110,597 research outputs found

    AI-Based knowledge extraction for automatic design proposals using design-related patterns

    Get PDF
    Engineering competence and the digitization of all processes along the product development process are highly decisive for today’s success of industrial companies. The design process is very individual and strongly based on design engineers’ experience. Part of this knowledge and the result of the design approach are fixated in the existing variations of the product generations, but are difficult to extract and to formalize. Conclusions about design-related patterns between products of different generations or variants can be drawn from the model tree representing the design engineer’s thinking process for each individual CAD model. However, the model tree has hardly been used so far. The aim of this paper is to examine whether there exist any common design patterns between CAD models of certain component classes by the exemplary use case in the area of mechanical engineering. To identify patterns and to extract knowledge out of complex data sets, Machine Learning (ML), especially Deep Learning, has proven an immense capability. Finally, based on the learned patterns, meaningful next design steps are to be proposed in the form of an assistance system. The results show that there exist common design patterns for various classes of components. It is illustrated on an exemplary component class that those patterns can be used to train an assistance system based on Recurrent Neural Networks (RNNs). The corresponding design patterns were extracted from data of an industrial application partner. By transferring these design patterns to the development of new product generations or variants, on the one hand the design process itself and thus the time to market can be shortened. On the other hand, the knowledge from previous product generations contained in those patterns can be preserved. For further research the design patterns of CAD models extracted by ML algorithms is a contribution to faster knowledge extrapolation

    Learning Compact Recurrent Neural Networks with Block-Term Tensor Decomposition

    Full text link
    Recurrent Neural Networks (RNNs) are powerful sequence modeling tools. However, when dealing with high dimensional inputs, the training of RNNs becomes computational expensive due to the large number of model parameters. This hinders RNNs from solving many important computer vision tasks, such as Action Recognition in Videos and Image Captioning. To overcome this problem, we propose a compact and flexible structure, namely Block-Term tensor decomposition, which greatly reduces the parameters of RNNs and improves their training efficiency. Compared with alternative low-rank approximations, such as tensor-train RNN (TT-RNN), our method, Block-Term RNN (BT-RNN), is not only more concise (when using the same rank), but also able to attain a better approximation to the original RNNs with much fewer parameters. On three challenging tasks, including Action Recognition in Videos, Image Captioning and Image Generation, BT-RNN outperforms TT-RNN and the standard RNN in terms of both prediction accuracy and convergence rate. Specifically, BT-LSTM utilizes 17,388 times fewer parameters than the standard LSTM to achieve an accuracy improvement over 15.6\% in the Action Recognition task on the UCF11 dataset.Comment: CVPR201

    Retrosynthetic reaction prediction using neural sequence-to-sequence models

    Full text link
    We describe a fully data driven model that learns to perform a retrosynthetic reaction prediction task, which is treated as a sequence-to-sequence mapping problem. The end-to-end trained model has an encoder-decoder architecture that consists of two recurrent neural networks, which has previously shown great success in solving other sequence-to-sequence prediction tasks such as machine translation. The model is trained on 50,000 experimental reaction examples from the United States patent literature, which span 10 broad reaction types that are commonly used by medicinal chemists. We find that our model performs comparably with a rule-based expert system baseline model, and also overcomes certain limitations associated with rule-based expert systems and with any machine learning approach that contains a rule-based expert system component. Our model provides an important first step towards solving the challenging problem of computational retrosynthetic analysis
    • …
    corecore