1,839 research outputs found

    Searching for Exoplanets Using Artificial Intelligence

    Full text link
    In the last decade, over a million stars were monitored to detect transiting planets. Manual interpretation of potential exoplanet candidates is labor intensive and subject to human error, the results of which are difficult to quantify. Here we present a new method of detecting exoplanet candidates in large planetary search projects which, unlike current methods uses a neural network. Neural networks, also called "deep learning" or "deep nets" are designed to give a computer perception into a specific problem by training it to recognize patterns. Unlike past transit detection algorithms deep nets learn to recognize planet features instead of relying on hand-coded metrics that humans perceive as the most representative. Our convolutional neural network is capable of detecting Earth-like exoplanets in noisy time-series data with a greater accuracy than a least-squares method. Deep nets are highly generalizable allowing data to be evaluated from different time series after interpolation without compromising performance. As validated by our deep net analysis of Kepler light curves, we detect periodic transits consistent with the true period without any model fitting. Our study indicates that machine learning will facilitate the characterization of exoplanets in future analysis of large astronomy data sets.Comment: Accepted, 16 Pages, 14 Figures, https://github.com/pearsonkyle/Exoplanet-Artificial-Intelligenc

    Generative and Discriminative Voxel Modeling with Convolutional Neural Networks

    Get PDF
    When working with three-dimensional data, choice of representation is key. We explore voxel-based models, and present evidence for the viability of voxellated representations in applications including shape modeling and object classification. Our key contributions are methods for training voxel-based variational autoencoders, a user interface for exploring the latent space learned by the autoencoder, and a deep convolutional neural network architecture for object classification. We address challenges unique to voxel-based representations, and empirically evaluate our models on the ModelNet benchmark, where we demonstrate a 51.5% relative improvement in the state of the art for object classification.Comment: 9 pages, 5 figures, 2 table

    Neural Network Parametrization of Deep-Inelastic Structure Functions

    Full text link
    We construct a parametrization of deep-inelastic structure functions which retains information on experimental errors and correlations, and which does not introduce any theoretical bias while interpolating between existing data points. We generate a Monte Carlo sample of pseudo-data configurations and we train an ensemble of neural networks on them. This effectively provides us with a probability measure in the space of structure functions, within the whole kinematic region where data are available. This measure can then be used to determine the value of the structure function, its error, point-to-point correlations and generally the value and uncertainty of any function of the structure function itself. We apply this technique to the determination of the structure function F_2 of the proton and deuteron, and a precision determination of the isotriplet combination F_2[p-d]. We discuss in detail these results, check their stability and accuracy, and make them available in various formats for applications.Comment: Latex, 43 pages, 22 figures. (v2) Final version, published in JHEP; Sect.5.2 and Fig.9 improved, a few typos corrected and other minor improvements. (v3) Some inconsequential typos in Tab.1 and Tab 5 corrected. Neural parametrization available at http://sophia.ecm.ub.es/f2neura

    Multi-Level Variational Autoencoder: Learning Disentangled Representations from Grouped Observations

    Full text link
    We would like to learn a representation of the data which decomposes an observation into factors of variation which we can independently control. Specifically, we want to use minimal supervision to learn a latent representation that reflects the semantics behind a specific grouping of the data, where within a group the samples share a common factor of variation. For example, consider a collection of face images grouped by identity. We wish to anchor the semantics of the grouping into a relevant and disentangled representation that we can easily exploit. However, existing deep probabilistic models often assume that the observations are independent and identically distributed. We present the Multi-Level Variational Autoencoder (ML-VAE), a new deep probabilistic model for learning a disentangled representation of a set of grouped observations. The ML-VAE separates the latent representation into semantically meaningful parts by working both at the group level and the observation level, while retaining efficient test-time inference. Quantitative and qualitative evaluations show that the ML-VAE model (i) learns a semantically meaningful disentanglement of grouped data, (ii) enables manipulation of the latent representation, and (iii) generalises to unseen groups
    • …
    corecore