57 research outputs found

    Feature Detection in Medical Images Using Deep Learning

    Get PDF
    This project explores the use of deep learning to predict age based on pediatric hand X-Rays. Data from the Radiological Society of North America’s pediatric bone age challenge were used to train and evaluate a convolutional neural network. The project used InceptionV3, a CNN developed by Google, that was pre-trained on ImageNet, a popular online image dataset. Our fine-tuned version of InceptionV3 yielded an average error of less than 10 months between predicted and actual age. This project shows the effectiveness of deep learning in analyzing medical images and the potential for even greater improvements in the future. In addition to the technological and potential clinical benefits of these methods, this project will serve as a useful pedagogical tool for introducing the challenges and applications of deep learning to the Bryant community

    Multi-Phase Feature Representation Learning for Neurodegenerative Disease Diagnosis

    Get PDF
    Feature learning with high dimensional neuroimaging features has been explored for the applications on neurodegenerative diseases. Low-dimensional biomarkers, such as mental status test scores and cerebrospinal fluid level, are essential in clinical diagnosis of neurological disorders, because they could be simple and effective for the clinicians to assess the disorder’s progression and severity. Rather than only using the low-dimensional biomarkers as inputs for decision making systems, we believe that such low-dimensional biomarkers can be used for enhancing the feature learning pipeline. In this study, we proposed a novel feature representation learning framework, Multi-Phase Feature Representation (MPFR), with low-dimensional biomarkers embedded. MPFR learns high-level neuroimaging features by extracting the associations between the low-dimensional biomarkers and the high-dimensional neuroimaging features with a deep neural network. We validated the proposed framework using the Mini-Mental-State-Examination (MMSE) scores as a low-dimensional biomarker and multi-modal neuroimaging data as the high-dimensional neuroimaging features from the ADNI baseline cohort. The proposed approach outperformed the original neural network in both binary and ternary Alzheimer’s disease classification tasks

    A Robust Deep Model for Improved Classification of AD/MCI Patients

    Get PDF
    Accurate classification of Alzheimer\u27s disease (AD) and its prodromal stage, mild cognitive impairment (MCI), plays a critical role in possibly preventing progression of memory impairment and improving quality of life for AD patients. Among many research tasks, it is of a particular interest to identify noninvasive imaging biomarkers for AD diagnosis. In this paper, we present a robust deep learning system to identify different progression stages of AD patients based on MRI and PET scans. We utilized the dropout technique to improve classical deep learning by preventing its weight coadaptation, which is a typical cause of overfitting in deep learning. In addition, we incorporated stability selection, an adaptive learning factor, and a multitask learning strategy into the deep learning framework. We applied the proposed method to the ADNI dataset, and conducted experiments for AD and MCI conversion diagnosis. Experimental results showed that the dropout technique is very effective in AD diagnosis, improving the classification accuracies by 5.9% on average as compared to the classical deep learning methods
    • …
    corecore