4,258 research outputs found

    Study of manifold geometry using non-negative kernel graphs

    Get PDF
    Amb l'augment de la mida de les dades, els sistemes efectius de reducció de la dimensionalitat s'han tornat necessaris per una gran varietat de tasques. Un conjunt de dades es pot caracteritzar per les seves propietats geomètriques, entre les quals es troben la densitat dels punts que hi té, la seva curvatura, i la dimensionalitat. En aquest context, la dimensió intrínseca (ID) fa referència al nombre mínim de paràmetres necessaris per caracteritzar un conjunt de dades. S'han proposat moltes eines per a l'estimació de DI, i les que aconsegueixen els millors resultats estan molt enfocades a resoldre aquest objectiu. Aquests estimadors altament especialitzats no permeten la interpretació de la geometria local de les dades en altres aspectes a part de la ID. A més, els mètodes que si ho permeten no són capaços d'estimar la ID de manera fiable. Proposem l'ús de grafs de kernel no negatiu (NNK), una aproximació a la construcció de grafs que caracteritza la geometria local de les dades, per estudiar la dimensió i la forma de les superfícies mutlidimensionals de dades a múltiples escales. Proposem l'ús d'una sèrie de propietats relacionades amb els grafs NNK per obtenir informació sobre diversos conjunts de dades. En particular, observem el nombre de veïns en un graf NNK, la dimensió de les aproximacions per anàlisi de components principals tant per als grafs K-nearest neighbor (KNN) com NNK, el diàmetre dels polítops definits pels grafs NNK i els angles principals entre les aproximacions per anàlisi de components principals dels grafs NNK. A més, estudiem aquestes propietats a múltiples escales utilitzant un algorisme que fa que les dades siguin més disperses fusionant punts en funció d'una tria de similitud. Utilitzant una similitud basada en els conjunts de veïns NNK, podem submostrejar conjunts de dades preservant les propietats geomètriques del conjunt de dades inicial.Given the increasing amounts of data being measured and recorded, effective dimensionality reduction systems have become necessary for a wide variety of tasks. A dataset can be characterized by its geometrical properties, including its point density, curvature, and dimensionality. In this context, the intrinsic dimension (ID) refers to the minimum number of parameters required to characterize a dataset. Many tools have been proposed for the estimation of ID, and the ones that achieve the best results are narrowly focused on solving this goal. These highly specialized estimators don't allow for the interpretation of the local geometry of the data in other aspects besides ID. Moreover, methods that do make this possible are not able to estimate ID reliably. We propose the use of non-negative kernel (NNK) graphs, an approach to graph construction that characterizes the local geometry of the data, to study the dimension and shape of data manifolds at multiple scales. We propose the use of a series of properties related to NNK graphs to gain insight into manifold datasets. In particular, we look at the number of neighbors in an NNK graph, the dimension of the low-rank approximations for both K-nearest neighbor (KNN) and NNK graphs, the diameter of the polytopes defined by NNK graphs, and the principal angles between the low-rank approximations of NNK graphs. Moreover, we study these properties at multiple scales using an algorithm that makes data sparse by merging points based on a choice of similarity. By using similarity based on local NNK neighborhoods we can subsample datasets preserving the geometrical properties of the initial dataset

    Tensor Networks for Dimensionality Reduction and Large-Scale Optimizations. Part 2 Applications and Future Perspectives

    Full text link
    Part 2 of this monograph builds on the introduction to tensor networks and their operations presented in Part 1. It focuses on tensor network models for super-compressed higher-order representation of data/parameters and related cost functions, while providing an outline of their applications in machine learning and data analytics. A particular emphasis is on the tensor train (TT) and Hierarchical Tucker (HT) decompositions, and their physically meaningful interpretations which reflect the scalability of the tensor network approach. Through a graphical approach, we also elucidate how, by virtue of the underlying low-rank tensor approximations and sophisticated contractions of core tensors, tensor networks have the ability to perform distributed computations on otherwise prohibitively large volumes of data/parameters, thereby alleviating or even eliminating the curse of dimensionality. The usefulness of this concept is illustrated over a number of applied areas, including generalized regression and classification (support tensor machines, canonical correlation analysis, higher order partial least squares), generalized eigenvalue decomposition, Riemannian optimization, and in the optimization of deep neural networks. Part 1 and Part 2 of this work can be used either as stand-alone separate texts, or indeed as a conjoint comprehensive review of the exciting field of low-rank tensor networks and tensor decompositions.Comment: 232 page

    Tensor Networks for Dimensionality Reduction and Large-Scale Optimizations. Part 2 Applications and Future Perspectives

    Full text link
    Part 2 of this monograph builds on the introduction to tensor networks and their operations presented in Part 1. It focuses on tensor network models for super-compressed higher-order representation of data/parameters and related cost functions, while providing an outline of their applications in machine learning and data analytics. A particular emphasis is on the tensor train (TT) and Hierarchical Tucker (HT) decompositions, and their physically meaningful interpretations which reflect the scalability of the tensor network approach. Through a graphical approach, we also elucidate how, by virtue of the underlying low-rank tensor approximations and sophisticated contractions of core tensors, tensor networks have the ability to perform distributed computations on otherwise prohibitively large volumes of data/parameters, thereby alleviating or even eliminating the curse of dimensionality. The usefulness of this concept is illustrated over a number of applied areas, including generalized regression and classification (support tensor machines, canonical correlation analysis, higher order partial least squares), generalized eigenvalue decomposition, Riemannian optimization, and in the optimization of deep neural networks. Part 1 and Part 2 of this work can be used either as stand-alone separate texts, or indeed as a conjoint comprehensive review of the exciting field of low-rank tensor networks and tensor decompositions.Comment: 232 page

    Intrinsic Universal Measurements of Non-linear Embeddings

    Full text link
    A basic problem in machine learning is to find a mapping ff from a low dimensional latent space to a high dimensional observation space. Equipped with the representation power of non-linearity, a learner can easily find a mapping which perfectly fits all the observations. However such a mapping is often not considered as good as it is not simple enough and over-fits. How to define simplicity? This paper tries to make such a formal definition of the amount of information imposed by a non-linear mapping. This definition is based on information geometry and is independent of observations, nor specific parametrizations. We prove these basic properties and discuss relationships with parametric and non-parametric embeddings.Comment: work in progres
    • …
    corecore