4 research outputs found

    Computational Image Analysis For Axonal Transport, Phenotypic Profiling, And Digital Pathology

    Get PDF
    Recent advances in fluorescent probes, microscopy, and imaging platforms have revolutionized biology and medicine, generating multi-dimensional image datasets at unprecedented scales. Traditional, low-throughput methods of image analysis are inadequate to handle the increased “volume, velocity, and variety” that characterize the realm of big data. Thus, biomedical imaging requires a new set of tools, which include advanced computer vision and machine learning algorithms. In this work, we develop computational image analysis solutions to biological questions at the level of single-molecules, cells, and tissues. At the molecular level, we dissect the regulation of dynein-dynactin transport initiation using in vitro reconstitution, single-particle tracking, super-resolution microscopy, live-cell imaging in neurons, and computational modeling. We show that at least two mechanisms regulate dynein transport initiation neurons: (1) cytoplasmic linker proteins, which are regulated by phosphorylation, increase the capture radius around the microtubule, thus reducing the time cargo spends in a diffusive search; and (2) a spatial gradient of tyrosinated alpha-tubulin enriched in the distal axon increases the affinity of dynein-dynactin for microtubules. Together, these mechanisms support a multi-modal recruitment model where interacting layers of regulation provide efficient, robust, and spatiotemporal control of transport initiation. At the cellular level, we develop and train deep residual convolutional neural networks on a large and diverse set of cellular microscopy images. Then, we apply networks trained for one task as deep feature extractors for unsupervised phenotypic profiling in a different task. We show that neural networks trained on one dataset encode robust image phenotypes that are sufficient to cluster subcellular structures by type and separate drug compounds by the mechanism of action, without additional training, supporting the strength and flexibility of this approach. Future applications include phenotypic profiling in image-based screens, where clustering genetic or drug treatments by image phenotypes may reveal novel relationships among genetic or pharmacologic pathways. Finally, at the tissue level, we apply deep learning pipelines in digital pathology to segment cardiac tissue and classify clinical heart failure using whole-slide images of cardiac histopathology. Together, these results demonstrate the power and promise of computational image analysis, computer vision, and deep learning in biological image analysis

    Impactos da inteligência artificial na área contábil

    Get PDF
    A Inteligência não possui uma definição exata, pode-se dizer que está associada ao entendimento, raciocínio, interpretação e a utilização do conhecimento adquirido para resolver situações e problemas propostos. Trazendo em pauta a Artificial, definimo-la como a confecção de máquinas com a capacidade de aprender, sendo estas programadas previamente, fazendo uso de algoritmos bem elaborados e complexos que proporcionem a tomada de decisões, especulações e até interações baseadas nos dados fornecidos. A problemática dessa situação é o fato de que a Inteligência Artificial nunca se cansa, combinada com sua completa falta de preconceito e menor margem de erro, faz dela uma tecnologia fundamental para a análise financeira. Dentro da contabilidade ela ser aplicada no cálculo de tributos e na identificação de pontos de auditoria, além de realizar a classificação fiscal de documentos fazer a análise de comportamento dos indicadores de resultado, dentre outras funções. Assim, o objetivo principal desse trabalho é discutir os impactos da inteligência artificial na área contábil. Para alcançar tais resultados utilizou-se uma metodologia qualitativa de cunho bibliográfico. Concluiu-se que a contabilidade, assim como boa parte dos setores, está sendo radicalmente impactada pela crescente influência da Inteligência Artificial, que não apenas possibilitam o rastreamento de inventário sem contagem manual, como permite que as organizações saibam em qualquer momento a sua posição atual de ativos, por exemplo. Assim, pontua-se que a Inteligência Artificial muda a forma como os contadores trabalham, a visibilidade em tempo real de informações, que complementam os dados do ERP e dos sistemas contábeis, permite uma visão mais clara da empresa

    Generative Adversarial Network (GAN) for Medical Image Synthesis and Augmentation

    Get PDF
    Medical image processing aided by artificial intelligence (AI) and machine learning (ML) significantly improves medical diagnosis and decision making. However, the difficulty to access well-annotated medical images becomes one of the main constraints on further improving this technology. Generative adversarial network (GAN) is a DNN framework for data synthetization, which provides a practical solution for medical image augmentation and translation. In this study, we first perform a quantitative survey on the published studies on GAN for medical image processing since 2017. Then a novel adaptive cycle-consistent adversarial network (Ad CycleGAN) is proposed. We respectively use a malaria blood cell dataset (19,578 images) and a COVID-19 chest X-ray dataset (2,347 images) to test the new Ad CycleGAN. The quantitative metrics include mean squared error (MSE), root mean squared error (RMSE), peak signal-to-noise ratio (PSNR), universal image quality index (UIQI), spatial correlation coefficient (SCC), spectral angle mapper (SAM), visual information fidelity (VIF), Frechet inception distance (FID), and the classification accuracy of the synthetic images. The CycleGAN and variant autoencoder (VAE) are also implemented and evaluated as comparison. The experiment results on malaria blood cell images indicate that the Ad CycleGAN generates more valid images compared to CycleGAN or VAE. The synthetic images by Ad CycleGAN or CycleGAN have better quality than those by VAE. The synthetic images by Ad CycleGAN have the highest accuracy of 99.61%. In the experiment on COVID-19 chest X-ray, the synthetic images by Ad CycleGAN or CycleGAN have higher quality than those generated by variant autoencoder (VAE). However, the synthetic images generated through the homogenous image augmentation process have better quality than those synthesized through the image translation process. The synthetic images by Ad CycleGAN have higher accuracy of 95.31% compared to the accuracy of the images by CycleGAN of 93.75%. In conclusion, the proposed Ad CycleGAN provides a new path to synthesize medical images with desired diagnostic or pathological patterns. It is considered a new approach of conditional GAN with effective control power upon the synthetic image domain. The findings offer a new path to improve the deep neural network performance in medical image processing
    corecore