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Institute for Biomedical Engineering, ETH Zürich, Zurich, Switzerland

Anatomical segmentation of brain scans is highly relevant for diagnostics and

neuroradiology research. Conventionally, segmentation is performed on T1-weightedMRI

scans, due to the strong soft-tissue contrast. In this work, we report on a comparative

study of automated, learning-based brain segmentation on various other contrasts

of MRI and also computed tomography (CT) scans and investigate the anatomical

soft-tissue information contained in these imaging modalities. A large database of in

total 853 MRI/CT brain scans enables us to train convolutional neural networks (CNNs)

for segmentation. We benchmark the CNN performance on four different imaging

modalities and 27 anatomical substructures. For each modality we train a separate

CNN based on a common architecture. We find average Dice scores of 86.7 ± 4.1%

(T1-weighted MRI), 81.9± 6.7% (fluid-attenuated inversion recovery MRI), 80.8 ± 6.6%

(diffusion-weighted MRI) and 80.7 ± 8.2% (CT), respectively. The performance is

assessed relative to labels obtained using the widely-adopted FreeSurfer software

package. The segmentation pipeline uses dropout sampling to identify corrupted input

scans or low-quality segmentations. Full segmentation of 3D volumes with more than 2

million voxels requires <1 s of processing time on a graphical processing unit.

Keywords: brain imaging (CT and MRI), anatomical segmentation, multi-modal, convolutional neural networks,

dropout sampling

1. INTRODUCTION

Anatomical segmentation of magnetic resonance imaging (MRI) or computed tomography (CT)
scans is important for clinical diagnostics and scientific research. In particular, quantitative
volumetric measures of anatomical structures can be derived from accurate segmentation labels,
which can then be used to identify and monitor the progression of degenerative diseases, such as
Alzheimer’s disease, which is characterized by atrophy of the hippocampus and themedial temporal
lobe (1), Huntington disease, which results in athrophy of the striatum (2), and frontotemporal
lobar degeneration, which causes atrophy of the frontal and temporal lobes (3).

Manual brain segmentation, however, requires expert knowledge of radiologists, is extremely
tedious and time consuming, and is therefore limited to small datasets or simply not available.
An alternative approach is to automatize segmentation, which sparked the development of
various segmentation software packages. In brain imaging these include e.g., FreeSurfer (4),
BrainSuite (5), FSL (6), and ANTS (7). These tools apply a set of complex transformations and
thresholding procedures to the input volume (8) and are typically tailored toward T1-weighted
scans. As a consequence, direct segmentation of highly relevant MRI contrasts like FLAIR (fluid-
attenuated inversion recovery) or DWI (diffusion-weighted imaging) remain unsupported. The
same statement is true for CT volumes.
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Although the recent literature contains attempts to automatize
segmentation on FLAIR (9–11), DWI (12, 13), or CT volumes
(14, 15), a comparative study on the achievable segmentation
quality on the different imaging modalities is, to the best of our
knowledge, still outstanding. We attribute this in part to the
lack of structured databases that contain several paired imaging
modalities for the same patient. Further, the limited flexibility of
conventional segmentation tools, that require careful fine-tuning
of parameters, might be a second contributing factor.

In our work, we present a broad study on the segmentation
performance achievable on T1-weighted MRI, FLAIR, DWI, and
CT scans for a wide range of 27 anatomical classes. The analysis
is based on two large databases with in total 853 MRI/CT scans
and with several imaging modalities per patient. To implement a
flexible segmentation pipeline, which can be quickly adapted to
the different imaging modalities, we leverage the flexibility and
performance of convolutional neural networks (CNNs).

The recent success of CNNs in computer vision tasks
(16) provided a strong impetus for applying CNNs in brain
segmentation (17–21). CNNs can be rapidly adjusted to segment
on a given contrast, merely by adjusting the weights of the
neural network via training. This eliminates the need for
additional human fine-tuning and enables us to benchmark the
segmentation performance for a common network architecture
(see Figure 1). Further, CNN segmentation tools recently
exceeded conventional processing tools in performance (23, 24)

FIGURE 1 | Segmentation pipeline and neural network architecture: 3D MRI or

CT input volumes are coregistered to a reference volume with an affine

transformation. By proper resampling the pixel dimensions of the registered

volume are adjusted to the input shape of the neural network. In addition, the

pixel intensities are normalized to the interval I = [0, 100]. Neural networks are

based on the U-Net architecture (22) with 3D convolutions in the encoder and

decoder blocks. Each encoder and decoder block contains two consecutive

convolution, batch normalization and rectified linear activation operations. The

encoder and decoder blocks are followed by a dropout layer (see Table 1 and

text for details). The softmax output of the network is converted into a

segmentation map with 28 labels (including background). The segmentation

map is finally registered back to the input volume using the inverse affine

transformation of the initial coregistration.

and due to their efficient implementation on graphical processing
units (GPUs), achieve full segmentation of 3D volumes almost
in real-time. This is orders of magnitude faster than with
conventional methods (25).

2. METHODS

2.1. Segmentation Pipeline
In Figure 1, we show a schematic of our segmentation pipeline.
The input MRI/CT volume is first coregistered to a reference
volume with an affine transformation. The reference volume
was selected from our data set by optimizing signal-to-noise
ratio and by ensuring the absence of imaging artifacts. For
coregistration we use the registration tool elastix 4.8 (26). The
coregistered volume is resampled using spline interpolation
to match the input dimensions of the segmentation CNN.
The coregistration procedure increases the performance of the
segmentation network and further allows for arbitrarily shaped
input volumes due to resampling.

For segmentation we use a fully-convolutional neural network
(F-CNN) based on the U-Net architecture (22). A schematic of
the network architecture is displayed in Figure 1 and further
details on network training and parameters are discussed in
the subsequent sections. The network outputs a softmax quasi-
probability map Ps(x) for each segmentation class s ∈ S. Each
individual map has the same dimension as the input image.
The list of segmented classes S follows reference (23) and
comprises in total 27 structures. All segmented classes are listed
in Supplementary Table 1.

The softmax output P of the network is converted to a hard
segmentation mask S using the arg max function:

S(x) = arg max
s

Ps(x). (1)

Subsequently, the hard segmentation mask S is registered
back to the input volume. For this purpose the initial affine
coregistration transformation is inverted. After applying the
inverse transformation the mask is resampled using nearest-
neighbor sampling with the dimensions defined by the initial
input volume.

2.2. Neural Networks and Training
As mentioned before, we use a U-Net based network architecture
for segmentation. Following the findings in (27), we make only
minor modifications to the original implementation in (22, 28).
The network consists of an encoder-decoder structure with skip
connections (see Figure 1). In each encoder and decoder block
we apply two repetitions of convolutional layers, with kernel
size K = (3, 3, 3). Each convolutional layer is followed by
batch normalization and non-linear activation with rectified
linear units. The initial number of feature maps, after the first
convolutional layer, was fixed to F = 32 for all models and
after each encoder (decoder) block the number of feature maps
is doubled (halved).

We use dropout layers after the encoders and decoders
to prevent overfitting and to perform dropout sampling for
uncertainty quantification (see section 3.3). Max pooling after

Frontiers in Neurology | www.frontiersin.org 2 July 2021 | Volume 12 | Article 653375

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Zopes et al. Multi-Modal Segmentation Using Neural Networks

TABLE 1 | Parameters of training and test datasets and segmentation scores on all four imaging modalities using all available training samples.

Modality Ntrain Nval Ntest Volume shape Average DA Weighted DV C(DA,CV) ASSD [mm]

MPRAGE 465 51 6 [128, 128, 128] (86.7± 4.1)% (88.7± 0.8)% −0.91 (0.67± 0.23)

FLAIR 107 11 6 [128, 128, 128] (81.9± 6.7)% (83.7± 1.7)% −0.87 (0.82± 0.26)

DWI 142 15 6 [160, 160, 32] (80.8± 6.6)% (82.0± 5.9)% −0.87 (0.70± 0.27)

CT 34 5 5 [96, 128, 96] (80.7± 8.2)% (77.9± 5.2)% −0.97 (1.12± 0.40)

Each dataset contains Ntrain training volumes, Nval validation volumes and Ntest test samples. The voxel dimension of all volumes in the training and test dataset is fixed to the reported

volume shape. Average and weighted Dice scores are reported according to Equations (4) and (5), respectively. The Pearson correlation coefficient between average Dice score and the

uncertainty metric CV, obtained from dropout sampling, is listed for each imaging modality. The average symmetric surface distance (ASSD) in millimeters is reported as mean ± s.d.,

where the mean and standard deviation (s.d.) are computed over all samples from the test dataset and averaged over all anatomical structures.

each encoder block halves the feature map dimensions. Likewise,
upsampling with transpose convolutions after the decoder blocks
doubles the feature map dimensions and finally restores the
initial dimensions at the output.

The number of max pooling operations defines the depth D of
the U-Net architecture, which we fixed to D = 4 for all trained
models. The bottleneck block restricts information flow from
encoder to decoder and consists of two convolutional layers, each
followed by batch normalization and rectified linear activation.
In contrast to the encoder and decoder blocks, we do not use
dropout layers in the bottleneck block (29).

CNNs are implemented in tensorflow 2.2.0 (30) and training
is performed on a single GPU (Nvidia Titan RTX 24GB). Due to
memory constraints the input brain volumes are limited to about
2 million voxels, which we typically distribute evenly among the
imaging dimensions. The input dimensions for each network are
listed in Table 1. We train the network using the Adam optimizer
with initial learning rates of 0.001. During training, we apply a
set of random transformations, e.g., translations, rotations, or
cropping, to the volumes for data augmentation. As the loss
function, we use a combination of the Dice score, summed over
all class labels, and the categorical cross-entropy function:

L = −
∑

s∈S

(

2
∑

x Ps(x)Ts(x)
∑

x Ps(x)+ Ts(x)
−
∑

x

Ts(x) log(Ps(x))

)

. (2)

Here, Ps(x) is the softmax output of the network at voxel position
x and Ts(x) is the ground truth at the same position. We use the
categorical cross-entropy loss to alleviate convergence problems
when using solely the Dice loss (27). In principle, the influence
of cross-entropy and Dice loss can be additionally weighted, but
we found little influence on performance and therefore omit
additional weighting. We train the CNNs for up to 400 epochs
and abort the training process, if the validation loss does not
improve for 100 epochs. The performance of the models is
evaluated on separate test datasets.

2.3. MRI/CT Databases: Preprocessing and
Label Generation
For training of the CNNs we use two large database of
MRI and CT brain scans acquired on healthy patients. The
acquisition parameters are listed in Supplementary Table 3. The
first database contains 530 scans of healthy patients for which
MPRAGE, FLAIR and DWI scans are available. The MPRAGE
contrast was used to generate training labels using FreeSurfer

6.0 (4). The FreeSurfer labels were mapped to 27 segmentation
classes using the mapping strategy described in (25). The
resulting labels are in the following considered the ground truth
and subsequently coregistered to the corresponding FLAIR and
DWI scans.

After coregistration we manually checked for a proper
alignment of the segmentation masks to the FLAIR or DWI
volume. Out of the initial database with 530 cases, we select
124 (FLAIR) and 163 (DWI) volumes for training, validation
and testing. We thus removed a large fraction of cases from the
database. This is due to the limited fidelity of the coregistration
process and because we observe that a smaller, yet higher
quality database leads to better segmentation performance. For
the MPRAGE contrast no further coregistration was necessary
and we therefore manually selected a large fraction of 522 out
of 530 volumes, with high-quality FreeSurfer segmentations,
for training.

The second database contains 60 healthy patients for which
both MPRAGE and CT brain scans are available. Again we
coregister MPRAGE and CT volumes to each other and use
FreeSurfer on the MPRAGE scans to obtain training labels for
both imaging modalities. By manually checking the alignment
of the segmentation mask to the CT volume we selected 41
volumes for training, validation, and testing. Here, we also
manually corrected minor coregistration errors to keep most of
the available samples for training.

In order to evaluate the achievable segmentation performance
on the different imaging modalities, we perform two separate
studies, which are presented in the results section. In the first
study, we use all available samples on each modality for training,
validation and testing and in the second study we remove
scans from the larger databases to ensure equally-sized training
datasets. The number of resulting training, validation and test
samples for all modalities is listed in Tables 1, 2 for both
studies. In order to ensure comparability among modalities, we
decided to use the same patients/volumes for testing on the MRI
modalities. This constrained the size of the test dataset to the
intersection of the three MRI datasets, which includes in total six
patients/volumes.

2.4. Segmentation Performance Metrics
Weuse several metrics to quantify the segmentation performance
of our models. As an overlap-based metric, we use the Dice
score Ds, associated with the anatomical structure s ∈ S, as the
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TABLE 2 | Parameters of training and test datasets and segmentation scores on all four imaging modalities using approximately equally-sized training sets.

Modality Ntrain Nval Ntest Volume shape Average DA Weighted DV ASSD [mm]

MPRAGE 39 3 6 [128, 128, 128] (83.6± 7.2)% (86.6± 2.0)% (0.81± 0.31)

FLAIR 39 3 6 [128, 128, 128] (80.0± 8.8)% (82.6± 2.1)% (0.94± 0.38)

DWI 39 3 6 [160, 160, 32] (78.9± 7.8)% (80.7± 5.8)% (0.71± 0.28)

CTa 34 5 5 [96, 128, 96] (80.7± 8.2)% (77.9± 5.2)% (1.12± 0.40)

Each dataset contains Ntrain training volumes, Nval validation volumes, and Ntest test samples. The voxel dimension of all volumes in the training and test dataset is fixed to the reported

volume shape. Average and weighted Dice scores are reported according to Equations (4) and (5), respectively. The average symmetric surface distance (ASSD) in millimeters is reported

as mean±s.d., where the mean and standard deviation (s.d.) are computed over all samples from the test dataset and averaged over all anatomical structures. aSame model as reported

in Table 1.

performance metric:

Ds =
2
∑

x Ss(x)Ts(x)
∑

x Ss(x)+ Ts(x)
. (3)

Here, Ss(x) is the hard segmentation mask, given in Equation
(1), in one-hot encoding format. To compare the overall
performance, we introduce two additional metrics: The average
Dice score:

DA =
∑

s∈S

Ds, (4)

and a volume-weighted Dice score:

DV =
1

V

∑

s∈S

VsDs. (5)

Here, Vs is the volume of the structure s and V is the total
volume of all anatomical structures V =

∑

s∈S Vs. The
background label is not included in the average and the volume-
weighted Dice score and the volumes are computed from the
segmentation masks.

In addition to the overlap-based Dice similarity metric, we
also report the average symmetric surface distance (ASSD)
in millimeters:

ASSD(A,B) =
1

|A| + |B|

(

∑

a∈A

DB(a)+
∑

b∈B

DA(b)

)

. (6)

Here, A and B are the surfaces of ground-truth and predicted
anatomical features, respectively. DB(a) is the minimal distance
between surface B and a given surface voxel a ∈ A and DA(b) is
the minimal distance between surfaceA and a given surface voxel
b ∈ B. Further, |A| and |B| are the number of surface voxels.

We compute the ASSD, for each anatomical structure, using
the hard segmentation mask Ss(x) and the ground truth mask
Ts(x) with the python module Scipy (31). Apart from the
individual ASSDs for each anatomical structure, we also report
the average value of the ASSD to reduce the metric into a
single quantity.

2.5. Uncertainty Quantification
A common challenge for automatic segmentation tools is
uncertainty quantification or quality control of the segmentation

output. Low quality segmentation can occur, for example, due
to corrupted input volumes, acquisition artifacts, unrecognized
pathologies, or in general due to input volumes outside the
training distribution. The incorporation of a direct quality
control method, into the segmentation process, is therefore
highly desirable.

The softmax output of neural networks, however, does not
directly provide credible information on the certainty associated
with the assigned labels (32). Instead the authors of (32) proposed
to use the dropout layers of the network during prediction to
make the network output stochastic. By switching some nodes off
at random, we can generate a set ofN Monte Carlo (MC) samples
P1s , . . . , P

N
s from the network output. The distribution of the

MC samples can subsequently be used to gauge the certainty of
the assigned labels. Recently, this approach has been successfully
applied to brain segmentation on T1-weighted MRI scans in (29)
and we follow their methodology to equip our segmentation
pipeline with a credibility metric.

To integrate dropout sampling into our segmentation pipeline
we keep the dropout layers of the networks active after training.
We generate N = 15 MC segmentation samples using the, now
stochastic, output of the network. The dropout rate is here fixed
to r = 0.2 for all neural networks. The final segmentation map
is obtained by adding the softmax outputs of all MC samples and
then applying the argmax function:

S(x) = arg max
s

N
∑

i=1

Pis(x). (7)

To gauge the quality of the segmentation, we use the coefficient of
variation CVs of anatomical volumes over the MC samples. This
metric was introduced in (29) and reads:

CVs =
σs

µs
. (8)

Here, σs is the variance of the anatomical volumes between MC
samples and µs is the mean volume. To reduce the uncertainty
measure to a single quantity CV we additionally average the
coefficient of variation over all segmented structures:
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FIGURE 2 | Segmentation performance for different imaging modalities. Barplot of the Dice score for all 27 segmented anatomical structures and including

background. For each imaging modality a separate neural network was trained and evaluated. Error bars extend from the lower to upper quartile values of the data.

The Dice scores were computed from the test datasets for the corresponding imaging modality, which included 6 (MPRAGE), 6 (DWI), 6 (FLAIR), and 5 (CT) samples,

respectively. All parameters of the trained CNNs are summarized in Table 1.

CV =
∑

s∈S

CVs. (9)

3. RESULTS

3.1. Segmentation Performance
3.1.1. Modality-Dependent Segmentation

Performance Using All Training Samples
In Figure 2, we compare the performance of the segmentation
networks on the different imaging modalities for all 27 labeled
structures and the background. The reported Dice scores
represent the mean over all scans from the test set and the
error bars extend from the lower to the upper quartile of values.
We further collect all resulting metrics for the different imaging
modalities in Table 1. This table also includes the ASSD, averaged
over all anatomical structures.

We find that the best segmentation results are obtained for T1-
weighted, MPRAGE scans for almost all investigated anatomical
structures. This is also expressed by the best average Dice
score DA(MPRAGE) = (86.7 ± 4.1)% and the best volume-
weighted Dice score DV (MPRAGE) = (88.7 ± 0.8)%. Second-
best performance is achieved on the FLAIR contrast. Here, the
average Dice score is DA(FLAIR) = (81.9 ± 6.7)% and the
volume-weighted Dice score is DV (FLAIR) = (83.7 ± 1.7)%.
However, the difference to the performance on the DWI contrast
with DA(DWI) = (80.8± 6.6)% and DV (DWI) = (82.0± 5.9)%
is small.

For CT scans, we find that the segmentation performance is
strongly structure-dependent: The low signal contrast between
gray and white matter limits to some extent the accuracy of
the segmentation, especially of the gray matter regions. At the
same time, the segmentation of structures like e.g. ventricles,
the putamen or the hippocampus can be performed with high
accuracy. We find an average Dice score DA(CT) = (80.7 ±

8.2)% on the CT dataset and the volume-weighted Dice score

is DV (CT) = (77.9 ± 5.2)%. The significant reduction in the
volume-weighted score is due to the large volume fraction of gray
and white matter.

In terms of the surface distances, we find the lowest ASSD,
averaged over all anatomical structures, for the MPRAGE scans
with 0.67 ± 0.23 mm. The ASSD for the FLAIR scans is slightly
higher with 0.82 ± 0.26mm and exceeds the value for the DWI
scans with 0.70 ± 0.27 mm. Again, the lowest performance is
found for the CT scans with an ASSD of 1.12 ± 0.40 mm. In
general, both similarity and distance-based metrics lead to a
consistent quality assessment of the segmentation performance.

3.1.2. Modality-Dependent Segmentation

Performance Using Equally-Sized Training Sets
In the previous section, we analyzed the achievable segmentation
performance for the different imaging modalities by using all
available scans in our database. As a consequence, the number
of training samples Ntrain is significantly imbalanced same for
the different modalities (see Table 1). In order to compare
segmentation performance under equally-sized training data sets,
we retrained all MRI-related models with a common number of
samples (Ntrain = 39, Nval = 3, Ntest = 6). Consequently, for
the MPRAGE, FLAIR and DWI scans the number of training
samples is reduced by 426, 68, 103 samples, respectively. We use
scans from the same subjects out of the first database to make
the comparison as fair as possible. We compare the segmentation
performance to the existing CT model, which has a similar
number of training samples s(Ntrain = 34).

In Table 2, we list the resulting average and volume-weighted
Dice scores of the new models on the test sets. We observe, that
due to the reduction of training samples the model performance
is consistently reduced by approximately 1 − 2%. Nevertheless,
the ranking of model performance on different modalities
remains as in the previous section.
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3.1.3. Dependence of Segmentation Performance on

the Number of Training Samples
To further quantify the relation between model performance
and the number of available training samples, we trained in
total six networks, with varying numbers of training samples
Ntrain ∈ {4, 8, 20, 258, 465}, on the MPRAGE contrast. The
training samples were chosen randomly from the training
database. In Figure 3, we show the average Dice score on the test
set as a function of the number of training samples (Ntest = 6 for
all models). We find that the test score improves monotonically
with the number of available training samples and increases from
(79.0 ± 8.7%) for the smallest training dataset (Ntrain = 4) to
(86.7 ± 4.1%) for the largest training dataset (Ntrain = 489).
When training with Ntrain > 100, the gain in performance

FIGURE 3 | Model performance as function of the number of training samples.

Average test Dice score DA on the MPRAGE dataset (Ntest = 6) as function of

training samples Ntrain. All models were trained with the same hyperparameters

as summarized in Supplementary Table 3. The exact number of training

samples for the plotted data points is Ntrain ∈ {4, 8, 20, 258, 465}.

levels off significantly, but does not reach saturation. All models
were trained with identical hyperparameters, as described in the
Methods section.

3.2. Example Segmentations
In Figure 4, we show exemplary input slices, ground-truth labels
and the prediction of our segmentation networks for each of the
four imaging modalities in the axial view. For the MPRAGE,
DWI and FLAIR modalities the segmentation was performed
on the same patient and approximately the same slice location
is displayed. Exact overlapping of slices is not possible, because
the scans are not coregistered to each other. For the CT scan a
separate patient was selected from the test dataset of the second
database. All predictions are taken from models, which were
trained with all available training samples.

The example segmentation clearly show that the gray and
white matter boundaries are captured best on the T1-weighted
MPRAGE contrast. Here, even fine structures are properly
distinguished. On the DWI and FLAIR contrast gray and white
matter are segmented with lower level of detail and with lower
fidelity. Due to the significantly reduced signal contrast, the gray
and white matter segmentation on the CT scans displays a further
reduction in performance. In terms of anatomical structures
other than gray and white matter, the CT segmentation provides
excellent results. This is especially the case for the ventricles,
which are segmented more precisely than on the FLAIR and
DWI scans.

3.3. Uncertainty Quantification
In Figure 5, we show the relationship between uncertainty
metric CV and the average Dice score DA, derived from the

FIGURE 4 | Axial view at the level of the basal ganglia of brain segmentations on MPRAGE, FLAIR, DWI, and CT. The MRI were obtained from the same patient, the

CT image stems from a different patient. The thalamus, the nucleus lentiformis, the nucleus caudatus, and the cortical ribbon are well-demarcated on all contrast. The

segmentation of the cortical ribbon on CT and DWI, where the white matter–gray matter (WM-GM) contrast is low, is less detailed compared to MPRAGE, but still of

good quality.
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FIGURE 5 | Uncertainty estimation using dropout sampling. Scatter plot of the

average Dice score DA vs. the coefficient of variation CV. Each scatter point

corresponds to a input volume from the test dataset. Coefficients of variation

are obtained from N = 15 MC samples. The strong correlation between DA

and CV demonstrates that CV is a good measure of segmentation quality.

Pearson correlation coefficients, derived separately for each imaging modality,

are summarized in Table 1.

ground truth labels, for volumes from the test set. Here, we
combine the results for all imaging modalities. We clearly
observe a strong correlation between CVs and Dice scores,
which indicates that CV is in fact a good metric to gauge the
quality of the segmentation. The Pearson correlation coefficients
are CMPRAGE = −0.91, CFLAIR = −0.87, CDWI = −0.85,
and CCT = −0.98, for the corresponding imaging modalities.
As a consequence, we integrate the dropout sampling as an
optional processing step into our pipeline, which warns the user
if the coefficient of variation CV for the requested segmentation
exceeds 1.0% for MPRAGE and 2.5% for FLAIR, DWI and CT
contrasts, respectively.

4. DISCUSSION

In this work, we investigated the segmentation quality that
can be achieved using convolutional neural networks on
various MR/CT imaging modalities. In a first study with in
total 853 MR/CT scans, we find that T1-weighted images
provide the best segmentation results. This finding agrees
with our naive expectation, because the T1-weighted MPRAGE
scans provide the best gray-to-white matter contrast and
the ground truth labels were generated on this contrast.
Further, the largest dataset for training was available for
this contrast. Nevertheless, also FLAIR, DWI and even CT
scans can be segmented with excellent results when using
current state of the art deep neural networks. In case of
CT scans, we observe that segmentation quality is dependent
on the anatomical structure. While gray and white matter
segmentation is challenging, due to low signal contrast, the
performance on ventricles, putamen, pallidum, and brain
stem reaches or exceeds the performance achieved on the
MRI contrasts.

Because our database of available training samples in the
first study is imbalanced across the different modalities, we

performed a second study with approximately equally-sized
training sets to facilitate a fairer comparison. We found
that the general ranking of the achievable segmentation
performance remains the same, but that the difference
between the performances reduces. Additionally, we
investigated the scaling behavior of model performance
with the number of available training samples on the
MPRAGE contrast.

Finally, we implemented an uncertainty estimator, using
dropout sampling as introduced in (29), to gauge the quality
of the generated segmentation labels. We observe a strong
correlation between our uncertainty metric, the coefficient of
volume variationCV , and the quality of the segmentation derived
from the ground truth labels. This is the case for all imaging
modalities. Consequently, we incorporate the uncertainty metric
CV in our segmentation pipeline to identify faulty input volumes
or low-quality segmentation.

Based upon the presented results, several improvements
and further investigations that extend the applicability of our
segmentation pipeline can be envisioned: In our work, we
use input volumes with ∼2 million voxels, which is limited
by the available memory on our GPU. In the future, it
would be desirable to scale this number up by one order of
magnitude in order to directly process entire 3D brain scans
with an isotropic resolution of 1mm, which results in input
volumes with approximately 20 million voxels. This could be
achieved by a combination of more memory-efficient network
architectures, ensembles of smaller segmentation networks,
which only address a subset of labels, or via improvements in
GPU hardware.

In addition, our investigation on the achievable segmentation
performance on different imaging modalities is only the first
step toward reliable segmentation tools for DWI, FLAIR, and
CT volumes. As a next step, the segmentation performance
should also be quantified relative to manual label maps from
human experts. This could be done by performing the manual
annotation onMPRAGE scans and transferring the labels over to
the other modalities, as it was done in our study with FreeSurfer
labels. Alternatively, the annotations could also be directly added
to the DWI, FLAIR, and CT volumes. This was recently done
for CT scans (33) and would alleviate the systematic errors
introduced by non-perfect coregistration.

Based on performance, flexibility, and processing speed,
CNNs already now represent a valuable tool for automated
anatomical segmentation. In our view, however, the most
significant obstacle to the broad applicability of segmentation
CNNs is the limited generalizability to different acquisition
parameters and MRI/CT scanners. To train networks that
generalize very well, the generation and distribution of large
structured databases of MRI and CT scans, acquired on various
scanners and imaging contrasts, is highly desirable. In addition,
further research on the combination or improvement ofmethods,
such as lifelong learning (34) or advanced data augmentation (35)
is necessary. In terms of data augmentation, generative models,
such as generative adversarial networks (GANs) or variational
autoencoders (VAEs) could be used to generate large databases
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of synthetic MRI/CT scans. These databases could subsequently
be used to enhance training.
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