4 research outputs found

    Early detection of breast cancer using mammography images and software engineering process

    Get PDF
    The breast cancer has affected a wide region of women as a particular case. Therefore, different researchers have focused on the early detection of this disease to overcome it in efficient way. In this paper, an early breast cancer detection system has been proposed based on mammography images. The proposed system adopts deep-learning technique to increase the accuracy of detection. The convolutional neural network (CNN) model is considered for preparing the datasets of training and test. It is important to note that the software engineering process model has been adopted in constructing the proposed algorithm. This is to increase the reliably, flexibility and extendibility of the system. The user interfaces of the system are designed as a website used at country side general purpose (GP) health centers for early detection to the disease under lacking in specialist medical staff. The obtained results show the efficiency of the proposed system in terms of accuracy up to more than 90% and decrease the efforts of medical staff as well as helping the patients. As a conclusion, the proposed system can help patients by early detecting the breast cancer at far places from hospital and referring them to nearest specialist center

    Deep Learning Scene Recognition Method Based on Localization Enhancement

    No full text
    With the rapid development of indoor localization in recent years; signals of opportunity have become a reliable and convenient source for indoor localization. The mobile device cannot only capture images of the indoor environment in real-time, but can also obtain one or more different types of signals of opportunity as well. Based on this, we design a convolutional neural network (CNN) model that concatenates features of image data and signals of opportunity for localization by using indoor scene datasets and simulating the situation of indoor location probability. Using the method of transfer learning on the Inception V3 network model feature information is added to assist in scene recognition. The experimental result shows that, for two different experiment sceneries, the accuracies of the prediction results are 97.0% and 96.6% using the proposed model, compared to 69.0% and 81.2% by the method of overlapping positioning information and the base map, and compared to 73.3% and 77.7% by using the fine-tuned Inception V3 model. The accuracy of indoor scene recognition is improved; in particular, the error rate at the spatial connection of different scenes is decreased, and the recognition rate of similar scenes is increased

    Deep Learning Scene Recognition Method Based on Localization Enhancement

    No full text
    With the rapid development of indoor localization in recent years; signals of opportunity have become a reliable and convenient source for indoor localization. The mobile device cannot only capture images of the indoor environment in real-time, but can also obtain one or more different types of signals of opportunity as well. Based on this, we design a convolutional neural network (CNN) model that concatenates features of image data and signals of opportunity for localization by using indoor scene datasets and simulating the situation of indoor location probability. Using the method of transfer learning on the Inception V3 network model feature information is added to assist in scene recognition. The experimental result shows that, for two different experiment sceneries, the accuracies of the prediction results are 97.0% and 96.6% using the proposed model, compared to 69.0% and 81.2% by the method of overlapping positioning information and the base map, and compared to 73.3% and 77.7% by using the fine-tuned Inception V3 model. The accuracy of indoor scene recognition is improved; in particular, the error rate at the spatial connection of different scenes is decreased, and the recognition rate of similar scenes is increased
    corecore