959 research outputs found

    Brain Tumor Characterization Using Radiogenomics in Artificial Intelligence Framework

    Get PDF
    Brain tumor characterization (BTC) is the process of knowing the underlying cause of brain tumors and their characteristics through various approaches such as tumor segmentation, classification, detection, and risk analysis. The substantial brain tumor characterization includes the identification of the molecular signature of various useful genomes whose alteration causes the brain tumor. The radiomics approach uses the radiological image for disease characterization by extracting quantitative radiomics features in the artificial intelligence (AI) environment. However, when considering a higher level of disease characteristics such as genetic information and mutation status, the combined study of “radiomics and genomics” has been considered under the umbrella of “radiogenomics”. Furthermore, AI in a radiogenomics’ environment offers benefits/advantages such as the finalized outcome of personalized treatment and individualized medicine. The proposed study summarizes the brain tumor’s characterization in the prospect of an emerging field of research, i.e., radiomics and radiogenomics in an AI environment, with the help of statistical observation and risk-of-bias (RoB) analysis. The PRISMA search approach was used to find 121 relevant studies for the proposed review using IEEE, Google Scholar, PubMed, MDPI, and Scopus. Our findings indicate that both radiomics and radiogenomics have been successfully applied aggressively to several oncology applications with numerous advantages. Furthermore, under the AI paradigm, both the conventional and deep radiomics features have made an impact on the favorable outcomes of the radiogenomics approach of BTC. Furthermore, risk-of-bias (RoB) analysis offers a better understanding of the architectures with stronger benefits of AI by providing the bias involved in them

    Artificial intelligence in cancer imaging: Clinical challenges and applications

    Get PDF
    Judgement, as one of the core tenets of medicine, relies upon the integration of multilayered data with nuanced decision making. Cancer offers a unique context for medical decisions given not only its variegated forms with evolution of disease but also the need to take into account the individual condition of patients, their ability to receive treatment, and their responses to treatment. Challenges remain in the accurate detection, characterization, and monitoring of cancers despite improved technologies. Radiographic assessment of disease most commonly relies upon visual evaluations, the interpretations of which may be augmented by advanced computational analyses. In particular, artificial intelligence (AI) promises to make great strides in the qualitative interpretation of cancer imaging by expert clinicians, including volumetric delineation of tumors over time, extrapolation of the tumor genotype and biological course from its radiographic phenotype, prediction of clinical outcome, and assessment of the impact of disease and treatment on adjacent organs. AI may automate processes in the initial interpretation of images and shift the clinical workflow of radiographic detection, management decisions on whether or not to administer an intervention, and subsequent observation to a yet to be envisioned paradigm. Here, the authors review the current state of AI as applied to medical imaging of cancer and describe advances in 4 tumor types (lung, brain, breast, and prostate) to illustrate how common clinical problems are being addressed. Although most studies evaluating AI applications in oncology to date have not been vigorously validated for reproducibility and generalizability, the results do highlight increasingly concerted efforts in pushing AI technology to clinical use and to impact future directions in cancer care

    Role of Artificial Intelligence in Radiogenomics for Cancers in the Era of Precision Medicine

    Get PDF
    Radiogenomics, a combination of “Radiomics” and “Genomics,” using Artificial Intelligence (AI) has recently emerged as the state-of-the-art science in precision medicine, especially in oncology care. Radiogenomics syndicates large-scale quantifiable data extracted from radiological medical images enveloped with personalized genomic phenotypes. It fabricates a prediction model through various AI methods to stratify the risk of patients, monitor therapeutic approaches, and assess clinical outcomes. It has recently shown tremendous achievements in prognosis, treatment planning, survival prediction, heterogeneity analysis, reoccurrence, and progression-free survival for human cancer study. Although AI has shown immense performance in oncology care in various clinical aspects, it has several challenges and limitations. The proposed review provides an overview of radiogenomics with the viewpoints on the role of AI in terms of its promises for computa-tional as well as oncological aspects and offers achievements and opportunities in the era of precision medicine. The review also presents various recommendations to diminish these obstacles

    Deep learning applications in neuro-oncology

    Get PDF
    Deep learning (DL) is a relatively newer subdomain of machine learning (ML) with incredible potential for certain applications in the medical field. Given recent advances in its use in neuro-oncology, its role in diagnosing, prognosticating, and managing the care of cancer patients has been the subject of many research studies. The gamut of studies has shown that the landscape of algorithmic methods is constantly improving with each iteration from its inception. With the increase in the availability of high-quality data, more training sets will allow for higher fidelity models. However, logistical and ethical concerns over a prospective trial comparing prognostic abilities of DL and physicians severely limit the ability of this technology to be widely adopted. One of the medical tenets is judgment, a facet of medical decision making in DL that is often missing because of its inherent nature as a black box. A natural distrust for newer technology, combined with a lack of autonomy that is normally expected in our current medical practices, is just one of several important limitations in implementation. In our review, we will first define and outline the different types of artificial intelligence (AI) as well as the role of AI in the current advances of clinical medicine. We briefly highlight several of the salient studies using different methods of DL in the realm of neuroradiology and summarize the key findings and challenges faced when using this nascent technology, particularly ethical challenges that could be faced by users of DL

    Longitudinal Brain Tumor Tracking, Tumor Grading, and Patient Survival Prediction Using MRI

    Get PDF
    This work aims to develop novel methods for brain tumor classification, longitudinal brain tumor tracking, and patient survival prediction. Consequently, this dissertation proposes three tasks. First, we develop a framework for brain tumor segmentation prediction in longitudinal multimodal magnetic resonance imaging (mMRI) scans, comprising two methods: feature fusion and joint label fusion (JLF). The first method fuses stochastic multi-resolution texture features with tumor cell density features, in order to obtain tumor segmentation predictions in follow-up scans from a baseline pre-operative timepoint. The second method utilizes JLF to combine segmentation labels obtained from (i) the stochastic texture feature-based and Random Forest (RF)-based tumor segmentation method; and (ii) another state-of-the-art tumor growth and segmentation method known as boosted Glioma Image Segmentation and Registration (GLISTRboost, or GB). With the advantages of feature fusion and label fusion, we achieve state-of-the-art brain tumor segmentation prediction. Second, we propose a deep neural network (DNN) learning-based method for brain tumor type and subtype grading using phenotypic and genotypic data, following the World Health Organization (WHO) criteria. In addition, the classification method integrates a cellularity feature which is derived from the morphology of a pathology image to improve classification performance. The proposed method achieves state-of-the-art performance for tumor grading following the new CNS tumor grading criteria. Finally, we investigate brain tumor volume segmentation, tumor subtype classification, and overall patient survival prediction, and then we propose a new context- aware deep learning method, known as the Context Aware Convolutional Neural Network (CANet). Using the proposed method, we participated in the Multimodal Brain Tumor Segmentation Challenge 2019 (BraTS 2019) for brain tumor volume segmentation and overall survival prediction tasks. In addition, we also participated in the Radiology-Pathology Challenge 2019 (CPM-RadPath 2019) for Brain Tumor Subtype Classification, organized by the Medical Image Computing & Computer Assisted Intervention (MICCAI) Society. The online evaluation results show that the proposed methods offer competitive performance from their use of state-of-the-art methods in tumor volume segmentation, promising performance on overall survival prediction, and state-of-the-art performance on tumor subtype classification. Moreover, our result was ranked second place in the testing phase of the CPM-RadPath 2019

    An Update on Machine Learning in Neuro-oncology Diagnostics

    Get PDF
    Imaging biomarkers in neuro-oncology are used for diagnosis, prognosis and treatment response monitoring. Magnetic resonance imaging is typically used throughout the patient pathway because routine structural imaging provides detailed anatomical and pathological information and advanced techniques provide additional physiological detail. Following image feature extraction, machine learning allows accurate classification in a variety of scenarios. Machine learning also enables image feature extraction de novo although the low prevalence of brain tumours makes such approaches challenging. Much research is applied to determining molecular profiles, histological tumour grade and prognosis at the time that patients first present with a brain tumour. Following treatment, differentiating a treatment response from a post-treatment related effect is clinically important and also an area of study. Most of the evidence is low level having been obtained retrospectively and in single centres.Comment: arXiv admin note: substantial text overlap with arXiv:1910.0744

    Radiomics in Glioblastoma: Current Status and Challenges Facing Clinical Implementation

    Get PDF
    Radiomics analysis has had remarkable progress along with advances in medical imaging, most notability in central nervous system malignancies. Radiomics refers to the extraction of a large number of quantitative features that describe the intensity, texture and geometrical characteristics attributed to the tumor radiographic data. These features have been used to build predictive models for diagnosis, prognosis, and therapeutic response. Such models are being combined with clinical, biological, genetics and proteomic features to enhance reproducibility. Broadly, the four steps necessary for radiomic analysis are: (1) image acquisition, (2) segmentation or labeling, (3) feature extraction, and (4) statistical analysis. Major methodological challenges remain prior to clinical implementation. Essential steps include: adoption of an optimized standard imaging process, establishing a common criterion for performing segmentation, fully automated extraction of radiomic features without redundancy, and robust statistical modeling validated in the prospective setting. This review walks through these steps in detail, as it pertains to high grade gliomas. The impact on precision medicine will be discussed, as well as the challenges facing clinical implementation of radiomic in the current management of glioblastoma
    • 

    corecore