13,787 research outputs found

    Deep Neural Networks for Anatomical Brain Segmentation

    Full text link
    We present a novel approach to automatically segment magnetic resonance (MR) images of the human brain into anatomical regions. Our methodology is based on a deep artificial neural network that assigns each voxel in an MR image of the brain to its corresponding anatomical region. The inputs of the network capture information at different scales around the voxel of interest: 3D and orthogonal 2D intensity patches capture the local spatial context while large, compressed 2D orthogonal patches and distances to the regional centroids enforce global spatial consistency. Contrary to commonly used segmentation methods, our technique does not require any non-linear registration of the MR images. To benchmark our model, we used the dataset provided for the MICCAI 2012 challenge on multi-atlas labelling, which consists of 35 manually segmented MR images of the brain. We obtained competitive results (mean dice coefficient 0.725, error rate 0.163) showing the potential of our approach. To our knowledge, our technique is the first to tackle the anatomical segmentation of the whole brain using deep neural networks

    Multi-modal segmentation of 3D brain scans using neural networks

    Get PDF
    Purpose: To implement a brain segmentation pipeline based on convolutional neural networks, which rapidly segments 3D volumes into 27 anatomical structures. To provide an extensive, comparative study of segmentation performance on various contrasts of magnetic resonance imaging (MRI) and computed tomography (CT) scans. Methods: Deep convolutional neural networks are trained to segment 3D MRI (MPRAGE, DWI, FLAIR) and CT scans. A large database of in total 851 MRI/CT scans is used for neural network training. Training labels are obtained on the MPRAGE contrast and coregistered to the other imaging modalities. The segmentation quality is quantified using the Dice metric for a total of 27 anatomical structures. Dropout sampling is implemented to identify corrupted input scans or low-quality segmentations. Full segmentation of 3D volumes with more than 2 million voxels is obtained in less than 1s of processing time on a graphical processing unit. Results: The best average Dice score is found on T1T_1-weighted MPRAGE (85.3±4.6 %85.3\pm4.6\,\%). However, for FLAIR (80.0±7.1 %80.0\pm7.1\,\%), DWI (78.2±7.9 %78.2\pm7.9\,\%) and CT (79.1±7.9 %79.1\pm 7.9\,\%), good-quality segmentation is feasible for most anatomical structures. Corrupted input volumes or low-quality segmentations can be detected using dropout sampling. Conclusion: The flexibility and performance of deep convolutional neural networks enables the direct, real-time segmentation of FLAIR, DWI and CT scans without requiring T1T_1-weighted scans

    Anatomical Priors in Convolutional Networks for Unsupervised Biomedical Segmentation

    Full text link
    We consider the problem of segmenting a biomedical image into anatomical regions of interest. We specifically address the frequent scenario where we have no paired training data that contains images and their manual segmentations. Instead, we employ unpaired segmentation images to build an anatomical prior. Critically these segmentations can be derived from imaging data from a different dataset and imaging modality than the current task. We introduce a generative probabilistic model that employs the learned prior through a convolutional neural network to compute segmentations in an unsupervised setting. We conducted an empirical analysis of the proposed approach in the context of structural brain MRI segmentation, using a multi-study dataset of more than 14,000 scans. Our results show that an anatomical prior can enable fast unsupervised segmentation which is typically not possible using standard convolutional networks. The integration of anatomical priors can facilitate CNN-based anatomical segmentation in a range of novel clinical problems, where few or no annotations are available and thus standard networks are not trainable. The code is freely available at http://github.com/adalca/neuron.Comment: Presented at CVPR 2018. IEEE CVPR proceedings pp. 9290-929

    A Survey on Deep Learning in Medical Image Analysis

    Full text link
    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks and provide concise overviews of studies per application area. Open challenges and directions for future research are discussed.Comment: Revised survey includes expanded discussion section and reworked introductory section on common deep architectures. Added missed papers from before Feb 1st 201
    • …
    corecore