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Abstract

ENG: Given the increasing amounts of data being measured and recorded, effective
dimensionality reduction systems have become necessary for a wide variety of tasks. A
dataset can be characterized by its geometrical properties, including its point density,
curvature, and dimensionality. In this context, the intrinsic dimension (ID) refers to the
minimum number of parameters required to characterize a dataset. Many tools have
been proposed for the estimation of ID, and the ones that achieve the best results are
narrowly focused on solving this goal. These highly specialized estimators don’t allow for
the interpretation of the local geometry of the data in other aspects besides ID. Moreover,
methods that do make this possible are not able to estimate ID reliably. We propose the
use of non-negative kernel (NNK) graphs, an approach to graph construction that charac-
terizes the local geometry of the data, to study the dimension and shape of data manifolds
at multiple scales. We propose the use of a series of properties related to NNK graphs to
gain insight into manifold datasets. In particular, we look at the number of neighbors in
an NNK graph, the dimension of the low-rank approximations for both K-nearest neigh-
bor (KNN) and NNK graphs, the diameter of the polytopes defined by NNK graphs, and
the principal angles between the low-rank approximations of NNK graphs. Moreover, we
study these properties at multiple scales using an algorithm that makes data sparse by
merging points based on a choice of similarity. By using similarity based on local NNK
neighborhoods we can subsample datasets preserving the geometrical properties of the
initial dataset.

CAT: Amb l’augment de la mida de les dades, els sistemes efectius de reducció de la
dimensionalitat s’han tornat necessaris per una gran varietat de tasques. Un conjunt de
dades es pot caracteritzar per les seves propietats geomètriques, entre les quals es troben
la densitat dels punts que hi té, la seva curvatura, i la dimensionalitat. En aquest con-
text, la dimensió intrínseca (ID) fa referència al nombre mínim de paràmetres necessaris
per caracteritzar un conjunt de dades. S’han proposat moltes eines per a l’estimació de
DI, i les que aconsegueixen els millors resultats estan molt enfocades a resoldre aquest
objectiu. Aquests estimadors altament especialitzats no permeten la interpretació de la
geometria local de les dades en altres aspectes a part de la ID. A més, els mètodes que
si ho permeten no són capaços d’estimar la ID de manera fiable. Proposem l’ús de grafs
de kernel no negatiu (NNK), una aproximació a la construcció de grafs que caracteritza
la geometria local de les dades, per estudiar la dimensió i la forma de les superfícies
mutlidimensionals de dades a múltiples escales. Proposem l’ús d’una sèrie de propietats
relacionades amb els grafs NNK per obtenir informació sobre diversos conjunts de dades.
En particular, observem el nombre de veïns en un graf NNK, la dimensió de les aproxima-
cions per anàlisi de components principals tant per als grafs K-nearest neighbor (KNN)
com NNK, el diàmetre dels polítops definits pels grafs NNK i els angles principals entre
les aproximacions per anàlisi de components principals dels grafs NNK. A més, estudiem
aquestes propietats a múltiples escales utilitzant un algorisme que fa que les dades siguin
més disperses fusionant punts en funció d’una tria de similitud. Utilitzant una similitud



basada en els conjunts de veïns NNK, podem submostrejar conjunts de dades preservant
les propietats geomètriques del conjunt de dades inicial.

ES: Con el aumento del tamaño de los datos, se han vuelto necesarios sistemas efec-
tivos de reducción de dimensionalidad, útiles para una amplia variedad de tareas. Un
conjunto de datos se puede caracterizar por sus propiedades geoemtricas, incluida su den-
sidad de puntos, curvatura y dimensionalidad. En este contexto, la dimensión intrínseca
(ID) se refiere al número mínimo de parámetros necesarios para caracterizar un conjunto
de datos. Se han propuesto muchas herramientas para la estimación de la ID, y las que
mejores resultados consiguen están estrechamente enfocadas a resolver este objetivo. Es-
tos estimadores altamente especializados no permiten la interpretación de la geometría
local de los datos en otros aspectos además de la ID. Asimismo, los métodos que hacen
esto posible no pueden estimar la ID de forma fiable. Proponemos el uso de grafos de
kernel no negativo (NNK), un enfoque para la construcción de grafos que caracteriza la
geometría local de los datos, para estudiar la dimensión y la forma de las variedades de
datos en múltiples escalas. Proponemos el uso de una serie de propiedades relacionadas
con los grafos NNK para obtener información sobre múltiples conjuntos de datos. En
particular, observamos el número de vecinos en un grafo NNK, la dimensión de las aprox-
imaciones de rango bajo para los grafos K-nearest neighbor (KNN) y NNK, el diámetro
de los politopos definidos por los grafos NNK y los ángulos principales entre las aprox-
imaciones de bajo rango de los grafos NNK. Además, estudiamos estas propiedades en
múltiples escalas usando un algoritmo que hace que los datos sean dispersos al fusionar
puntos basados en una elección de similitud. Al usar una similitud basada en vecindar-
ios NNK locales, podemos submuestrear conjuntos de datos conservando las propiedades
geométricas del conjunto de datos inicial.
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Chapter 1

Introduction

1.1 Motivation

Effective dimensionality reduction systems have become necessary for a wide variety of
fields due to the increasing breadth of data collected thanks to the technological ad-
vances in the past years. The manifold hypothesis is defined as the hypothesis that
high-dimensional datasets from real-world data tend to lie in low-dimensional manifolds
contained in that high-dimensional space [23] [15]. This has led to the definition of in-
trinsic dimension (ID), which refers to the minimum number of parameters required to
characterize a dataset while maintaining its structure. While multiple approaches have
been proposed that achieve very good ID estimates on most datasets, these do not allow
for any further interpretation of the local geometry of the data. Furthermore, those that
do permit this to some degree, don’t achieve good ID estimates.

Knowledge about ID is relevant for a wide range of contexts. For instance, many
dimensionality reduction algorithms [60] [59] [56] require ID as an input parameter.
Moreover, when using an autoencoder neural network architecture to learn a compressed
representation of the data, the ID can be a good assessment of the size of the smallest
hidden layer. Also, measuring the ID of features at different layers helps to understand
how neural networks learn to transform data effectively [2], even when there is significant
overparametrization. In addition, ID has also been shown to be a suitable descriptor to
distinguish between different kinds of image structures [36]. Besides ID, other proper-
ties of a dataset can be of interest in certain tasks, such as the density of points in the
manifold, or the manifold’s curvature.

We, therefore, seek to develop an accurate estimator of ID for most datasets, that
also makes it possible to gain insight into other geometrical properties of the data.

1.2 Project objectives

We tackle the problems described above by studying the local geometry of datasets using
non-negative kernel (NNK) regression graph [54] properties. NNK is an approach to
graph construction that has a geometric interpretation and is robust to the choice of
the sparsity parameter. An NNK graph is built from an initial neighborhood such as a
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Introduction

KNN graph. Similarly to the orthogonalization step of orthogonal matching pursuits [55],
NNK eliminates candidates that are geometrically redundant with candidates that have
already been selected. The number of NNK neighbors characterizes the local geometry
of the data.

We can derive a set of tools that can help in the understanding of manifold geometry
using the properties of NNK neighborhood graphs. We first tackle the problem of ID
estimation. Furthermore, while there is extensive literature on estimating the ID of
manifolds, we have found little research on understanding their geometrical properties.
We compare NNK neighborhoods at different scales to gain insight into the linearity or
non-linearity of manifolds.

1.3 Organisation of this report
In Chapter 2, some of the basic concepts are introduced, such that all the information that
is required to get the context and framework required to understand the work performed.
In Chapter 3, the state-of-the-art and the most relevant work on the topic of research are
presented. In Chapter 4 the set of tools we propose to tackle the problem we described is
presented, together with two kinds of experiments: those that deepen our understanding
of these tools, and those that use the methodology presented to explore the properties
of manifold datasets. Finally, in Chapter 5, we summarize the main ideas presented and
discuss future possible lines of work related to them.
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Chapter 2

Background

2.1 Intrinsic Dimension

The ID provides critical information for understanding the structure of a dataset. ID was
initially referred to as the minimum number of parameters that are required to represent
the data while maintaining its structure, such that information loss is minimized, as
defined by Bennett [5]. This concept has later been employed by Bishop in the context of
neural networks [7], where it is stated that “a set in D dimensions is said to have an ID
equal to d if the data lies entirely within a d−dimensional subspace of RD”. Furthermore,
some publications [46] [47] attempt to give a more precise definition to the concept of
ID, and a recent literature review on the topic [14] concludes that “the prevailing ID
definition views a point set as a sample set uniformly drawn from an unknown smooth
(or locally smooth) manifold structure, eventually embedded in a higher-dimensional
space through a nonlinear smooth mapping; in this case, the ID to be estimated is the
manifold’s topological dimension.”

While there is consensus in the theoretical definition of ID, in practice some difficulties
arise in its estimation when only a finite set of points is available. In Fig. 2.1 we show
an example of how scale and point density affect the apparent ID. Another important
consideration is the curse of dimensionality [4], which refers to the phenomena that arise
when analyzing high-dimensional data. Mainly, as the dimension increases the volume
of the space increases so rapidly that the available data becomes sparse, which causes
most methods to underestimate the ID. Finally, some estimators become impractical
as the number of points and their dimension increases due to their high computational
complexity. This has led to the development of estimators of ID that take a wide range
of approaches, most compromising on computational cost and interpretability. These
approaches are discussed further in Section 3.1.

2.2 Graph Learning

The relations between the points in a dataset can be useful information in a wide variety of
applications. A popular approach to convey this information is using a graph with edges
based on a pairwise similarity metric. This metric can be as simple as the Euclidean
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Figure 2.1. (a) At a very small scale the data looks zero-dimensional. (b) At a scale
comparable to noise level, ID looks larger and in this case close to the embedding dimension.
(c) At an intermediate resolution, the correct estimate of ID can be obtained. (d) At too
large a scale the global dimension is obtained. Figure extracted from [14].

distance ∥xi − xj∥, or much more complex, depending on the nature of the data.
Computing the chosen similarity metric on all pairs of points in a dataset would result

in a fully connected weighted graph. There are many situations in which a much sparser
graph is preferred, such that only the similarity between points that are “close enough”
is preserved. We now discuss some approaches to achieving this.

2.2.1 Similarity-based approaches

Methods in this class sparsify the initial graph while seeking to maintain its properties.
Weighted K-Nearest Neighbors (KNN) [21] and ε-neighborhood graphs (ε-graphs) [17] are
among the most popular graph construction methods. These methods prune the initial
graph while maintaining the weights of the edges that remain. Other approaches [30] [31]
have been proposed in which the edge weights of the KNN/ε-graphs are optimized while
preserving their connectivity (i.e., not removing any edges).

These approaches to the optimization of the similarity graph don’t prune edges based
on the geometry of the data, but rather on some threshold. A trade-off between bias and
variance arises from this, and usually, the threshold parameters are chosen based on a
heuristic approach or selected through cross-validation to optimize the performance on
some task.

2.2.2 Locality inducing approaches

This family of methods starts from an initial set of neighbors, which can be derived from
KNN/ε-graphs, and compute new edge weights that better reflect the data locality. An
example of this is the local linear embedding (LLE) [51] algorithm, which solves:

min
θ:θ≥0

∥xi − XSθ∥2
2 , (2.1)
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2.2 – Graph Learning

where XS corresponds to the matrix containing the features of the nearest neighbors S of
xi. The solution θ corresponds to the weights of the edges connecting xi to its neighbors.

2.2.3 Non-Negative Kernel (NNK) regression graphs

A positive definite kernel k(xi, xj) corresponds to a transformation of points in Rd to
points in a Hilbert space H, such that similarities can be interpreted as dot products
in this transformed space (generally referred to as Kernel Trick). This way, k(xi, xj) =
ϕT

i ϕj , where ϕ : Rd → H and ϕi represents the transformed observation xi. The radial
basis function (RBF) Gaussian kernel is an example of such a kernel, where σ refers to
the bandwidth of the Gaussian curve over which the pairwise distances are weighted:

k(xi, xj) = exp
(︄

−||xi − xj ||2

2σ2

)︄
. (2.2)

A KNN (or ε-graph) can be constructed by choosing the K largest inner products
ϕT

i ϕj (or those above a threshold ε). Then, a KNN (or ε-graph) corresponds to a sparse
approximation of ϕi achieved by setting to zero the contributions of ϕj based on some
threshold on ϕT

i ϕj .
Starting from an initial KNN/ε-graph neighborhood S, NNK [54] selects an improved

basis by solving for each node:

θS = min
θ:θ≥0

∥ϕi − ΦSθ∥2
2 , (2.3)

where a linear combination, with weights given by θ, of the transformed neighbors ΦS is
used to approximate a vector ϕi in representation space. For similarities defined as inner
products, the Kernel Trick can be used to rewrite (2.3) as:

θS = argmin
θ:θ≥0

1
2θT KS,Sθ − KT

S,iθ, (2.4)

where Ki,j = k (xi, xj), and the i-th row of the adjacency matrix W is given by Wi,S =
θS and Wi,Sc = 0.

NNK performs a selection similar to the orthogonal step in orthogonal matching
pursuits [55] which makes NNK more robust to the choice of sparsity parameters in
the initialization (i.e., K in KNN). Additionally, the resulting graph has a geometric
interpretation [54] for the case of the Gaussian kernel 2.2, such that each edge in an NNK
graph corresponds to a hyperplane with normal in the edge direction, as illustrated in
Fig. 2.2. Points beyond each hyperplane are eliminated (edge weight zero).

NNK has been shown to deliver good results for semi-supervised learning, image
representation [53], and label interpolation and generalization estimation in neural net-
works [52]. Furthermore, NNK has also been used to understand CNN channel redun-
dancy [9] and to propose an early stopping criterion [10]. Moreover, graph properties
have been also proposed for the understanding and interpretation of deep neural network
performance [26], latent space geometry [37,38], improve model robustness [39]. The spe-
cific contribution of this work is the exploration of the effectiveness of the NNK algorithm
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Background

Figure 2.2. Local geometry (denoted in red) of the NNK graph construction for a Gaussian
kernel. To the left, we show the hyperplane associated with an edge, beyond which points
are ignored for the construction of the NNK graph. To the right, we show the convex
polytope associated with a node that results from the hyperplanes associated with its
NNK neighbors. Figure extracted from [54].

to get insight into the local geometry of the data, which can be useful in understanding
the properties and structure of the whole dataset.
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Chapter 3

Related Work

3.1 Intrinsic Dimension Estimation

ID estimators are designed under the assumption that every given dataset has been drawn
from a smooth or locally smooth manifold which is contained in a high-dimensional space
following a non-linear map. Additionally, each sample in the dataset is assumed to have
been drawn independently and following a uniform distribution.

In this section, we introduce a taxonomy for ID estimators and discuss in more detail
some examples that are relevant to our work. Following the taxonomy presented in
a 2015 literature review and benchmark proposal [14], estimators can be classified as
projective, graph-based, or topological. This taxonomy is different from others that have
been proposed before [13], in that previous work classified methods as global or local.
Global methods use all of the data and in local methods neighborhoods are analyzed
separately. It is from the combination of local neighborhood information that an estimate
for ID is obtained. This local approach is the most widely used in recent work, while the
global approach has been abandoned.

In Projective Estimators, ID is quantified as the number of linearly independent vec-
tors in the span of the projection subspace. These methods apply variations of Multi-
Dimensional Scaling (the pairwise distances among data are preserved as much as possi-
ble), and principal component analysis (PCA) (finds projection subspace that minimized
the projection error).

[24] [12] are two PCA-based approaches (i.e., projective estimators) in which intrinsic
dimension is estimated first by partitioning the data into small neighborhoods and then
applying PCA within each neighborhood, such that the ID is the number of eigenvalues
that are larger than some threshold. These methods are shown [57] [33] [40] to depend
heavily on the definition of the local neighborhoods as well as the threshold selection.

Later work [42] [32] builds on the technique of applying PCA locally by taking a
multiscale approach in the neighborhood graph construction. The appropriate range of
values for the graph constructions parameters, i.e., K for K-nearest neighbor (KNN) and
ε for ε-neighborhood graphs (ε-graphs), such that the neighborhood is large enough that
there are at least K ≥ ID neighbors, small enough that the manifold is linear and large
enough so that the effects of noise are negligible.
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Related Work

While these multiscale approaches show promising results, the appropriate ranges for
the neighborhood graph construction hyperparameters are highly sensitive to the density
and distribution of points in the manifold [14]. Our proposed approach is robust to the
choice of the neighborhood graph construction parameters and the resulting neighbor-
hoods have a geometrical interpretation.

Graph-based Estimators construct a variety of graph structures based on the possible
relationships between the sample points in the dataset. Insight into ID based on those
graph structures is gained by leveraging knowledge in the field of graph theory.

In a notable publication [11] that follows this approach, the authors present an es-
timation method based on computing three statistics from graphs constructed from the
data that give insight into its ID. From the K-Nearest Neighbor graph, the reach statistic
S1 is defined. A Geodesic Minimum-Spanning Tree (GMST, i.e., MST based on geodesic
distances) is used to define the average degree S2. Finally, from the K-Sphere of Influence
Graph (kSIG, i.e., vertices are connected if their nearest-neighbor hyperspheres intersect.)
the average number of neighbors shared by a given pair of points S3 is obtained. They
approximate each statistic by a Gaussian density function. Then, assuming equal prob-
ability for all possible intrinsic dimension values dj , a posterior probability P (dj |Sn) is
defined and used to arrive at an expected value of d.

Finally, in Topological Approaches for ID estimation, a locally smooth manifold em-
bedded in a higher dimensional space is considered, such that we have a dataset with
i.i.d. points sampled from the manifold through a smooth probability density function.
Then, the topological dimension is the ID to be estimated. The most relevant type of
topological estimators are Nearest Neighbor-Based Estimators, in which the ID of the
data is described as a function of data neighborhood distributions.

In [48] a mathematical framework is presented such that the ID can be estimated from
the distribution of the K nearest neighbors, upon which many other relevant topological
nearest neighbor-based estimators are built. The authors acknowledge the limitations
posed by the choice of a suitable value for K.

A very popular estimator in the literature is MLE [40], in which the authors assume
the neighbors of each sample in the dataset to be events in a Poisson process. Then, [48]
is used as an expression for the rate of the associated Poisson distribution, such that for
each point, a maximum likelihood estimator is derived for d. These d values are then
aggregated in some fashion to get a global estimate of the ID.

Two recent estimators that also rely on [48] are DANCO [16] and TwoNN [22]. In
the former, statistics estimated on the data points with those estimated on uniformly
drawn synthetic datasets of known ID are compared. The algorithm finds the d that
minimizes the sum of the KL divergence applied to the distribution of the normalized
nearest neighbor distances, and the distribution of pairwise angles. In the latter, ID is
estimated from the distance between the first nearest neighbor B and the second nearest
neighbor C for each point A in the sample. The d is estimated from the probability that
B falls inside a hypersphere centered in A and with radius r < d(A, C).
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3.2 – Intrinsic Dimension in Deep Learning

3.2 Intrinsic Dimension in Deep Learning
Deep Learning models have gotten progressively bigger, as have the datasets used to
train these models. ID provides important insights into understanding the structure of
these data, which ranges from work on adversarial robustness, neural network feature
representations, assessing the difficulty of image datasets, objective function landscape
analysis, and further understanding Self-Supervised Learning (SSL) models.

Some work has been done on improving our knowledge of adversarial attacks on Deep
Neural Networks (DNNs) by using Local ID [3] as a measure of adversarial defence [44].
This approach to discriminating adversarial examples by analyzing the data structure
through ID shows promising results. The same authors show an improvement in the
generalization of models trained with noisy labels [45] by adapting the loss function
according to the dimensionality of the deep representation subspaces during training.
This is accomplished by leveraging the difference in learning in terms of representation
dimensionality when using clean labels vs noisy labels.

In [45] as well as in [2] [50] it has been shown that the geometrical properties of the
data representations in each layer of a DNN can be understood through their local intrin-
sic dimensionality. In the first layers of a neural network, ID increases, which relates to
the early layers performing low-level pre-processing and feature extraction. These repre-
sentations are task-independent and arise from features independent of the task. Later in
the network, there is a dimensionality compression, a drop in ID, which is caused by the
combination of multiple features in ways that make them relevant to the task. Further-
more, the ability of the model to compress the dimensionality of data representations in
these last layers is indicative of the model’s generalization [2]. Additionally, the analysis
in [50] indicates that the representation manifolds learned by deep models usually are
low-dimensional. This is said to be encouraged by the optimization process.

ID has also been used to estimate the dimension of popular natural image datasets,
which are believed to lie in a low-dimensional manifold [23] [15], and assess its relation
to deep learning models. In [49], the authors use a variant of MLE [40] to show that
natural image datasets do indeed have a low ID relative to the high dimensional pixel
representation. Moreover, DNNs are shown to generalize better on lower-dimensional
datasets.

ID has also been used to better understand objective function landscapes [41]. In this
context, the ID of an objective function is defined as “the lowest dimensional subspace
in which one can optimize the original objective function to within a certain level of
approximation error.” In other words, it is the smallest number of parameters required
to find a satisfactory solution to the optimization problem. With this measure of ID,
[41] quantitatively compares the difficulty of some supervised and reinforcement learning
problems. As a byproduct of the minimization of the size of the objective function
landscape, this approach to ID also allows for the compression of networks.

The above definition of ID [41] has been used to study the effectiveness of language
model fine-tuning [1]. In this work, the authors show that ID on common NLP tasks is
significantly lower on models pre-trained rather than on fully trained models. It is inter-
preted that during fine-tuning the model encodes the new task in terms of the pre-trained
representations and in the process their minimal description length [28] is compressed.
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Chapter 4

Methodology and Experiments

In this chapter, we describe our main contributions. In Section 4.1 we first derive an
estimator of ID from NNK graphs and compare it to other state-of-the-art estimators. In
Section 4.2 we describe other properties of NNK graphs that can be useful in the study
of manifolds. Finally, in Section 4.3 we study the geometry of a wide range of manifolds
by comparing the properties of NNK graphs at multiple scales. The code used for the
experiments run in this section can be found in the following Github repository.

4.1 ID Estimation using NNK Graphs

4.1.1 Deriving ID from an NNK graph

For the Gaussian kernel, a hyperplane is associated with each edge in an NNK graph,
with normal in the edge direction. Points beyond it are ignored for the construction of
the graph. As a consequence, the local geometry of the NNK graph for a given node is
a convex polytope around the node, where points outside the polytope are disconnected.
For a sufficiently large number of initial neighbors, the local connectivity of an NNK
graph will be a function of the local dimension of the manifold (see Fig. 4.1).

The number of neighbors in an NNK graph can be insightful, but it can vary locally
based on (i) the distribution of the points sampled from a manifold and (ii) the location
of the points relative to the geometry of the manifold (e.g., on the edges vs. the middle of
the manifold). Besides, we can obtain information on the local geometry of the manifold
by analyzing other properties of an NNK graph. Moreover, as we discuss in Section 4.2,
we can also gain insight by comparing the properties of NNK graphs from different points
in the same manifold.

As we discussed earlier in the literature review, an existing approach to estimate the ID
of a manifold consists of performing a local parametrization by finding the local tangent
plane in the neighborhood of a point and aggregating the estimated ID for each data
neighborhood analyzed [24] [12] [42] [32]. In the case of noiseless samples from a linear
subspace, PCA returns the local linear tangent space to the manifold. When dealing with
noisy data, the scale at which we apply PCA, i.e., the points that fall into the window of
observation, (see Fig. 2.1) must be small enough that we can ensure manifold linearity,
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Methodology and Experiments

Figure 4.1. 1D manifold on a 2D space. A point’s (red) neighbor (black) is selected in
each meaningful direction, beyond which no other points (grey) are considered.

but large enough such that the manifold structure is discernible from noise.
Under the assumption that we are dealing with noiseless data, a low-rank approxima-

tion can be obtained from the NNK neighborhood vector subspace, such that the number
of relevant principal components would be a robust estimate of the ID of the manifold,
as depicted in Fig. 4.2. The concept of multi-scale analysis is addressed later on in the
report.

Figure 4.2. For a set of samples uniformly drawn from a locally smooth manifold, we can
perform analyze a graph neighborhood, in this case, an NNK neighborhood, to obtain the
plane tangent to the embedded manifold.

This way, assuming that a given dataset has been drawn from a smooth or locally
smooth manifold which is contained in a high-dimensional space following a non-linear
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4.1 – ID Estimation using NNK Graphs

map and that each sample in the dataset has been drawn independently following a uni-
form distribution, we can estimate the global ID of a manifold by aggregating the local
values of ID estimated from the NNK graph low-rank approximation dimensions, as de-
scribed in Algorithm 1. The principal components chosen for the low-rank approximation
are those with an eigenvalue above one-tenth of the largest eigenvalue [57]. From each
low-rank approximation, we obtain a local estimate of ID. A global estimate of ID can
be found by aggregating the local estimates. Assuming that there are more points in the
middle of a manifold than on its edges, a global estimate of ID based on the median or
the mode will result in a better approximation than the average of the local estimates.

Algorithm 1 NNK ID Estimation
Input:

X: features
1: for each node i = 1,2, ..., N do
2: Si = {K nearest neighbors of node i}
3: KS,S = RBF(σ, XS , XS), Ki,S = RBF(σ, Xi, XS)
4: Wi,S = NNK(KS,S , Ki,S), Wi,Sc = 0
5: S′

i = {Si : Wi,S > 0}
6: FI = PCA(XS − Xi)
7: Di = {count λj : λj ≥ 0,1 · λmax}
8: end for
9: D̂ = D

Output: Intrinsic dimension estimate D̂

The effectiveness of the NNK selection is governed by the sparsity parameter K used
in the KNN search before the NNK step, and the bandwidth parameter σ since we are
performing NNK on a Gaussian kernel similarity matrix. In the following sections, we
discuss the impact of both parameters on the NNK graphs constructed from the data
and their effect on the estimation of ID.

4.1.2 Adequate choice of K

In this section, we discuss how the size of the initial KNN neighborhood relates to the
NNK graph, to find a meaningful range of values of K in terms of the local geometry of
the data. By definition, NNK is robust to the choice of the sparsity parameter K used
to build the initial graph. This is because the number of neighbors that are assigned
non-zero weights is not predetermined and instead depends on the geometry of a point’s
neighborhood. Experimental results [54] suggest that the edge density of an NNK graph
tends to saturate to a constant as we increase K. By requiring only neighbors that help
in the representation of a node in similarity space, NNK graphs enforce sparsity.

It is also the case that K has to be large enough that a point can be reconstructed
from its initial neighborhood. We previously argued that the number of points in an
NNK neighborhood will be a function of the local dimension of the manifold. The rate at
which the connectivity changes in relation to the ID of the data is unclear, and we look
further into this in the following experiment.
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Experiment

To better understand the relationship between ID and the size of an NNK neighborhood,
we run the NNK graph construction algorithm on a handful of datasets with known ID.
We perform this experiment on the synthetic datasets used in the ID estimator benchmark
proposal [14]. In particular, we use a tool proposed by [27], which allows us to generate
synthetic datasets by uniformly drawing samples from 13 manifolds of known ID linearly
or nonlinearly embedded in higher dimensional spaces. The datasets suggested by the
benchmark, generated using the aforementioned tool, are described in Table 4.1.

Dataset name Description N d D
M1 10-dimensional sphere linearly embedded 2500 10 11
M2 Affine space 2500 3 5
M3 Concentrated figure, mistakable with a 3-dimensional one 2500 4 6
M4 Nonlinear manifold 2500 4 8
M5 2-dimensional helix 2500 2 3
M6 Nonlinear manifold 2500 6 36
M7 Swiss-Roll 2500 2 3
M9 Affine space 2500 20 20

M10a 10-dimensional hypercube 2500 10 11
M10b 17-dimensional hypercube 2500 17 18
M10c 24-dimensional hypercube 2500 24 25
M10d 70-dimensional hypercube 2500 70 71
M11 Möebius band 10-times twisted 2500 2 3
M12 Isotropic multivariate Gaussian 2500 20 20
M13 1-dimensional helix curve 2500 1 13

Table 4.1. Synthetic datasets suggested by the benchmark [14]. N is the dataset number
of samples, d is the ID, and D is the embedding space dimension.

The data consists of 10 datasets with an ID between 1 and 10, and 5 datasets with
an ID above 10. For this experiment, we have chosen to use the datasets with an ID
less than or equal to 10. The NNK graphs have been constructed with an initial KNN
neighborhood of size K = 100. This would be large enough, except for the largest ID
datasets, for NNK to find enough relevant neighbors if two were needed in each dimension.
The bandwidth parameter σ in the Gaussian kernel step in NNK has been defined as one-
third of the average 15th neighbor distance. While no heuristic choice of σ can ensure good
conditioning of the similarity matrix, as shown in Section 4.1.3, defining the bandwidth
based on distances in the neighborhood tends to work well in the NNK optimization.

Fig. 4.3 shows the average number of NNK neighbors for each dataset as a function
of their ID, together with the 2n curve. We can observe that indeed the number of
neighbors in an NNK neighborhood grows exponentially with the ID of the underlying
manifold. Moreover, the number of NNK neighbors is independent of the embedding
space dimension, and it is the ID of the underlying manifold that dictates the size of
the neighborhood. Such is the case for the M6 and M13, which are 6 and 1-dimensional
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Figure 4.3. Scatterplot of the average number of NNK neighbors on 10 datasets
consisting of points sampled from manifolds of known ID embedded in higher di-
mensional spaces. We also show a line with the 2n curve. It can be observed that
the number of NNK neighbors selected from an initial KNN graph of size K = 100
grows exponentially with a manifold’s ID.

manifolds embedded in a 36 and 13-dimensional space respectively.
On the one hand, this finding gives a positive outlook on the geometrical properties

of NNK graphs. On the other hand, it can be seen that, as with most ID estimators,
NNK is affected by the curse of dimensionality, in that the number of points necessary to
capture the meaningful directions in an NNK neighborhood of high-dimensional manifolds
grows exponentially with the manifold’s ID. We expect this finding to be reflected in the
estimates performed on the benchmark dataset (Table 4.1) in Section 4.1.4.

4.1.3 Adequate choice of σ

The bandwidth parameter σ provides flexibility to adapt to the local data distribution.
There is no straightforward way to define the bandwidth parameter such that its value
fits the local data distribution. The most typical approach is to define σ based on some
heuristic on the distances in the dataset.

We compute the kernel matrices KS,S and Ki,S for the neighborhood of each point.
For this process, we can use a global approach to defining σglobal, which would be the
same for all the neighborhoods, or we can instead define a local σlocal based on the local
data distribution, such that the bandwidth is unique to each neighborhood. Furthermore,
a combination of the two can also be possible. The differences between each approach
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will become more relevant in Section 4.3.2. In the context of ID estimation, since we are
working under the assumption that points in a dataset are drawn from a locally smooth
manifold following a uniform distribution, there will not be a significant difference between
these approaches given that data neighborhoods will be identically distributed.

Experiment

We can assess the quality of σ in relation to the data by observing (i) the coherence
µ = max

j∈S
ki,j of ΦS , where the maximum coherence is that of the neighbor that is most

similar to a given node and (ii) the conditioning of the matrix KS,S , for each node. The
conditioning is defined by the reciprocal conditioning number K = λmin

λmax
, where λmin and

λmax correspond to the smallest and largest eigenvalues of the matrix KS,S .
A choice of σ can be defined as appropriate when it results in a coherence that is

neither too close to 0 nor 1, while at the same time maintaining the conditioning of the
matrix used in the optimization. On a well-conditioned matrix, we would find K = 1,
and conditioning gets worse as K decreases.

Figure 4.4. Average µ and K for different values of σ2 on four datasets generated by
uniformly drawing samples from manifolds (see Table 4.1 of known ID embedded in higher
dimensional spaces. The datasets shown are M2 (d = 3 and D = 5), M1 (d = 10 and
D = 11), M6 (d = 6 and D = 36), and M10d (d = 70 and D = 71).

In this experiment, we explore the coherence µ and the reciprocal conditioning number
K of the KS,S matrices for different values of sigma on 4 of the synthetic manifolds
described in Table 4.1, chosen so that we can observe the behavior of these metrics
on a wide range of dimensions. We show these measures first using a fixed range of

20



4.1 – ID Estimation using NNK Graphs

exponentially increasing values of sigma starting on σ2 = 10−5 and reaching σ2 = 104.
We later experiment on a range of bandwidth values defined from data, such that σ equals
1
3rd of the ith neighbor distance. This way, in the x-axis, the number of the neighbor the
distance to which is used to define σ. Using this heuristic definition for σ we locate the
ith neighbor 3 standard deviations away from the center node.

Figure 4.4 shows the trade-off between coherence and conditioning. Note that the
range of values for σ at which we have a good balance between both metrics are different
for each manifold since they are a function of the distances in the local neighborhoods.
It can be seen that when σ is close to zero, all pairwise distances between nodes are
also near zero, leading to a kernel similarity matrix KS,S close to the identity matrix.
In contrast, high values of σ correspond to a matrix with all similarities approaching 1,
resulting in poor conditioning (K = 0).

Figure 4.5. Average µ and K for different values of σ such that it equals 1
3 rd of the

ith neighbor distance, where the x-axis denotes the neighbor used in the calculation of
σ.We show the results for four datasets generated by uniformly drawing samples from
manifolds (see Table 4.1 of known ID embedded in higher dimensional spaces. The
datasets shown are M2 (d = 3 and D = 5), M1 (d = 10 and D = 11), M6 (d = 6 and
D = 36), and M10d (d = 70 and D = 71).

Defining σ based on distances in the data tends to result (see Fig. 4.5) in good values
for coherence and conditioning. Using 1

3rd of the ith neighbor distance, we seem to find
a range of σ values with a balance between coherence and conditioning on some datasets,
but this is not always the case. Moreover, as the dimension of the data increases, so do
the distances between points and the heuristic does not seem to result in an appropriate
value for the bandwidth.

21



Methodology and Experiments

4.1.4 ID estimation benchmark

We have compared the performance of our ID estimator to that of other state-of-the-art
estimators, following a simplification of the guidelines of an ID benchmark proposal [14],
such that we use a subset of the datasets proposed, and only one of the three evaluation
metrics suggested is computed. We test the estimator based on NNK on the synthetic
datasets described in Table 4.1, as well as on the real datasets described in Table 4.2,
namely, ISOMAP and MNIST. The ISOMAP dataset consists of 698 gray-level images of
size 64 × 64 of a face sculpture from different angles and lighting. The ID of this dataset
is defined by its three degrees of freedom, these being two for the pose and one for the
lighting direction. The MNIST dataset consists of 70000 gray-level images of size 28 × 28
showing handwritten digits. While the real ID of this dataset is not known, there is work
proposing estimates for the different digits. The digit “1” is used in the benchmark, for
which the proposed ID values are in the range 8 − 11 [27] [19].

The results obtained from our estimator are compared to those obtained by other
state-of-the-art estimators. We have included estimators for each of the categories de-
scribed in the literature review. We have chosen BPCA [6] and MLSVD [43], which
are projective estimators. In BPCA (Bayesian PCA), the appropriate dimension for the
low-rank approximation is expressed as a maximum likelihood solution. MLSVD applies
Singular Value Decomposition (SVD) locally and in a multi-scale fashion. kNNG [18] is
a graph-based estimator with which ID is estimated from a heuristic on the properties
of KNN graphs on local neighborhoods. We use CD [25] and Hein [27] as examples of
topological fractal estimators. These estimators are based on the concept that the volume
of a d-dimensional hypersphere of radius r scales as rd, so that counting the number of
points in a neighborhood of radius r can in some way approximate the rate of growth.
This rate of growth d would be the ID of the manifold. Hein is a variant of CD that
introduces a kernel function to avoid the scale dependency present in the latter. The
topological nearest neighbor-based estimators are MLE [40] and DANCo [16]. Both esti-
mate ID from a maximum likelihood estimator based on the distribution of the distances
in a data neighborhood. The methods differ in the choice of the choices of distribution
and neighborhood.

The performance of the estimators is assessed using the mean percentage error (MPE),
which summarizes all the estimations in a single value computed as:

MPE = 100
#M

∑︂
M

|d̂M − dM |
dM

, (4.1)

where #M is the number of tested datasets, d̂M is the estimated ID for the dataset
M , and dM is the real ID of the dataset. On datasets whose ID belongs to a range, we
have computed the MPE using the mean value of the range. The results shown for the
estimators in the benchmark are the average of the ID obtained from 20 instances of each
dataset. Due to resource and time constraints, we show the results for a single instance
of each dataset for the NNK estimator.

We use Algorithm 1 to estimate the ID of the different datasets, using a K = 100 and
σ = 1

3 · d15th NN. The results of the ID estimates obtained for the synthetic datasets with
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Dataset name Description N d D
MISOMAP Gray-level images, size 64 × 64, face sculpture 698 3 4096
MMNIST1 Gray-level images, size 28 × 28, hand-written digits 7000 8-11 784

Table 4.2. Synthetic datasets suggested by the benchmark [14]. N is the dataset number
of samples, d is the ID, and D is the embedding space dimension.

Dataset d MLE kNNG BPCA Hein CD DANCo MLSVD NNK
M1 10 9.10 9.98 5.45 9.45 9.12 10.09 10.00 10.00
M2 3 2.88 3.03 3.00 3.00 2.88 3.00 3.00 3.00
M3 4 3.83 3.82 4.00 4.00 3.23 4.00 2.08 4.00
M4 4 3.95 4.76 4.25 4.00 3.88 4.00 8.00 4.00
M5 2 1.97 2.06 2.00 2.00 1.98 2.00 2.00 2.00
M6 6 6.39 11.24 12.00 5.95 5.91 7.00 12.00 8.00
M7 2 1.96 2.09 2.00 2.00 1.93 2.00 2.35 2.00

M10a 10 8.26 10.21 5.20 8.90 8.09 9.86 10.00 10.00
M11 2 2.21 2.03 1.55 2.00 2.19 2.00 1.00 1.00
M13 1 1.00 1.07 5.70 1.00 1.14 1.00 1.00 1.00

MPE 6.54 13.01 69.22 1.73 8.36 1.89 31.55 8.33

Table 4.3. Results achieved on synthetic datasets with ID ≤ 10 for 9 state-of-
the-art ID estimators and the one we propose (NNK). The MPE achieved by each
algorithm is reported in the bottom row. For each dataset, the best approximations
are highlighted in boldface.

an ID ≤ 10 are summarized in Table 4.3, those with ID > 10 are in Table 4.4, and those for
the real datasets are in Table 4.5. The NNK algorithm correctly estimates 10 out of the 16
synthetic datasets, and 2 out of 2 real datasets. While very good estimates on manifolds
with low ID are obtained, the NNK algorithm tends to underestimate the dimension
of datasets of high ID, heavily penalizing the overall MPE score, as we hypothesized
earlier when discussing the size of the NNK neighborhoods as a function of ID. Given
that an exponentially increasing number of points is necessary to accurately represent the
geometry of the manifold, the chosen K = 100 is not enough to learn high-dimensional
manifolds. Regarding the real datasets, NNK is the best-performing method.

Our experiments show promising results for our NNK ID estimator, and complete
execution of the estimator benchmark, i.e., with the full set of datasets and evaluation
metrics, which would be interesting to better understand its performance, is left for future
work.

4.2 Manifold Understanding with NNK graph properties
We have used low-rank approximations obtained from NNK neighborhoods to estimate
the local ID of a set of points in a manifold. NNK graphs are built such that they
give information on the geometry of the local neighborhood. We can compare different
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Dataset d MLE kNNG BPCA Hein CD DANCo MLSVD NNK
M9 20 14.64 10.59 13.55 15.50 13.75 19.71 20.00 10.00

M10b 17 12.87 15.38 9.46 13.85 12.39 16.62 17.00 17.00
M10c 24 16.97 21.42 13.3 17.95 15.58 24.28 24.00 23.00
M10d 70 36.96 40.31 71.00 38.69 31.4 70.52 70.00 29.00
M12 20 15.82 24.89 13.7 15.00 11.26 19.90 20.00 11.00

MPE 29.69 26.84 30.22 27.19 38.46 1.22 0.0 31.54

Table 4.4. Results achieved on synthetic datasets with ID > 10 for 9 state-of-
the-art ID estimators and the one we propose (NNK). The MPE achieved by each
algorithm is reported in the bottom row. For each dataset, the best approximations
are highlighted in boldface.

Dataset d MLE kNNG BPCA Hein CD DANCo MLSVD NNK
MISOMAP 3.00 4.05 4.32 4.00 3.00 3.37 4.00 1.00 3.00
MMNIST1 8.00-11.00 10.29 9.58 11.00 8.00 6.96 9.98 1.00 10.00

MPE 12.67 22.42 24.56 7.89 19.53 19.19 78.07 2.63

Table 4.5. Results achieved on real datasets. The MPE achieved by each algorithm is
reported in the bottom row. For each dataset, the best approximations are highlighted
in boldface (when the ID takes values in a range, we have highlighted the estimates
closest to the average of that range).

properties of NNK graphs to gain a better understanding of manifolds.
The sizes of NNK graphs in different positions of a manifold can give insight into

the point density of a manifold, such that regions with a high density of points will have
smaller graphs than sparser regions. Moreover, by comparing the relative position of NNK
graphs we can assess the shape of a manifold in terms of its linearity or nonlinearity. We
now take an in-depth look into how these attributes of NNK graphs can be measured and
the ways they can be used to further understand the geometry of a manifold.

4.2.1 NNK graph diameter

Recall that an NNK graph is can be viewed as a convex polytope, that results from the
hyperplanes associated with a node’s NNK neighbors. The diameter of an NNK polytope
is defined as the maximum distance between points in an NNK neighborhood:

d = max
i,j∈S

∥xi − xj∥, (4.2)

where xi and xj are the features of points belonging to a node’s NNK neighborhood S.
Given that NNK will select the first point of each direction in space, we can assess the
point density of a region in a manifold by the diameter of the polytopes corresponding
to its NNK graphs.
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Experiment

To illustrate this, in Fig. 4.6 we show the distribution of the diameter of the NNK
polytopes on the M5 manifold dataset (see Table 4.1) using the 2500 points and with a
sample of 500. Notice that on the denser dataset the polytopes have a smaller diameter,
while on the sparser dataset the points are further apart, making the polytopes larger.

Figure 4.6. Distribution of the diameter of NNK polytope on the M5 manifold dataset
with 2500 points and on a sample of 500. Notice that the polytopes are smaller on the
denser dataset, while they become bigger when the dataset is sparse.

4.2.2 Principal angles between NNK graphs

Principal angles [29] refer to the generalization of the concept of angles between lines in
the plane to any arbitrary dimension. Given two orthonormal matrices A, B, principal
angles were computed using the Singular Value Decomposition (SVD) of the matrix AB⊤,
where the eigenvalues correspond to the cosines of the principal angles. This makes it
impossible to find small angles accurately on software code due to rounding errors. This
issue is solved by using a sine-based approach [8] only for angles below π/4 [34]. This
implementation is the one we used in our experiments.

By comparing the principal angles between the low-rank approximation of NNK neigh-
borhoods we can better understand the geometry of a manifold. This way, on a flat
(linear) manifold the distribution of the angles will be similar on neighborhoods in dif-
ferent positions of the manifold, and many will be close to zero. On a highly curved
(nonlinear) manifold, the distribution of the angles between NNK subspaces will change
at different regions in the manifold, and the angles will be higher. Moreover, on locally
smooth manifolds, we expect to see small angles between the low-rank approximation
of adjacent NNK neighborhoods (i.e., neighborhoods of points where one is in the NNK
neighborhood of the other).
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Experiment

We show this by comparing the principal angle distributions between pairs of NNK neigh-
borhoods from different locations in a manifold on a linear and a nonlinear dataset. We
compare the distribution of the angles for pairs of adjacent NNK neighborhoods and pairs
of neighborhoods chosen at random. Figures 4.7 and 4.8 show the results for the linear
and nonlinear manifold. respectively. For the linear manifold, the distribution of both
adjacent and random pairs of neighborhoods are almost the same since the geometry
of any neighborhood in a linear manifold will be similar. In contrast, on the nonlinear
manifold, we see a difference in the distribution of the angles.

Figure 4.7. Distribution of the principal angles between NNK low-rank approximation
subspaces on the linear manifold M10a (see Table 4.1). To the left, we show the angles
between pairs of adjacent NNK neighborhoods (i.e., one of the center nodes is a neighbor
of the other). To the right, we show the angles for random pairs of NNK neighborhoods.
On a linear manifold, any pair of neighborhoods will have angles close to 0.

4.3 Manifold Understanding with Multi-scale NNK

In the literature, multi-scale analysis is used in the context of finding an appropriate
neighborhood over which to estimate the local ID. The goal is then to find a sparsity
parameter (K for KNN, ε for ε-neighborhoods) such that the set of points chosen is large
enough that there are at least K ≥ ID neighbors, small enough that the manifold is
linear and large enough so that the effects of noise are negligible.

While this is a valid use of multi-scale analysis of a manifold, we hypothesize that
more insight into the manifold could be gained (i.e., besides the ID) by comparing the
geometrical properties of NNK graphs at different scales. Measures derived from NNK
graphs can help in understanding the manifold’s shape.
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Figure 4.8. Distribution of the principal angles between NNK low-rank approximation
subspaces on the nonlinear manifold M11 (See Table 4.1). To the left, we show the angles
between pairs of adjacent NNK neighborhoods (i.e., one of the center nodes is a neighbor
of the other). To the right, we show the angles for random pairs of NNK neighborhoods.
On a nonlinear manifold, close neighborhoods have angles close to zero, while random
neighborhoods are more dissimilar.

4.3.1 Multi-scale NNK algorithm

To study the manifold at larger scales, we should increase the size of the NNK neighbor-
hood. Intuitively, we would do so by adjusting the hyperparameters of the NNK algorithm
to observe points that are further away. By definition, NNK will choose a single neighbor
in each relevant direction, therefore increasing the sparsity parameter K should not affect
the NNK neighborhood. Alternatively, we might increase the bandwidth of the Gaussian
kernel σ, but as we showed in Section 4.1.3, increasing σ will make the distance matrix
ill-conditioned, since close points will be at similarity very close to 1. Instead, we propose
to merge the closest points such that as we merge, distances between the points increase.
We, therefore, change the scale of the analysis by making the manifold sparser, increasing
the distances between points in the process (see Fig. 4.9).

While we would expect a linear manifold to look the same at different scales, if we
were to perform merging on a highly curved manifold we will at some point be selecting
points that initially lay on different local neighborhoods, changing the shape of the man-
ifold in the process. This change would be reflected in the NNK graphs. By studying
their geometric properties introduced in the previous section, we can attempt to better
understand the shape of the manifold.

We can achieve a sparser representation by iteratively merging the two closest points
according to some similarity metric. This can be based on the KNN’s shortest pairwise
distance, or on the largest NNK pairwise weights. We address the differences in the
choice of similarity in the next section. Two points are merged by averaging their posi-
tions. Then, assuming we have a criterion for merging, in the process of merging we are
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Figure 4.9. Three examples of the swiss-roll dataset, that differ in the number of points
sampled (from left to right, we have 2500, 1000, and 100 points). NNK builds a graph
based on the distance of a point to its neighbors, such that the size of the neighborhood
is a function of the point density. This way, the scale at which we look at the manifold
increases with the size of the NNK neighborhood.

eliminating points that are too close so that we can increase the window of observation.
After each merging iteration, we recalculate the NNK graph. Since the decay parameter
σ has been defined based on the distances in the dataset, we will in turn increase the size
of the NNK graph as we merge points (see Fig. 4.10). This way, we can construct larger
NNK graphs and thus be able to analyze the manifold at different scales. This merged
dataset can be achieved as described in Algorithm 2.

Figure 4.10. Value of σ, which is defined as 1
3 rd of the 15th neighbor distance, after each

merging step. See that after merging points the dataset becomes sparser and distances
increase, making σ larger in the process.

The similarity metric used to select the closest points has a significant impact on the
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Algorithm 2 Two-closest Merging
Input:

X: features
I: merging steps

1: for iter in I do
2: for each node i = 1,2, ..., N do
3: Si = {neighborhood of node i}
4: Ki,S = {similarity to each neighbor}
5: end for
6: i, j = {i, j : max

i,j
Ki,j}

7: X = X ∪ Xi+Xj

2 \ Xi, Xj

8: end for
Output: Dataset after I merging steps X

point density of the manifold as we merge. We take an in-depth look at this in the next
section.

4.3.2 Merging and the choice of similarity

For each node in a dataset, we will have constructed two weighted graphs: a KNN and
an NNK graph. On the one hand, the KNN graph consists of K neighbors connected by
edges weighted based on Euclidean distance to the center node. On the other hand, the
NNK graph has edges the weight of which is the result of the NNK optimization on the
initial KNN neighborhood. The weight of these edges in relation to the edges of other
local connected neighborhoods in the dataset will depend on the choice of σ, such that a
value of σlocal is defined for each neighborhood based on the distances in it, the weights
will reflect the similarity in the context of the neighborhood. When a single value σglobal

is defined for all the datasets, the pairwise similarity will be heavily influenced by the
point density and not so much by the local geometry of the data (see Fig. 4.11).

There are clear differences between the similarities defined in σlocal NNK graphs,
KNN graphs, and σglobal NNK graphs. The differences will be reflected in the datasets
resulting from merging based on these similarities. Choosing the closest points based
on KNN similarity, i.e., Euclidean distance, after some merging iterations we expect the
manifold to be uniformly distributed, given that points in dense areas will be merged at
a higher rate. We believe that merging based on σlocal NNK similarity will merge at the
same rate regardless of density, given that the NNK similarity will only depend on the
local distribution of the data. Merging with σglobal NNK similarity may show a behavior
somewhere between the other two approaches. We assess this hypothesis in the following
experiment.

Experiment

We will be using the distribution of the diameter of the polytopes defined by NNK
graphs as a proxy for the point density in the dataset. We have tested our merging
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Figure 4.11. Comparison of the reach (blue circle) of the Gaussian kernel on two NNK
neighborhoods using a local definition of σ (Left) and a global definition (Right). In the
local case, distances in kernel space will be related to the distribution of the points in the
neighborhood. In the global case, the reach of the Gaussian kernel is the same regardless
of the point density, so points will be closer in kernel space in denser regions.

algorithm using KNN similarity, σglobal NNK similarity, and σlocal NNK similarity first
on a control dataset and later on MNIST (see Table 4.2). The former allows us to control
the conditions of the dataset so that we can validate our hypothesis. The latter is used to
assess our algorithm on a real dataset. The control dataset is of size N = 300 and consists
of two isolated square regions in a two-dimensional space, such that one has three times
as many points as the other. For the experiments on this dataset, we use K = 30 and σ
equal to one-third of the 15th neighbor distance (the average for all the neighborhoods
in the global case). We merge one point at each iteration. In the case of MNIST, we
sample 2500 from the dataset, and merge 250 points at each step for a total of 100 steps,
merging the 250 closest pairs of points at each iteration without repeating any points.
This approximation has a very similar behavior to merging one pair of points at each
step, and it allows us to perform merging in a shorter amount of time.

Fig. 4.12 shows the number of points in the dense and sparse regions in the control
dataset after each merging step. Using KNN merging, the dense region goes down in
size much faster than the sparse region. That is until they have the same density, after
which they have points merged at the same rate. Using σlocal NNK merging, dense and
sparse regions have points merged at a similar rate until the latter has no more points
left. With a global choice of σglobal, we see similar behavior to that of KNN. This suggests
that the initial KNN weights have a significant impact on those obtained after the NNK
optimization, and that data locality in the kernel similarity matrix is compromised.

Looking at the distribution of the diameter of the NNK polytopes for the same dataset,
in Fig. 4.13, we observe that when using KNN similarity for merging, the size of the poly-
topes increases, such that the size distribution shifts to larger polytopes while also growing
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Figure 4.12. Number of points in the dense and sparse regions of the control dataset
after each merging step using KNN similarity, σglobal NNK similarity, and σlocal

NNK similarity. In the first two cases, points in dense areas are merged at a higher
rate than in sparser areas. With σlocal merging, points in areas of different densities
are merged at the same rate.

in size. In contrast, when σlocal NNK similarity is used for merging, the distribution of
the polytope diameters is preserved as their sizes grow overall.

Finally, in Fig. 4.14 we show the distribution of the NNK polytopes for the MNIST
dataset. Again, we see that as we merge with KNN similarity the polytopes increasingly
grow in size, while using σlocal NNK similarity in the merging process the distribution
of the polytope relative sizes is preserved. This suggests that the relative density of the
different regions in the sparser merged dataset is the same as that of the initial one.

We have shown that by merging based on the closest points in σlocal NNK similarity,
we can obtain a smaller sample of a dataset while maintaining the distribution of the
points. This way, we can sample points preserving the geometrical properties of the
original dataset. This can be useful for tasks that require the creation of a representative
dataset that has a much smaller number of samples. Some applications such as the
stochastic gradient descent step in the training of deep neural networks can achieve good
results by sampling randomly. This is possible due to the lack of limitations on the data,
which leads to all the random choices aggregating to a meaningful result. On many other
tasks, sampling randomly may negatively affect the results, and it becomes necessary to
build a subsampled dataset carefully. Creating a smaller dataset by merging points based
on NNK similarities allows us to preserve some of its geometrical properties.

Moreover, conditions can be set to the properties of NNK graphs to stop the merging
if some specific conditions are met. For example, a lower bound can be set on the polytope
diameter to ensure a minimum point density in the sampled dataset.

4.4 Manifold Understanding Experiments

In the previous section, we have presented a set of tools based on the properties of NNK
graphs that can help us understand manifold data. In this section, we evaluate the
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Figure 4.13. Distribution of the diameter of NNK graph polytopes constructed on the
control dataset while merging either with KNN and σlocal NNK similarity. When merging
the closest points in KNN similarity at each step, we observe the polytope diameter distri-
bution shift to larger diameters. When using σlocal NNK similarity in the selection of the
points to merge, the distribution of the polytope sizes remains the same after merging.

properties of NNK graphs we presented on top of a variety of datasets at multiple scales,
using our proposed merging algorithm.

4.4.1 Experiments on synthetic datasets

We will first study the synthetic datasets (see Table 4.1), for which the geometric prop-
erties are known. In our first experiment, we assess the linearity of a manifold by looking
at the number of NNK neighborhoods at different scales and applying our merging algo-
rithm. Next, we compare the dimension of the low-rank approximations of the KNN and
NNK neighborhoods to study the differences at multiple scales.

We show the metrics (i.e., number of neighbors and low-rank approximation size) in
the NNK graphs constructed on the datasets after each σglobal merging iterations. The
initial size of the datasets if of N = 2500 points, and at each merging step features the
closest 250 pairs of points (without repetition) are averaged until no points are left. The
value shown for the number of neighbors consists of the average and standard deviation
for the neighborhood sizes of a sample of 300 points (or the whole dataset when the size is
smaller). We have run this process on 4 linear manifolds and 4 nonlinear manifolds. The
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Figure 4.14. Distribution of the diameter of NNK graph polytopes constructed on the
MNIST dataset while merging either with KNN or σlocal NNK similarity. When merging
the closest points in KNN similarity at each step, we observe the polytope diameter distri-
bution shift to larger diameters. When using σlocal NNK similarity in the selection of the
points to merge, the distribution of the polytope sizes remains the same after merging.

linear manifolds are M1 (10-dimensional sphere linearly embedded), M2 (affine space),
M9 (affine space), and M10a (10-dimensional hypercube). The nonlinear manifolds are
M3 (concentrated 4-dimensional figure), M4 (nonlinear manifold), M7 (Swiss-Roll), and
M11 (Möebius band 10-times twisted).

NNK Neighborhood size at different scales

Fig. 4.15 shows the number of NNK neighbors as a function of the points left in the
dataset for the linear manifolds. The number of neighbors remains consistent until the
number of points has been reduced by a factor of 4 or more (600 points left). On a linear
manifold, we expect the same geometry regardless of scale, and this is what we observe
for the size of the NNK neighborhoods. After most of the points have been merged, the
size of the neighborhoods decreases. This is both because there are fewer points, and
because the manifolds show some curvature at a larger scale, such as M1.

We observe (see Fig. 4.16) a clear difference in the number of NNK neighbors at
different scales in the case of the nonlinear manifold datasets. The number of neighbors
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Figure 4.15. Average NNK neighbors vs. points left in the 4 linear manifold datasets after
merging based on σglobal similarity. The neighborhood size does not change with scale.

does not remain the same but instead changes with scale. How the size of an NNK
neighborhood changes depends on the geometry of the manifold. Both M7 and M11
correspond to 2-dimensional flats arranged in a 3-dimensional space. As scale increases,
the two-dimensional surface resembles a three-dimensional volume, as depicted in Fig. 4.9.
When the geometry of the manifold is lost, points outside of the initial local neighborhood
are selected for the NNK graph.

KNN and NNK low-rank approximations at different scales

In Algorithm 1 we used the number of principal components obtained from the NNK
neighborhoods, such that the components chosen are those with an eigenvalue λj ≥
1
10 · λmax. We now calculate the low-rank approximation both for the KNN and the NNK
neighborhood.

On the linear manifolds, as shown in Fig. 4.17, the dimension of the low-rank ap-
proximation obtained from the KNN neighborhood (blue) is much closer to the ID of
the manifold than that of the NNK neighborhood. Given that a KNN neighborhood has
multiple points in each direction, each direction is learned more robustly. In contrast,
NNK has a single example in each of those directions, the reason for which we observe
a higher standard deviation for the dimension of the low-rank approximation. For the
case of M1 (10-dimensional sphere shell), we can observe that as the manifold becomes
sparse enough, both KNN and NNK neighborhoods select points in all directions. This
is reflected in the increase in the size of the low-rank approximations to the embedding
dimension of the data (i.e., the dimension of the dataset itself).
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Figure 4.16. Average NNK neighbors vs. points left in the 4 nonlinear manifold
datasets after merging based on σglobal similarity. The neighborhood size does
not change with scale.

Figure 4.17. Principal components chosen for the low-rank approximation of the
KNN and NNK neighborhoods as a function of the points left in the 4 linear man-
ifold datasets after merging based on σglobal similarity. We also show a black line
with the ID of each dataset.
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Having many points in each direction will yield good results when each direction is
relevant, as is the case on a linear manifold. For nonlinear manifolds this is not the
case and, as depicted in Figure 4.18, low-rank approximations from KNN neighborhoods
overestimate the dimension of the manifold. Furthermore, after a sufficient number of
merging steps is performed such that the geometry of the manifold is lost, the low-rank
approximation from KNN will be of a size equal to the embedding dimension of the data.
M4 is embedded in an 8-dimensional space, and M7 and M11 in a 3-dimensional one.
This occurs because the KNN neighborhood contains points in every direction.

The low-rank approximation derived from NNK does a better job of preserving the
local geometry of the manifold. While the variance is much higher due to the sparsity
of the NNK graphs relative to the KNN ones, the size of the low-rank approximation is
much closer to the ID, especially in the M3 and M7 datasets.

Figure 4.18. Principal components chosen for the low-rank approximation of the
KNN and NNK neighborhoods as a function of the points left in the 4 nonlinear
manifold datasets after merging based on σglobal similarity. We also show a black
line with the ID of each dataset.

4.4.2 Experiments on neural network features

To understand how neural networks learn, there is work exploring the similarities between
artificial vision and biological vision in terms of the architecture of the object recognition
path [58]. Class separability and invariance are vital components of this process, and
based on this understanding, a hypothesis was presented in an opinion paper [20] in the
field of neuroscience, that can be generalized to that of machine learning. In this paper,
they propose that each object is embedded in a manifold, such that in the input layer
(i.e., pixel space), the manifolds for each class are highly curved and tangled, and as one
moves forward in the network, the manifolds become flatter, linearly separable, and of
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lower dimensionality. It can be shown that the data is indeed linearly separable, given
the performance of neural networks with a linear classification layer after the last hidden
layer. We attempt to increase our understanding of the change in the dimensionality of
data throughout a neural network [45], [2] [50], and of the curvature of the features at
different depths, through the perspective of NNK graphs.

We will be analyzing the feature vectors of a VGG-19 Deep Convolutional Neural
Network (CNN) trained on the CIFAR-10 [35] dataset. This network consists of 2 × 64,
2 × 128, 4 × 256, and 8 × 512 layer depth channels with ReLU activations, and max-
pooling layers after the 2nd, 4th, 8th, 12th, and 16th convolutional layers. After training
the network for 200 epochs with the Adam optimizer, a learning rate of 0.1, and a batch
size of 128, we select a class-balanced subset of N = 1000 randomly sampled points
from the training dataset and analyze their feature vectors after each of the pooling
layers, as well as on the input and output of the network. We do so by merging points
using σglobal NNK similarity and constructing NNK graphs on the data after each merging
iteration. We use the approximate merging algorithm (i.e., merging N/100 pairs of points
at each step) for resource efficiency. Additionally, we also perform for 10 datasets each
containing 1000 images of one of the 10 classes in CIFAR. We use a K = 100 and
σ = 1

3 · 15th neighbor distance for the NNK graphs.

Class-balanced dataset

We first look at the estimate for the ID of the features obtained at different depths in
the network. Figure 4.19 shows, for each layer, a boxplot of the sizes of the low-rank
approximations obtained from NNK neighborhoods constructed on the image features,
such that the feature vector of each image corresponds to a point in the dataset, and the
neighborhood of an images consists of other images. The ID increases in the first layers
of the network, which relates to the early layers performing low-level pre-processing and
feature extraction. These representations are task-independent and arise from features
irrelevant to the task. Later in the network, there is a dimensionality compression, a
drop in ID, which is caused by the selection of only task-relevant features. While this is
not a novel result in itself, the fact that it can be replicated using NNK speaks for its
reliability as an ID estimator.

We next attempt to assess the linearity or nonlinearity of these feature vectors. We
focus on the features of the last three pooling layers since those are the most relevant
to the task being solved by the network. Figure 4.20 shows both the average number
of NNK neighbors and the size of the low-rank approximation for the KNN and NNK
neighborhoods for the last three pooling layers. The size of the NNK neighborhoods
changes as points are merged, and the trend is different at each of the layers. This suggests
that the feature vector spaces lie on nonlinear manifolds and that these nonlinearities
are different for each layer. This is supported by the change in the size of the KNN
neighborhood low-rank approximations as we merge, which is explained by the KNN
neighborhood finding points in new directions as the dataset becomes sparser. NNK
neighborhoods are more robust to sparsity, as shown by the little change in the size of
their low-rank approximations after the 4th and 5th pooling layers in the merging process.
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Figure 4.19. Boxplot for the dimension of the low-rank approximation of NNK neigh-
borhoods constructed on the features of a class-balanced dataset at different depths of
a VGG-19 network trained on CIFAR-10. Next to the boxplot, we show the embedding
dimension of the features at each depth.

Single class datasets

We have shown that for a class-balanced dataset we observe a behavior akin to that of
a nonlinear manifold. We now look at the geometry of each class independently. We
do this with datasets consisting of 1000 samples for each of the classes. Our analysis is
performed for the features of the samples in the last hidden layer.

Figure 4.21 shows the low-rank approximation dimension as a function of the merg-
ing steps for 6 of the 10 classes in CIFAR10, both for KNN and NNK neighborhoods.
In contrast to the previous example, in this case, we observe linear behavior since the
dimension of the low-rank approximations both for KNN and NNK are almost the same
regardless of scale. This suggests that the features for each class lie on an almost flat
manifold.

We look further into this result by comparing the angles between the low-rank ap-
proximations of adjacent and random NNK neighborhoods belonging to the same class.
We show the results for 4 of the 10 classes in Fig. 4.22. The distribution of the angles
between adjacent and random NNK neighborhoods is very similar, in that the majority
of the principal angles are 0 to 20 degrees. This further supports the finding that the
features of each class in the last hidden layer lie on a linear or almost linear manifold.
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Figure 4.20. Average and standard deviation of NNK neighbors (top row) and the
low-rank approximation of NNK graphs (bottom row) as a function of the remaining
points in the dataset after each merging step. We show the results for the features
obtained on a class-balanced dataset after the 3rd, 4th, and 5th pooling layers in a
VGG-19 network trained on CIFAR-10.

To summarize, in this experiment, we have replicated the results obtained in other
work in the literature regarding the intrinsic dimension of deep neural networks [45],
[2] [50], approaching the estimation of ID using NNK graphs. Moreover, we have ob-
served that the feature vector representation in the last hidden layer has the properties
of a nonlinear manifold, and while previous work [2] rejects the hypothesis that neu-
ral networks flatten the representation of data in the last layers, we have observed that
the features for each of the classes do lie in a linear or almost linear manifold. Further
work on this topic could explore the relative position of the features between different
classes. Moreover, the properties of the NNK graphs for each class could relate to their
classification error.
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Figure 4.21. Average and standard deviation of the low-rank approximation of NNK
graphs as a function of the remaining points in the dataset after each merging step.
We show the results obtained for the bird, cat, car, frog, horse, and plane classes in
CIFAR10. While we don’t show the remaining classes due to space limitations, we
observe the same behavior shown for these.
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Figure 4.22. Principal angles between the low-rank approximations of adjacent NNK
neighborhoods and random NNK neighborhoods for each class. The angles span between
0 and 90 degrees and are discretized in 10 uniformly distributed bins. We show the results
obtained for the bird, cat, car, and deer classes in CIFAR10. While we don’t show the
remaining classes due to space limitations, we observe the same behavior shown for these.

41



42



Chapter 5

Conclusion and Future Work

The main goal of this project was to exploit the geometrical properties of NNK graphs
constructed by optimizing an initial KNN neighborhood, to gain insight into the shape of
data manifolds. We have developed a toolkit based on the properties of NNK graphs that
allows us to gain insight into the geometry of data manifolds in terms of their intrinsic
dimension, curvature, and point density. The capabilities and limitations of NNK graphs
in this context have also been discussed. The proposed metrics are the number of NNK
neighbors, the dimension of the low-rank approximation of the KNN and NNK graphs, the
diameter of NNK graphs, and the principal angles between the low-rank approximations
of NNK graphs. Moreover, we compare these metrics at multiple scales, which we can do
by using our proposed point merging algorithm.

We have evaluated our ID estimator and compared it to other state-of-the-art esti-
mators on an ID estimator benchmark. Moreover, we have shown the effectiveness of
these tools in estimating dimension and curvature on a variety of datasets with known
properties. Additionally, we have also gained insight into unknown manifolds by applying
the tools described.

We have also shown that by merging based on the closest points in NNK similarity,
we can obtain a smaller sample of a dataset while maintaining the distribution of the
points. This way, we can sample points preserving the geometrical properties of the
original dataset.

Future work should further assess the quality and reliability of our NNK ID estimator
by performing the full ID estimator benchmark. This would allow us to better understand
how NNK neighborhoods are selected in relation to the data. Furthermore, we have used
the tools proposed to determine the dimension, point density, and linearity or nonlinearity
of a manifold as a whole. By looking at these properties for different NNK neighborhoods
that are at a measurable distance, such as the Euclidean distance between the center
nodes, or distance in hops away from a node in NNK graphs. This would allow us to
better understand the shape of the manifold at different regions which, as we saw in the
last hidden layer of the VGG-19 network, can change based on location.

We discussed the need for a multi-scale approach to graph construction due to the
possibility of noise in the data, but we did not address that scenario in our experiments.
Further work should look into how merging can be leveraged to reduce noise in the data,
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in a behavior similar to a low-pass filter. The number of merging steps required to remove
the noise from a dataset while preserving its geometry is not trivial and should be looked
into. In the topic of merging, future work should consider merging based on properties
of NNK graphs other than the neighbor similarity. This can result in dataset subsamples
with other possibly interesting properties.

Finally, our approach to dataset subsampling while preserving the initial dataset
properties could provide useful in tasks that rely on random sampling. The merging
process is deterministic, and the result of merging after a fixed number of iterations will
not change, but for each point in the merged dataset, we have knowledge of the points in
the original dataset that were used to arrive at it. This information could be leveraged to
train a neural network on batches generated by merging a dataset to a size equal to the
batch size and sampling a point from each of the clusters in the merged dataset. With
this approach, every batch would have samples in a way that the geometry of the training
data is preserved.
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