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1Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA 
23529

2Department of Computer Science, Old Dominion University, Norfolk, VA 23529

3Department of Radiology, University of North Carolina at Chapel Hill, NC 27599

4Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea

Abstract

Accurate classification of Alzheimer’s Disease (AD) and its prodromal stage, Mild Cognitive 

Impairment (MCI), plays a critical role in possibly preventing progression of memory impairment 

and improving quality of life for AD patients. Among many research tasks, it is of particular 

interest to identify noninvasive imaging biomarkers for AD diagnosis. In this paper, we present a 

robust deep learning system to identify different progression stages of AD patients based on MRI 

and PET scans. We utilized the dropout technique to improve classical deep learning by 

preventing its weight co-adaptation, which is a typical cause of over-fitting in deep learning. In 

addition, we incorporated stability selection, an adaptive learning factor, and a multi-task learning 

strategy into the deep learning framework. We applied the proposed method to the ADNI data set 

and conducted experiments for AD and MCI conversion diagnosis. Experimental results showed 

that the dropout technique is very effective in AD diagnosis, improving the classification 

accuracies by 5.9% on average as compared to the classical deep learning methods.

Index Terms

Alzheimer’s Disease; Early Diagnosis; MRI; PET; Deep Learning

I. Introduction

Alzheimer’s disease is the sixth-leading cause of death in the United States [1]. AD patients 

usually undergo progressive stages of cognitive and memory function impairment, including 

prodromal, MCI and AD. For each of these stages, significant amount of research has been 

conducted aiming to understanding the underlying pathological mechanisms. In addition, 

imaging biomarkers have been identified using different imaging modalities such as 

magnetic resonance imaging (MRI) [2], positron emission tomography (PET) [3], and 

functional MRI (fMRI) [4]. Imaging biomarkers are a set of indicators computed from 
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image modalities and can be used for early detection of AD disease. It has been shown that 

fusing these different modalities may lead to more effective imaging biomarkers [6].

The first successful deep learning framework, auto-encoder, was developed in 2006 [7]. It 

was subsequently used in other application fields and achieved state-of-the-art performance 

in speech recognition, image classification and computer vision [8]. Deep learning itself also 

evolves after 2006. For instance, the multimodal deep learning framework boosted speech 

classification by learning a shared representation between video and audio modalities [9]. A 

dropout technique further improved zip code recognition, document classification, and 

image recognition [10], [11].

In this paper, we developed a robust deep learning framework for AD diagnosis by fusing 

complementary information from MRI and PET scans. These 3D scans were preprocessed 

and their features were further extracted. Specifically, we first applied principal component 

analysis (PCA) to obtain PCs as new features. We then utilized the stability selection 

technique [13] together with the least absolute shrinkage and selection operator (Lasso) 

method [14] to select the most effective features. The selected features were subsequently 

processed by the deep learning structure. Model weights in the deep structure were first 

initialized by unsupervised training and then fine-tuned by AD patient labels. During the 

fine-tuning phase, the dropout technique was employed to improve the model’s 

generalization capability. Finally, the learned feature representation was used for AD/MCI 

classification by a support vector machine (SVM).

In addition to discrete patient labels (AD, MCI or Healthy), there are two additional clinical 

scores, namely Minimum Mental State Examination (MMSE) and Alzheimer’s Disease 

Assessment Scale-Cognitive subscale (ADAS-Cog) associated with each patient. MMSE is a 

30-point questionnaire widely used to measure cognitive impairment [15]. It is used to 

estimate the severity and progression of cognitive impairment, instead of providing any AD 

information. ADAS-Cog is the most popular cognitive testing instrument to measure the 

severity of the most important symptoms of AD, including the disturbances of memory, 

language, praxis, attention and other cognitive abilities, which have been referred as the core 

symptoms of AD [16]. The information from these scores is related and identifying the 

commonality among them may help AD diagnosis. We configured the deep learning 

structure as a multi-task learning (MTL) framework, and treated the learning of class label, 

MMSE and ADAS-Cog as related tasks to improve the prediction of main task (class label).

We evaluated the proposed method on the ADNI1 data set and compared it with a baseline 

method and a similar deep learning system, where the auto-encoder was used as a feature 

extractor for AD diagnosis [6]. The baseline method contains feature selection and SVM 

steps but does not use deep learning. We also evaluated the impact on performance of each 

of the components in the proposed system. A brief version of this paper was published in 

[17].

1Available at http://www.loni.ucla.edu/ADNI.
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II. Materials and Methods

The proposed system consists of multiple components, including PCA, stability selection, 

unsupervised feature learning, multi-task deep learning and SVM training, as shown in Fig. 

1. We detail each of these components in the following subsections.

A. Data preprocessing

We utilized the public ADNI data set to validate our proposed deep learning framework. The 

data set consists of MRI, PET, and CSF data from 51 AD patients, 99 MCI patients (43 MCI 

patients who converted to AD (MCI.C), and 56 MCI patients who did not progress to AD in 

18 months (MCI.NC)) as well as 52 healthy normal controls. In addition to the crisp 

diagnostic result (AD or MCI), this data set contains two additional clinical scores, MMSE 

and ADAS-Cog, for each patient. A typical procedure of image processing was applied to 

the 3D MRI and PET images [2], [18], [19] including anterior commissure-posterior 

commissure correction, skull-stripping, cerebellum removal, and spatially normalization. 

Finally, we extracted 93 region-of-interest (ROI) based volumetric features from MRI and 

PET images, respectively, which together with three CSF biomarkers, i.e., Aβ42, t–tau, and 

p-tau, sum up to 189 features for each subject.

B. Principal component analysis

Principal component analysis (PCA) is a linear orthogonal transformation that converts a set 

of features into linearly uncorrelated variables in which each of the new variable is a linear 

combination of all original features [5]. The first principal component (PC) is defined as the 

one that can explain the largest variance in the original data set. The second PC has the 

second largest variance under the constraint that it is orthogonal to the first component. If 

correlations exist among features, the number of PCs that can be found is usually less than 

the number of features in the original data. PCA is optimal for preserving energy and it is 

often used for dimensionality reduction by just keeping the first few PCs.

Let F denote a feature data set with a size of n×p, where n is the number of data samples and 

p is the number of features in the data, and each column in F is centered. PCA can be 

achieved by performing the singular value decomposition (SVD) on F as

(1)

where U is an n × n matrix with orthogonal unit columns (left singular vectors of F), Σ is an 

n × p diagonal matrix consisting of singular values of F from the largest to least, and V is an 

p × p matrix whose columns are orthogonal unit vectors (right singular vectors of F).

To achieve dimensionality reduction, the first l columns in V corresponding to the first l 

largest singular values of F can be used as a transformation matrix to be applied on F,

(2)

where Vl consists of the first l columns of V.
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Geometrically, PCA analysis rotates data to align its maximum variance direction of the data 

with the coordinate system as illustrated in Fig. 2. PCA is an effective tool for 

dimensionality reduction but the preserved PCs may not be useful for classification. The two 

dimensional artificial data set in Fig. 2 consists of ‘blue’ and ‘red’ classes. After PCA, the 

whole data set was rotated and its main axis was aligned with the coordinate system. 

However, even though PC 1 has the largest variance, it does not contain any discriminating 

information for the two classes. For the purpose of classification, PC 2 is preferred and a 

feature selection step is necessary. This example shows that feature selection may be applied 

after PCA to retain discriminating information for classification.

C. Stability selection

In this paper, we first applied PCA to the 189 features and used the resulting PCs as new 

features. We then applied Lasso [14] to identify the most effective features for AD 

diagnosis. Lasso tries to minimize the following cost function for feature selection:

(3)

where t ∈ {+1, −1}n is a class label vector of size n × 1 associated with the feature matrix x 
of size n × l, where l is the number of features (PCs) found in PCA, s = [s1, s2 …sl]T is the 

weight vector associated with the l features (columns in x), λ is a regularization parameter, 

and ||·||2 and ||·||1 denote L2 and L1 norms, respectively. Because of the L1 norm constraint on 

the weight magnitude, the solution minimizing the above cost function is usually sparse, 

meaning that if a feature is not correlated with the target class label, the feature will have a 

zero value for its weight. Features having nonzero weights will be selected and otherwise 

will be excluded.

It is well known that the solution of L1 norm based optimizations are sensitive to the choice 

of λ, and it is difficult to determine how many features should be kept in the model. A recent 

breakthrough sheds a light on selecting the right amount of regularization for stability 

selection [13]. The idea is to repeat the feature selection procedure multiple times based on 

bootstrapped data sets and compute the probability of the features to be selected. The final 

selected features are those having probabilities above a predefined threshold th. It has been 

shown experimentally and theoretically that the feature selection results vary little for 

sensible choices in a range of the cut-off value for th [13]. We incorporated the stability 

selection concept into the AD patient diagnosis in this paper. In particular, we repeated the 

Lasso procedure 50 times and each time with a different value for the parameter λ (We used 

the SLEP toolbox for Lasso2). A probability, pi, for the ith feature was computed by 

counting the frequency of the feature being selected in the 50 experiments. The ith feature 

was selected if pi is larger than a pre-defined threshold th.

D. Multi-task deep learning with dropout

In contrast to traditionary three-layer neural network (shallow structure), deep learning is 

based on a deep architecture consisting of many layers of hidden neurons for modeling. A 

2Available at http://www.public.asu.edu/jye02/Software/SLEP/index.htm
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shallow architecture would involve many duplications of effort to express things and such a 

fat architecture has been shown to suffer from the problem of over-fitting, which leads to a 

poor generalization capability. Instead, deep architecture could more gracefully reuse 

previous computations and discover complicated relations of input [20].

To train a deep architecture, the standard Backpropagation (BP) algorithm did not work well 

with randomly initialized weights because the error feedback becomes progressively noisier 

as it goes back to lower levels (closer to inputs), making the low-level weight updates less 

effective. Even though experiments have shown that if top layers have enough units, the 

deep structure can still bring down training errors small enough, it cannot generalize well to 

new data [21]. This is because the top layers can be effectively trained by gradient based 

algorithms but low-levels cannot. The randomly initialized low-level layers behave like 

random feature detectors so good representations for original data were not achieved leading 

to degraded generalization capability [21]. In 2006, a breakthrough in deep learning has 

made deep architecture training possible by utilizing the restricted Boltzmann machine 

(RBM) to initialize multiple hidden layers one layer at a time in an unsupervised manner [7]. 

With the unsupervised learning, deep learning tries to understand data first, i.e., to obtain a 

task specific representation from data so that a better classification can be achieved. It has 

experimentally proven that the unsupervised learning step plays a critical role in the success 

of deep learning [8]. The proposed deep model shown in Fig. 3 consists of several 

components that will be described bellow.

1) Pre-training with RBM—Each layer in the proposed deep model is an RBM and the 

deep model used in this paper consists of a stack of RBMs. RBM is an energy-based model 

in which a scalar energy is associated with each configuration of the variables in the model, 

and a probability distribution function (PDF) through the energy function is defined. The 

purpose of learning is to modify the energy function so that a desirable PDF can be 

achieved, i.e., to have low energy. A basic RBM model having a visible (input) layer and a 

hidden (output) layer is shown in Fig. 4. The visible layer of the bottom RBM contains real-

valued units (receiving data) and all other RBM layers have binary units. Let v ∈ RM 

represent input data (visible units) and h ∈ 0, 1N denote binary hidden units for the bottom 

RBM, we used Gaussian-Bernoulli RBMs to train it [21], [22]. All other RBMs were trained 

by utilizing Bernoulli-Bernoulli distribution. Variables v and h have a joint probability 

distribution defined as

(4)

where E(v, h) is an energy function and Z is a normalization constant. For real-valued visible 

layer RBMs, E(v, h) is defined as

(5)
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where ci and bj are biases of the ith and jth units in the visible and hidden layers, 

respectively. wij is the weight connecting vi and hj, and σ2 is the variance of v. The 

conditional probability distributions are

(6)

(7)

If both visible and hidden layers are binary, the energy function and conditional probability 

distributions are defined as

(8)

(9)

(10)

Model parameters w, b and c are updated using contrastive divergence [23]. For RBM 

having a real-valued visible layer, the formulas for updating those parameters during each 

iteration are

(11)

(12)

(13)

where <·>d and <·>m denote the expectation computed over data and model distributions 

accordingly, t is iteration index, η is momentum and ε is learning rate. For binary RBM, 

equations (11) and (12) become

(14)
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(15)

Note that the pre-training of RBM is unsupervised, i.e., class label (classification task) or 

desired output (regression) is not needed in the training. After the pre-training, we attached 

the class label on top of the stacked RBMs and utilized an adaptive backpropagation 

algorithm to fine-tune the weights in the model. All binary layers were also converted to 

real-valued units by using their continuous activities. Thus the deep learning model turned to 

be a traditional multilayer perceptron (MLP) but its weights were initialized by RBM.

2) Multi-task learning—In multi-task learning, related tasks are learned simultaneously 

by extracting and utilizing appropriate shared information across tasks to improve 

performance. It has received attention in broad areas recently such as machine learning, data 

mining, computer vision, and bioinformatics [24], [25], [26]. This approach is particularly 

effective when only limited training data for each task is available. It is worth noting that 

neural networks can simultaneously model multiple outputs, making deep learning a natural 

multi-task learning framework if multiple tasks share inputs [7]. The proposed multi-task 

deep learning framework is shown in Fig. 3, where we treated the predictions of class label, 

MMSE and ADAS-Cog as three different tasks and modeled them simultaneously. MMSE, 

and ADAS-Cog were normalized to the range of [0,1] and we used the deep structure as a 

regression model. The class label was coded by the 1-of-k scheme. To classify an input 

vector, we checked the corresponding k outputs and assign it to the class having the largest 

output. One drawback of deep model is over-fitting due to large capacity. This is more 

prominent if training data is limited. To overcome this limitation, we utilized the dropout 

technique to improve training.

3) Dropout with adaptive adaptation—Deep learning achieved excellent results in 

applications where training data size is large. For small sized data sets such as the one in this 

paper, it is still possible for a deep structure to over-fit the data given the fact that it usually 

has tens of thousands or even millions of parameters. To improve the generalization 

capability of the model, the dropout technique tries to prevent weight co-adaptation by 

randomly dropping out some units in the model during training [10], [11]. We incorporated 

the dropout technique in the multi-task learning context to improve AD diagnosis as shown 

in Fig. 3. In the training process, each hidden unit in the model was dropped with a 

probability of 0.5 when a batch of training cases were present. Previous experiments [10] 

showed that it is also beneficial if we apply the “dropout” process to the input layer but with 

a lower probability (i.e., 0.2 in this paper). In the testing procedure, all hidden units and 

inputs were used to compute model outputs for a testing case with appropriate 

compensations, i.e., weights between inputs and the first hidden layer were scaled by 0.8 and 

all other weights were halved.

During the multi-task fine-tuning step, the stochastic gradient descent method with a fixed 

learning factor is usually utilized as [7],
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(16)

where  is the gradient of the cost function L and α is a learning factor. Sometimes, the 

weights update may contain a momentum term [10]. We proposed an adaptive learning 

factor to speed up the adaptation. The motivation of the adaptive learning is that the learning 

factor should be large at locations where gradient is small and vice versa. Assume the 

decrease of L due to the change in wij is approximated by

(17)

then ΔL due to all wij can be computed as

(18)

Suppose we want to decrease L by β%, then Lnew = (1 − β)Lold, and an adaptive learning 

factor α can be determined as

(19)

We set β as 10% in our experiments in this paper. Once the new feature representation is 

learned, an SVM classifier [12] was trained using the learned feature representation.

E. SVM Classifier

Given a set of data pairs , where ri ∈ RM is the learned feature representation from 

subjects, ti ∈ {+1, −1} is a class label (e.g., AD vs. non-AD) associated with ri. An SVM 

defines a hyperplane

(20)

separating the data points into 2 classes. In equation (20), k and e are the hyperplane 

parameters, and ϕ(r) is a function mapping the vector r to a higher dimensional space. The 

hyperplane (20) is determined using the concept of Structural Risk Minimization [12] by 

solving the following optimization problem,

(21)

subject to
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(22)

where C is a regularization parameter and ξi is a slack variable. After the hyperplane is 

determined, an AD case is declared if f (ri ) > 0, or otherwise a non-AD case is declared.

III. Results and discussions

A. Experimental setup

1) Ten-fold cross-validation—We consider four classification tasks including AD 

patients vs Healthy Control subjects (AD vs HC), MCI patients vs HC (MCI vs HC), AD 

patients vs MCI patients (AD vs MCI) and MCI-converted vs MCI-non converted (MCI.C 

vs MCI.NC). For each task, we utilized a ten-fold cross-validation (CV) scheme to evaluate 

the proposed method. In the ten-fold CV, we randomly divided the data set into 10 parts and 

for one run, we separated one part for testing and applied the proposed framework to the 

remaining data to train a classification model. This procedure was repeated 10 times so that 

each part was tested once. Finally, testing accuracies were computed. To obtain a more 

reliable estimate of the performance, we repeated the ten-fold CV ten times for each task 

with different random data partitions and computed average accuracy. To compare different 

classification models, we kept the same data partitions in the ten-fold CV and utilized the 

paired-t test to evaluate if there is a significant performance difference.

2) Hyperparameter determination—We did preliminary experiments to determine the 

structure of the deep learning model. It was found that using three hidden layers with hidden 

units of 100-50-20 worked the best among the candidate structures considered and was thus 

utilized in our experiments. For the SVM classifier, we tried different kernels and a linear 

kernel was chosen. We also did a grid search for the “soft margin” parameter in the linear 

kernel SVM model but it did not improve the classification accuracies. Therefore, in all 

experiments, we utilized a three hidden-layer model with a structure of 100-50-20 for 

feature learning and a linear SVM with default soft margin as the classifier.

3) Impact assessment for individual component—There are four components in the 

proposed framework including PCA, stability selection, dropout and multi-task learning. 

Inspired by “sensitivity analysis” and “impact assessment” that analyze inputs of or 

components in a model and identify their impacts on the model objectives by varying the 

inputs [28]. We incorporated a similar concept to evaluate the impact of each component on 

model performance by varying the component (presence vs absence). ‘Absence’ means that 

the component was not included in the model.

4) Methods for comparison—We compared the proposed method with a baseline 

method and a similar deep learning system proposed in [6]. The baseline method consists of 

all components in the proposed system except the deep learning step. The work by Suk in 

[6] is a auto-encoder based deep learning method in which feature representations for MRI, 

PET and CSF from the same data set were learned separately and combined by a linear 

SVM classifier. They also combined the learned representations with original features for 

AD diagnosis.
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B. Results

Table I shows the overall performances of the proposed method and the impact of each 

component in the framework. The proposed method performed the best in diagnosing AD 

and MCI patients, and discriminating MCI patients from AD patients with accuracies of 

91.4%, 77.4% and 70.1%, respectively. It is significantly better than the baseline method 

that obtained accuracies of 86.4%, 72.1% and 61.5% for the diagnoses. In the MCI 

conversion diagnosis (MCI.C vs MCI.NC), the PCA component slightly degraded the 

proposed method (from 58.1% to 57.4%) but it is still significantly better than the baseline 

method (57.4% vs 50.6%).

Among those components, it is obvious that “dropout” has the most significant impact on 

the performances. Without “dropout”, deep learning did not significantly improve the 

baseline method (68.2% vs 67.7% in terms of average acc.). The least important component 

is “PCA”, i.e., the average acc. slightly dropped from 74.1% to 73.4% without the PCA 

component. Without “stability selection” and “multi-task learning”, the average accuracy 

dropped from 74.1% to 72.5% and 72.4%, respectively.

We conducted a paired-t test between results by the proposed method and those from 

classical deep learning (“Dropout”). Table II lists the improvements and p-values. The 

average improvement is 5.9% and the improvements for all the four classification tasks are 

significant.

The work by Suk [6] on the same data set is also shown in Table II, where “SAEF” 

corresponds to the method using features learned by a deep auto-encoder and “LLF+SAEF” 

represents the method that combines original features with the SAEF features for AD 

diagnosis. The AD vs MCI classification experiment was not conducted in [6]. The proposed 

method (75.4%) outperformed the SAEF method (with an average accuracy of 70.6%). By 

combining SAEF with LLF (LLF+SAEF), the average accuracy was increased to 74.2% 

(Last column in Table II).

C. Discussions

There are usually two ways to increase the generalization capability of a model, adding 

regularization (L1 or L2 norm) on weights or using a committee machine. However, solving 

the regularization problem is usually challenging especially in the deep learning context. In 

addition, the committee machine technique requires averaging many separately trained 

models to compute a prediction for a testing case, which is time consuming for deep 

learning. The dropout procedure does the both (constraint and committee machine) 

simultaneously in a very efficient way. 1) Each sub-model in training is a sampled model 

from all possible ones and all sub-models share weights. The weight sharing property is 

equivalent to the L1 or L2 norm constraint on weights, and 2) the testing procedure is an 

approximation of averaging all trained sub-models for a testing case but it does not 

separately store them because they share weights. This is an extremely efficient and smart 

implementation of a committee machine [10], [11].

The impact evaluation method was inspired by the “sensitivity analysis” and “impact 

assessment” [28]. We were aiming to identify the impact on performance of each component 
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in the model by excluding the component from the pipeline. Note that we did not try to 

decouple the component from the system. This evaluation method may not be a strict 

sensitivity analysis or impact assessment by means of their definitions, but we can verify 

each component if it can improve the AD diagnosis when it is included in the proposed 

system. Our experiments showed that the dropout component has the largest impact on the 

performance, multi-task learning ranked the second, stability selection the third, and PCA 

has the least impact on the performance.

In terms of stability selection and computational efficiency, there were usually around 40 

features left after the stability selection and it took about 1 hour for a personal computer to 

conduct a ten-fold CV evaluation for one task. The number of features that were chosen was 

determined by stability selection, in which the Lasso algorithm ran 50 times with different 

values of regularization parameter (λ). In each run, Lasso chose different features and a 

probability of being chosen for each feature was computed in the 50 runs. Finally, a feature 

was chosen if its probability is larger than 0.5.

It is worth to note that the results by the proposed method in Table I and Table II only used 

the new representations learned by the deep model. We tried to combine the new 

representations with the original features but the combination did not improve the 

performance. In [6], new representations learned from auto-encoder did not perform well 

unless they were combined with the original features. Our experiment also showed that the 

deep model without dropout just performed comparably as the baseline method. It seems 

that traditional deep learning cannot extract information effectively from small data sets 

unless it is regularized by techniques such as dropout.

In [29], a multi-kernel SVM (MK-SVM) method was applied to the same data set to 

combine the original LLF features for AD diagnosis, and achieved 93.2% and 76.4% for AD 

vs HC and MCI vs HC classifications, respectively. The MCI conversion diagnosis and AD 

vs MCI classification were not conducted. In [6], utilizing the MK-SVM method to combine 

SAEF features from MRI, PET and CSF boosted the performances to 95.9%, 85.0% and 

75.8% for the three tasks (AD vs MCI classification was not performed), respectively. Since 

the dropout technique improved upon the basic deep learning, we are currently investigating 

if the MK-SVM method can further boost the performance of the proposed system.

We did not attempt to perform a comprehensive comparison study of the proposed method 

with others that have been applied to this data set in the literature. Instead, we have 

evaluated some recently proposed advanced machine learning techniques for AD diagnosis 

including Lasso, stability selection, multi-task learning, deep learning and dropout. The 

dropout technique seems to be an effective method of regularization for learning with small 

data sets. Without dropout, deep learning has no advantage over the baseline method on 

ANDI data set (68.2% vs 67.7%). Note that dropout is computationally very efficient as 

compared to either L1 norm based regularization or committee machine and it can be 

extended to many models other than the deep model as discussed in this paper.
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IV. Conclusion

Our proposed method achieved 91.4%, 77.4%, 70.1% and 57.4% accuracies for AD vs HC, 

MCI vs HC, AD vs MCI, and MCI.c vs MCI.NC classifications, respectively. The 

framework consists of multiple components including PCA, stability selection, dropout and 

multi-task deep learning. We showed that dropout is the most effective one. This is not 

surprising because the size of ADNI data is relatively small compared to that of the deep 

structure utilized in this paper. Classical deep learning does not perform well on this small 

data set, but with the dropout technique, the average accuracy was improved by 5.9% on 

average. We plan to incorporate MK-SVM [6] into our method for further improving AD 

diagnosis.
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Fig. 1. 
Diagram of the proposed multi-task deep learning framework.
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Fig. 2. 
Principal component analysis example. PC 1 contains the most energy of the data but does 

not have any discrimination information for the ‘red’ and ‘blue’ classes.
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Fig. 3. 
Multi-task deep learning with dropout. “x” denotes a dropped unit.

Li et al. Page 16

IEEE J Biomed Health Inform. Author manuscript; available in PMC 2016 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
A basic RBM model.
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