 
lamp and 80 W refrigerator. In winter months, however, the local cli-
matic conditions as well as economic constraints mean that the refrig-
erator is not needed nor used. This assumption is maintained throughout 
project horizon, with starting electricity demand estimates of roughly 63 
and 6 kWh month− 1 ger-1 during the summer and winter months, 
respectively. Nonetheless, this load is likely to grow significantly over 
the next 30 years, with recent ones experiencing a 5–7 % annual increase 

in electricity demand, driven by a combination of more productive uses 
of electricity integrated into nomadic lifestyles, higher indoor environ-
mental standards, and the adoption of low-cost electric appliances 
[120,123,135]. 

Baseline load profile projections are thus formulated based on the 
integration of a 213 W TV with a 30 W antenna, more light bulbs, and a 
number of additional electric appliances (i.e., radios, cell-phone) by 
years 15 and 30, respectively [72]. The stochastic electricity demand 
model is defined from (24)–(25). The baseline daily load profiles for 
summer days are shown on the left in Fig. 9 below at the starting point 
(Year 0), midpoint (Year 15) and end (Year 30) of the project. Long term 
evolutions and variation under uncertainty for different seasons, on the 
other hand, are captured on the right in Fig. 9. For power flow calcu-
lations in Appendix I, it is assumed that these same hourly load profile 
curves are maintained, the magnitude of which is scaled proportionally 
to the actual realized monthly demand as compared to the one projected 
at time of writing. 

4.5. Heating demand (HD) 

As a baseline for estimating heating demand (HD), it is assumed that 
all 18 gers in the systems evaluated have 5 walls with standard insu-
lation. While the benefits of improved insulation for gers have been 
discussed in several other studies [129,130,133], the standard insu-
lation case defined in these works is still representative of the majority of 
ger dwellings. Seasonal demand calculations are obtained through 
consultation with a local team [72] and are aligned with values found in 
the literature [80,129,130,133]. Respective demand-temperature cor-
relations are then used to extrapolate monthly profiles based on the 
assumptions given in Appendix II, resulting in starting demand of 
11,500 kWh/ year per ger. Volatility for heating demand is assumed to 
be approximately equivalent to that on year-to-year climatic conditions, 
found via standard regression analysis of the average winter tempera-
tures between 1901 and 2020 [136]. The stochastic HD model is thus 
formulated yearly according to (24)–(25), including potential climate 
change induced growth [137–139]. The impact of this evolution and 
differences in potential Year 30 HD profiles is shown for 3 stochastic 
scenarios in Fig. 10. As for ED above, the seasonal profile distribution is 
maintained across years simulated, and the value in each timestep scaled 
proportionally to the one at project start [72]. 

Fig. 8. Deterministic projections (dashed line) and 3 
randomly selected example stochastic simulated sce-
narios (solid lines), showing the average annual 
(over the migration season) 18-ger cluster radius in 
km (y-axis), over the 30-year project horizon (x-axis). 
The projected migration growth is assumed to be 
driven by the climate change effects, as shown by the 
deterministic projections(dashed line), although it is 
recognized the magnitude of this impact is highly 
uncertain both in its long-term evolution and intra- 
year variability, as captured by the different stochas-
tic example scenarios(solid lines).   
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4.6. Renewable energy generation 

For the system sizes and representative locations considered in this 
manuscript, a mean annual capacity factor (CF) of 19.8 % for solar PV is 
obtained, similar as reported in [133]. The initial estimate for annual 
wind capacity factor is slightly higher at 22.2 %. This is lower than 
values from other wind generation sites in Mongolia, as the small-scale 
systems selected are operating at reduced wind speeds and conversion 
efficiencies compared to utility level ones [126,135]. Still, both CF es-
timates are consistent with those which could be extrapolated from 

alternative data sources [140,141] or with previous studies 
[122,135,142]. 

Please refer to Appendix II for the complete list, values and ranges of 
the parameters used in this study. 

5. Results 

5.1. Summary 

The energy system design alternatives discussed in the remainder of 

Fig. 9. Hourly projected load (left) and seasonal long term stochastic evolutions of electricity demand (right).  

Fig. 10. Projected starting and end of project life heating demand monthly profiles for 3 scenarios.  

Table 1 
Summary of ger energy system design alternatives evaluated in this study.  

Ger Energy System Alternative Description 

Flexible Design (FD) 18-ger multi-energy PP microgrid design and adaptability strategy 
Flexible Nanogrid Design (FND) DRL based single nanogrid unit design and adaptability strategy 
Baseline Design 1 (BD1) Single nanogrid unit stochastically optimal rigid design with no EH 
Baseline Design 2 (BD2) Single nanogrid unit stochastically optimal rigid design with EH option 
Baseline Design 3 (BD3) 18-ger microgrid stochastically optimal rigid design with no EH 
Baseline Design 4 (BD4) 18-ger microgrid stochastically optimal rigid design with EH option  
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this section are summarised in Table 1 below, aiming to capture the 
benefits of flexibility and a systems approach to planning for ger com-
munities. The stochastically optimal rigid baselines results suggest the 
deployment of a SHS system for BD1 (θBD1

pv = 525 W/ger). This is 
approximately 5–10 times with what is currently available to herders, or 
roughly twice that obtained using commercial software such as HOM-
ERPRO, which neglects load growth. Interestingly, the optimal PV ca-
pacity in BD2 is equal to that found in BD1, although with a roughly 
matching EH capacity (625 W/ger) for thermal energy supply. In BD2, 
therefore, the EH units are run almost exclusively with power purchased 
from the UB grid. BD3 and BD4 present very similar initial design ca-
pacities to their counterparts which are optimised for no PP connection 
(BD1 and BD2), albeit with reductions in BESS requirements of roughly 
8 % and 10 %, respectively. System evolution for FD, on the other hand, 
varies based on scenarios, although with final capacities generally much 
greater (and diversified) than those obtained via rigid baselines. 

The combined relative out of sample performance of the 18-ger en-
ergy system design alternatives optimised using the model from Section 
2 are summarised by Table 2 below. They show that the FD yields im-
provements across all metrics estimating economic feasibility, sustain-
ability, and energy security of alternatives, highlighting the importance 
of embedding capacity expansion flexibility under uncertainty. Note 
that, as presented in Section 3.3, VoF refers to improvements achieved 
by FD for each metric as compared to the best performing benchmark 
design on the same metric. Furthermore, to capture decision makers with 
differing risk-profiles, Value at Risk (VaR) and Value at Gain (VaG) are 
evaluated for each solution, tailored to risk-averse and risk-seeking 
operators, respectively. These results suggest that FD may be highly 
valuable for ger communities’ electrification along different risk and 
utility metrics, as discussed in more detail below. 

5.2. DRL flexible system evolution strategy 

The FD produced via the proposed DRL based approach suggests the 
development of a highly dynamic decision-making policy, with capacity 
evolution based on uncertainty realisations in each scenario. The 
modular nature of the adaptability strategy is graphically captured in 
Fig. 11 below, showing installed nominal capacities over time for 
different technological components. The plot suggests that in early years 
the DRL policy presents limited variability, and largely mirrors the 
findings from the inflexible baselines, with deployment of PV and BESS. 
Over time, however, it grows increasingly dynamic as more RES ca-
pacity is installed within the energy system. This is primarily driven by 
expansion of wind technologies after about year 7, which then also al-
lows for more EH capacity to be sustainably and reliably operated. 
Furthermore, in line with near term projections likely to be more ac-
curate, the policy grows more variable over the project life, adapting to 
the magnitude of uncertainty encountered. 

The planning strategy obtained can be further decomposed for 
improved interpretability by evaluating actions selected under different 
conditions. Fig. 11, for instance, could be broken down into the 
expansion timing distribution for each technology, and used to recom-
mend options for exercising flexibility at various stages of the project. 
Other metrics can be developed for this purpose, through a mix of 
intuition, domain expertise, and trial and error. The ratio of installed 
renewables to EH nominal capacity provides such an example, as a 

pattern can be observed where this ratio increases at first, then starts to 
decrease around year 12 and stabilizes at around 4.2 to 5.1 in the final 
periods. The behaviour of the DRL agent under different shortage levels 
also provides some interesting insights, as shown in Fig. 12. It indicates 
that it is worthwhile to prioritise RES expansion (and wind in particular) 
under high shortage levels, although important to achieve a balanced 
generation mix over time. The results also imply that while the majority 
of EH expansion should happen when there is no unmet load, some 
capacity should be deployed even in early high shortage years. Most 
likely, this is because there could still be periods of high EH utilization 
rate within those years, which can lead to significant cost savings. En-
ergy storage, on the other hand, seems to be prioritized in years with low 
unmet load levels. This suggests the DRL agent estimates BESS to be 
particularly helpful at smoothing out those smaller power imbalances, 
created by intermittent RES generation or stochasticity introduced into 
the load profiles. 

5.3. Relative performance evaluation 

5.3.1. Expected energy system cost 
The low-income communities targeted by these studies motivate 

prioritising cost as an initial objective. FD achieves significant im-
provements in this front particularly as compared to BD1 and BD2, 
reducing ENPC by 25.3 % and 20.7 %, respectively. The PP enabled 
inflexible solutions BD3 and BD4 perform slightly better due to the 
benefits of interconnection, although FD still results in an ENPC 23.3 % 
lower than BD3 and a 15.1 % reduction from BD4. Expected cost re-
ductions compared to HOMER deterministic design are even more 
striking at around 41 %, although highly dependent on the economic 
value of energy not served cul estimated earlier. Reduction in energy 
system cost in any given scenario are achieved by FD through an 
improved adaptability strategy under uncertainty. More practically, this 
results in decreased expenditure on coal over time, reduced charges due 
to unmet load, and discounting of capital costs through modular 
deployment of components, as shown in Fig. 11. The greatest economic 
VoF is recorded for VaR, with FD achieving over a 30 % reduction in 
downside costs as compared to alternatives investigated, although sig-
nificant improvements are also found in terms of upside potential (VaG). 
Furthermore, as the capacity expansion strategy developed is highly 
dynamic and dependant on different realisations of uncertain variables, 
FD performs much more consistently and is stochastically dominant 
across nearly all scenarios evaluated. The VoF estimated for each eco-
nomic metric is reported in Table 2. 

5.3.2. Lifetime emissions 
Even when formulated for purely cost minimisation objectives, the 

proposed approach is found to yield significant improvements in system 
design sustainability, as captured by Fig. 13. Reductions in estimated 
lifetime emissions of 54.6 %, 67.5 %, 52.9 % and 56.6 % are obtained 
compared to BD1 and BD2, BD3 and BD4, respectively. Interestingly, the 
static designs evaluating EH (BD2 and BD4) yield higher net emissions 
than the others, driven by the UB grid carbon footprint, in line with 
previous work [80]. This suggests a sustainable ger energy system so-
lution must not rely on the national infrastructure available, but rather 
on the development of a more distributed and adaptable network, 
particularly to integrate the multi-energy boundaries encountered. The 

Table 2 
Design decision making table for alternatives evaluated in this study over 2000 out of sample scenarios.  

Metric Objective BD1 BD2 BD3 BD4 FND FD VoF 

ENPC (USD) Economic Feasibility 439,212 413,771 428,088 386,459 373,503 328,178 85,593 
VaR, 5 % (USD) Economic Risk 492,314 516,332 480,058 473,062 419,512 367,421 124,893 
VaG, 95 % (USD) Economic Upside 381,456 370,591 365,221 352,669 338,229 293,404 77,187 
Lifetime Emissions (t. CO2 Eq.) Sustainability 10,133 14,169 9,808 13,375 4,937 4,601 5,532 
Expected TUL (kWh) Energy Security 29,992 29,992 28,102 27,171 8,274 7,188 22,804  
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respective contributions of coal and EH to meeting thermal energy de-
mand for FD over time, shown in Fig. 13, suggest that most annual 
carbon footprint reductions can be achieved around year 18. Nonethe-
less, some emissions are maintained for the entire project duration, as 
supplying heat with coal or electricity from the UB grid in certain 
timesteps can reduce costs. The VoF in the context of sustainability is, in 
essence, the expected avoided 30-year emissions through the FD as 
compared to the any of rigid alternatives investigated, estimated at 
5,532 tonnes CO2 eq. for this system. 

5.3.3. Energy security and resilience 
Outside of improved economic performance and sustainability, FD 

also achieves substantially enhanced energy security, with reductions in 
expected TUL of 76.1 % compared to BD1 and BD2, and 74.4 % and 73.5 
% from the TUL values obtained in BD3 and BD4. This is driven by the 
DRL based flexibility strategy, which can closely match capacity and 

demand over time for the required provision of energy services. The 
increased generation capacity for FD also reduces reliance by gers on the 
UB grid, which can be highly unstable due to frequent load shedding. 
The PP interconnection allows for the smoothing out of load/generation 
imbalances as compared to the independent nanogrid units, helping 
increase system resilience for all stakeholders involved, while also 
reducing BESS requirements. The VoF for energy security is estimated at 
22,804 kWh on average for the duration of the project. Intuitively, this 
implies that for a simulated 30-year horizon, 22,804 kWh of unmet load 
could be expected to be avoided by using the FD as opposed any of the 
alternatives considered. Noting that while some unmet load is still 
recorded for FD, this results from the allowable capacity shortage pre-
sented in 2.4 and the intrinsic stochasticity of the environment investi-
gated, as it would require substantial oversizing of components to 
consistently meet all loads. 

Fig. 11. Cumulative System Capacity Expansion averaged over 2000 episodes showing 95% confidence interval.  

Fig. 12. Distribution of capacity expansion decisions vs shortage levels over 2000 episodes for the DRL agent.  
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5.3.4. Local context constraints 
Average energy system expenses (excluding unmet load charges) are 

around 83 USD month− 1 ger-1 for FD, and substantially lower for BD1 
and BD2 at around 52 and 46 USD month− 1 ger-1, although with sig-
nificant variation across uncertainty scenarios. The number of timesteps 
where the budgetary constraints are violated, however, are significantly 
lower on average for FD. On one hand, this is driven by distributing 
required investments over project life as compared to significant upfront 
expenses (and associated replacement costs) recorded for baseline de-
signs. As coal expenses are reduced over time, the budget for expansion 
decisions for FD increases, which presents nice synergies with the pro-
jected load growth, allowing for the deployment of generating tech-
nologies only if and when needed. Moreover, the PP enabled FD reduces 
reliance on BESS, which is both the costliest and heaviest technology 
considered, helping to limit total system mass. 

Accordingly, energy system weight for FD is found to be on average 
around 15 % and 19 % lower than BD1 and BD2 for the first half of the 
project, respectively. The much higher final generating capacities 
installed for FD and extra mass associated with cabling, however, lead to 
a net increase in end of project system weight of roughly 28 % and 22 % 
as compared to BD1 and BD2. BD3/4 usually result in slightly higher 
weights than BD1/2, but still within the acceptable bounds. Notably, 
energy system evolution and expansion possibilities over time are a 
result of reduced coal mass requirements via EH substitution, similar as 
what is observed for budget. Given the very large amounts of coal 
consumed by a typical ger, and the availability of regional lightweight 
systems, mobility constraint violation is thus very unlikely in FD. The 
few recorded instances can be attributed to energy generation and de-
mand uncertainty as well as potential load shedding, which can result in 
additional coal mass requirements from that originally estimated. 

5.4. Value of Plug and Play (VoPP) operation 

In this section, the VoPP is decomposed from the VoF reported in 
Table 2 to help assess its economic feasibility, according to (39). The 
results shown in Table 3 suggest it is a worthwhile investment in all 
cases. These values may be intuitively thought of as the difference in 
total cost between the same energy system configurations if integrating 

PP operation or not. FD benefits the most from PP, followed by BD2/4, as 
the explicit consideration of EH increases system load substantially, and 
thus motivation for interconnection compared to BD1/3. Nonetheless, 
for the targeted low-income communities, VoPP for BD1/3 is still sig-
nificant and can likely be further enhanced. These findings highlight the 
crucial role of PP in enabling economically feasible mobile energy sys-
tem solutions, with cost reductions driven by a combination of reduced 
storage requirements, unmet load penalty and electricity purchased 
from grid. At the same time, they suggest that a systems approach and 
flexibility strategy under uncertainty are essential to unlock its full po-
tential, with significantly greater VoPP for FD recorded across all ob-
jectives evaluated. 

It is important to note, however, that this estimated value is highly 
dependent on the assumptions used, particularly in terms of herder 
migration modelling. Significantly greater spatial dispersions than the 
ones investigated could lead to unsustainable system losses from low 
voltage distribution, the costs of which may outweigh the benefits 
generated by PP. To further investigate the effect of this, average dis-
tribution losses are plotted against the range of potential cluster radiuses 
encountered in Fig. 14. The “break-even” starting cluster radius (where 
VoPP = 0) is estimated at roughly 12.1 km for the 18-ger system FD 
through the economic value of unmet load cul. This implies that in re-
gions with greater spatial dispersions among herders, higher distribu-
tion voltages should be considered to maintain an acceptable network 
efficiency. Alternatively, government policy programs or decision sup-
port tools could be developed to incentivize nomadic households to 
settle closer to each other, helping to capture the full benefits enabled by 
PP. 

Fig. 13. Heating supply source (left-axis) vs carbon footprint evolution (right-axis) for FD system over 2000 simulated scenarios showing the 95% confi-
dence interval. 

Table 3 
Estimated VoPP and externalities on energy security and sustainability for 
different system design alternatives.  

Design(s) VoPP (USD) % Δ TUL from PP % Δ CO2 from PP 

FD/FDN 45,313  − 15.1  − 7.3 
BD1/3 11,134  − 6.3  − 3.2 
BD2/4 27,312  − 9.4  − 5.6  
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6. Discussion 

6.1. Changing economies of scale 

Flexibility in Design is generally motivated by tensions between EoS 
and modular adaptable deployment, where each can be advantageous 
depending on the setting. The results presented in the former section, 
however, suggest that the flexible solution is stochastically dominant 
and outperforms the baseline designs in nearly all scenarios evaluated. 
This may be due to the relatively low magnitude of EoS assumed in the 
cost calculations. Coal expenses, even if significantly reduced, remain 
the strongest driver of ENPC for nomadic energy systems in Mongolia. 
While evolving costs for other technologies may influence this finding, 
an important advantage of the proposed DRL approach is precisely the 
simplicity to retrain the agent with updated assumptions as they are 
verified over time. As such, if governmental programs are developed 
which influence the optimal solution (i.e. subsidy schemes, carbon 
credits, etc.), they could be quickly integrated into the model to give up 
to date recommendations. Finally, it is worth noting that removing the 
budgetary constraints formulated could lead to the discovery of better 
performing solutions which take advantage of both EoS and flexibility. 
While this constraint was relaxed in the zero-stage capital expense de-
cision, there are likely to be some practical, logistical and/or economic 
benefits to ramping up and concentrating investment in certain time 
periods. 

6.2. Decarbonisation pathways 

The trade-offs between costs and emissions for inflexible ger energy 
systems not considering PP were further evaluated through the Non- 
dominated Sorting Genetic Algorithm (NSGA-II) to the optimisation of 
BD1 and BD2 [143]. The pareto frontier obtained suggests that high EH 
capacities should be deployed even by inflexible nanogrid units seeking 
to minimise ENPC, as they help reduce coal expenses over time - instead 
purchasing heavily discounted (particularly at night) electricity from the 
UB grid. The associated carbon footprint, however, means those solu-
tions are estimated to lead to a net increase in expected system emissions 
over the project horizon. The results presented in the former sections, in 
fact, suggest that an economically feasible decarbonisation of ger com-
munity energy systems is possible even when accounting for the asso-
ciated uncertainties, due to several important synergies. Ger 
communities present substantially higher demand for electricity in the 

summer months compared to the winter ones, arising from increased 
refrigerator energy requirements. This allows RES generation to be 
utilized almost exclusively for EH in the winter months. The relatively 
high capital expense of RES and EH for low-income communities, as well 
cultural value associated with the coal stove, nonetheless, remain 
important limiting factors to the rate of future feasible decarbonisation 
in Mongolia. 

6.3. PP microgrid feasibility 

While this work was focused on the planning rather than operation 
side, the new control algorithm developments remain largely untested 
on the field. This is an important issue to address, particularly in terms of 
overall resulting network efficiency and feasibility at different levels of 
spatial dispersion. In this study, a ring like interconnection was fixed, 
however this is likely to vary significantly during actual herder migra-
tion, which may strongly impact the performance of a design and flex-
ibility strategy. Additionally, even though only active power was 
considered here, there are substantial safety and reliability issues asso-
ciated with low-voltage AC distribution over long distances. Nonethe-
less, the results from this work imply that there is a significant economic 
value attached to PP operation, thus motivating the need for more in- 
depth feasibility studies. 

6.4. DRL environment insights for community Decision-Making 

The analysis presented in Section 5 already provides some inter-
pretable guidelines that could be used by herder communities to 
determine their energy system expansion strategy. To capture the full 
value and dynamicity of the proposed approach, however, a decision 
support tool could be implemented. This would be targeted at improving 
data visualisation, understanding of the policy optimisation performed, 
and ultimately enhancing acceptability. A mobile app could be devel-
oped which helps community members track energy system state, 
explore locations of other nearby PP clusters if migration is required, 
and dynamically recommend actions over time. Given the communica-
tion infrastructure is already present, this could be achieved at a low 
cost. Furthermore, users with different budgetary or mobility re-
quirements from those assumed in this work could enter that data 
directly in the app, helping generate solutions better tailored to each 
customer. 

Fig. 14. Annual distribution loss % as a function of herder PP microgrid spatial dispersion.  
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6.5. Limitations and future work opportunities 

While this work presents an important starting point to evaluate the 
planning of future nomadic and mobile energy systems, there are some 
other limitations which should be noted. Data on load profiles and 
projections were difficult to find, and several assumptions had to be 
made to develop the model from Section 2. A higher resolution heat load 
profile model, perhaps based on outside temperatures in each hour per 
day, could allow for a more detailed evaluation of different climate 
change scenarios. The mobility aspect within the energy system simu-
lation is completely novel and the modelling approach implemented 
hard to validate. Continuing interactions with local energy sector 
stakeholders and herder communities will be crucial in this regard. 
Especially valuable insights may be on the flexibility of migration pat-
terns assumed, and willingness to deviate from them to engage in PP 
operation in different regions. Additionally, the results are highly 
dependent on realisations of different cost factors over the project life. 
These were mostly assumed to be invariant in time for simplicity, and for 
lack of better information, however, are highly likely to differ over the 
next 30-years. In order to address data limitations at the time of writing, 
future work ought to investigate reproducibility of solutions when using 
different stochastic model parameters. Considering the possibility of 
new bulk procurement programs, it may be interesting to policy makers 
to perform a more in-depth sensitivity analysis on the impact of EoS in 
Mongolia. This can suggest what the break-even values may be, or where 
the rigid designs outperform the flexible ones. 

The action space for the DRL agent could be significantly expanded 
from this implementation to reflect the relevant decision-making pos-
sibilities. Multiple technologies could be considered for expansion at 
once, for instance. Moreover, connection to the UB or a nearby grid 
could be explicitly modelled, and respective recommendations pro-
duced. Several other potential actions were not evaluated here, partic-
ularly higher efficiency stoves or improved ger thermal insulation, 
which could be highly valuable for decarbonisation objectives. Inverter 
capacity was also not explicitly analysed, thus likely leading to sub- 
optimal operation at different points of the project. Closer integration 
of the control and planning aspects of this problem should also be 
investigated in future work. While the computational expense required 
may make the problem intractable, it would be valuable to actually 
simulate PP operation at a finer time resolution over the entire project 
horizon. Alternatively, a separate DRL agent could be used to develop 
more advanced operational strategies than the LFS implemented here. 
Flexible demand response and prioritised load shedding, for instance, 
are likely to help reduce ENPC incurred by mobile energy systems. 

From an algorithmic point of view, there are several more interesting 
avenues for future research. More specifically, a multi-agent formulation 
could be developed to better evaluate the costs and benefits to individual 
herder households, and the resulting optimal flexibility strategies. 
Recent advancements in distributional DRL allow the formulation of a 
policy based on the entire distribution of rewards rather than purely 
expected value [144]. Recommended strategies could thus be tailored to 
risk-seeking or risk averse decision makers, improving acceptability, and 
understanding. Finally, exploring alternative DNN architectures which 
are better tailored to the tackled problem could lead to further im-
provements. CNNs could be used to map relationship among features 
which may not be intuitive at first, for instance, while RNNs could help 
capture the seasonal nature of decision making required in order to 
better adapt agent policy between winter and summer months. 

7. Conclusions 

In this paper, a DRL-based approach was developed for the design 
and planning of a mobile energy system supply system, and illustrated 
through a case study on Mongolian herder communities. Motivated by 

the potential for increased climate induced migration and increasingly 
decentralized generation, a novel modelling framework to integrate 
mobility considerations was developed. This analysis was enabled by 
recent “Plug and Play” control developments, allowing temporary 
interconnection among nomadic households and/or the main grid. 
Contrary to popular energy system planning methods, the data-driven 
approach implemented allowed for the tractable integration of several 
sources of uncertainty as well as mobility within the evaluation model. 
Both heat and electricity were considered, leading to a more holistic 
evaluation of different solution alternatives than previously available. 
The design and planning strategy for a highly flexible and modular en-
ergy system was thus optimised through an actor-critic algorithm, with a 
reasonable computational expense. Benchmark inflexible designs with 
economies of scale were compared across key economic, sustainability 
and resilience indicators such as Cost, Equivalent Emissions and Total 
Unmet Load. The results suggest that the proposed approach can lead to 
economically feasible mobile energy systems, even in the case of 
budgetary and mobility constraints. They also show that a DRL-based 
flexible capacity expansion strategy can offer a highly dynamic and 
adaptable energy system design, with multi-objective improvements 
compared to rigid baselines available from institutional programs. 
Additionally, the value generated by “Plug and Play” operation was also 
estimated using a variation of real-options theory, suggesting it is a 
worthwhile investment in all cases. The spatial dispersion among 
herders within a cluster, however, can be an important limiting factor 
due to the low voltage of distribution. Finally, while this paper provides 
an important advancement to enabling nomadic energy access, there are 
several limitations and opportunities for future work, which could 
enhance the applicability and overall impact of the methods presented. 
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Appendix 

Appendix I: Mathematical formulation of power flow model 

Pn,t
NEL = EDn,t − Pn,t

res (41)  

Pn,t
res = Pn,t

wind,adj +Pn,t
pv,adj (42)  

PLoad,Net
n,t = HDn,t +EDn,t − Pn,t

res (43)  

PHD,eh,res
n,t = min

(
HDn,t,Peh,max

n,t, − PED,Load,Net
n,t),PNEL

n,t ≤ 0 (44)  

Pn,t
NHL = HDn,t − Peh,res

n,t 45  

Pn,t
res,PL = Pn,t

res − PHD,eh,res
n,t − PNEL

n,t, PED,Load,Net
n,t ≤ 0 and Pn,t

HD,Load,Net ≤ 0 (46)  

n ∈ [N1,N2,N3, ..NN ], ∀n, t (47)  

Pn,t
ba,outmax = θn,t

ba Cout (48)  

Pn,t
ba,in,max = θn,t

ba Cin (49)  

Pn,t
ba =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

− min(Pn,t
ba, out,max,PNEL

n,t
)
, PNEL

n,t ≥ 0 (a)

− min
(

Pn,t
ba, out, max , Pn,t

HD, Load, Net

)
, P n,t

res,PL,PED,Load, Net
n,t ≤ 0 ; Pn,t

HD, Load, Net ≥ 0 (b)

min
(

Pn,t
ba, in, max , P n,t

res,PL

)
, P n,t

res,PL ≥ 0;Pn,t
HD, Load, Net ; PED,Load, Net
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(50)  

En,t
ba = En,t− 1

ba + P
n,t
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̅̅̅̅̅̅ηba
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+En,t

ba,new (51)  
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+En,t
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n,t ≥ 0

0 , otherwise
(53)  
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HD,Load,Net,PB = HDn,t − Peh,res

n,t − Peh,batt
n,t (54)  
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res,PL − Pn,t
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n ∈ Ndeficit : Pn,t
eg ≤ 0 (57)  
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eg > 0 (58)  

Pt
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∑

n∈Ndeficit
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Rt,n
dist,actual = Rt,n

dist,ref

[
1 + αcopper

(
Tactual − Tref

)]
(67)  

Pt
dl,es =

∑

n∈N
3Rt,n

dist,actualI
t,n
dist

2 (68)  

It,n
dist =

Pt,n
dist

Vt,n
dist

(69)  

Pt
res,exc,pp = Pt

eg,es − Pt
dist,es (70)  

Pt
uel,es,ppp = Pt

uel,es,bpp −
(

Pt
dist,es − Pt

dl,es

)
(71)  

DL(%) = 100
Pt

dl,es

Pt
dist,es

(72)  

Appendix II: Model parameters and variables values 

Please refer to the nomenclature table presented at the beginning of the manuscript for the definition and respective reference for each of these 
variables/ parameters.   

Technical Parameters and Values/Ranges 
T 30 years / 360 months Keh 1.52 USD/W 
λ 5 % Kba 0.7 USD/ Wh 
ηinv 90 % αMS1 0.95 
ηbatt 75 % αMS2 0.85 
ηcoalstove 25 % εpe,avg 0.769 
μcoal 14.6 MJ/kg ksalv 0.7 
Acs,cb 1.5 mm2 Lpv

max 25 years 
ρcb 1.678x10-8 Ωm Lwind

max 20 years 
Tref 20 ◦C Lpe

max 15 years 
αcb,adj 0.393 % / ◦C Leh

max 13 years 
EFgrid 0.711 tCO2 eq./ MWh ccoal 40 USD/ t 
EFcoal 1.37 tCO2 eq./ 1000 kg com,pv 0.0048 $/kW/month 
θUBGrid 2 kW com,wind 0.0032 $/kW/month 
Agrid 1 com,pe 0.0001 $/kW/month 
Bgrid 9 cul 0.3417 USD/kWh 
ccc 0.04 USD/ kWh cgrid 0.041 USD/kWh 
cic 5.2 USD/m pgrid 0.17 USD/kWh 
cpe,avg 0.352 USD/W   
Kpv 2.64 USD/W   
Kwind 1.91 USD/W      

GBM Model(s) Parameters 
μmigration 0.5 % 
σmigration 5 % 
μED 3.14 % 
σED 15 % 
μHD 1 % 
σHD 6.5 % 
σPV 19.3 % 
σwind 14.2 %  
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