3 research outputs found

    From MFN to SFN: Performance Prediction Through Machine Learning

    Get PDF
    In the last decade, the transition of digital terrestrial television (DTT) systems from multi-frequency networks (MFNs) to single-frequency networks (SFNs) has become a reality. SFN offers multiple advantages concerning MFN, such as more efficient management of the radioelectric spectrum, homogenizing the network parameters, and a potential SFN gain. However, the transition process can be cumbersome for operators due to the multiple measurement campaigns and required finetuning of the final SFN system to ensure the desired quality of service. To avoid time-consuming field measurements and reduce the costs associated with the SFN implementation, this paper aims to predict the performance of an SFN system from the legacy MFN and position data through machine learning (ML) algorithms. It is proposed a ML concatenated structure based on classification and regression to predict SFN electric-field strength, modulation error ratio, and gain. The model's training and test process are performed with a dataset from an SFN/MFN trial in Ghent, Belgium. Multiple algorithms have been tuned and compared to extract the data patterns and select the most accurate algorithms. The best performance to predict the SFN electric-field strength is obtained with a coefficient of determination (R2) of 0.93, modulation error ratio of 0.98, and SFN gain of 0.89 starting from MFN parameters and position data. The proposed method allows classifying the data points according to positive or negative SFN gain with an accuracy of 0.97

    Interpretable AI-based large-scale 3D pathloss prediction model for enabling emerging self-driving networks

    Get PDF
    In modern wireless communication systems, radio propagation modeling to estimate pathloss has always been a fundamental task in system design and optimization. The state-of-the-art empirical propagation models are based on measurements in specific environments and limited in their ability to capture idiosyncrasies of various propagation environments. To cope with this problem, ray-tracing based solutions are used in commercial planning tools, but they tend to be extremely time-consuming and expensive. We propose a Machine Learning (ML)-based model that leverages novel key predictors for estimating pathloss. By quantitatively evaluating the ability of various ML algorithms in terms of predictive, generalization and computational performance, our results show that Light Gradient Boosting Machine (LightGBM) algorithm overall outperforms others, even with sparse training data, by providing a 65% increase in prediction accuracy as compared to empirical models and 13x decrease in prediction time as compared to ray-tracing. To address the interpretability challenge that thwarts the adoption of most Machine Learning (ML)-based models, we perform extensive secondary analysis using SHapley Additive exPlanations (SHAP) method, yielding many practically useful insights that can be leveraged for intelligently tuning the network configuration, selective enrichment of training data in real networks and for building lighter ML-based propagation model to enable low-latency use-cases

    Novel improvements of empirical wireless channel models and proposals of machine-learning-based path loss prediction models for future communication networks.

    Get PDF
    Doctoral Degree. University of KwaZulu-Natal, Durban.Path loss is the primary factor that determines the overall coverage of networks. Therefore, designing reliable wireless communication systems requires accurate path loss prediction models. Future wireless mobile systems will rely mainly on the super-high frequency (SHF) and the millimeter-wave (mmWave) frequency bands due to the massively available bandwidths that will meet projected users’ demands, such as the needs of the fifth-generation (5G) wireless systems and other high-speed multimedia services. However, these bands are more sensitive and exhibit a different propagation behavior compared to the frequency bands below 6 GHz. Hence, improving the existing models and developing new models are vital for characterizing the wireless communication channel in both indoor and outdoor environments for future SHF and mmWave services. This dissertation proposes new path loss and LOS probability models and efficiently improves the well-known close-in (CI) free space reference distance model and the floating-intercept (FI) model. Real measured data was taken for both line-of-sight (LOS) and non-line-of-sight (NLOS) communication scenarios in a typical indoor corridor environment at three selected frequencies within the SHF band, namely 14 GHz, 18 GHz, and 22 GHz. The research finding of this work reveals that the proposed models have better performance in terms of their accuracy in fitting real measured data collected from measurement campaigns. In addition, this research studies the impact of the angle of arrival and the antenna heights on the current and improved CI and FI models. The results show that the proposed improved models provide better stability and sensitivity to the change of these parameters. Furthermore, the mean square error between the models and their improved versions was presented as another proof of the superiority of the proposed improvement. Moreover, this research shows that shadow fading’s standard deviation can have a notable reduction in both the LOS and NLOS scenarios (especially in the NLOS), which means higher precision in predicting the path loss compared to the existing standard models. After that, the dissertation presents investigations on high-ordering the dependency of the standard CI path loss model on the distance between the transmitting and the receiving antennas at the logarithmic scale. Two improved models are provided and discussed: second-order CI and third-order CI models. The main results reveal that the proposed two models outperform the standard CI model and notable reductions in the shadow fading’s standard deviation values as the model’s order increases, which means that more precision is provided. This part of the dissertation also provides a trade-off study between the model’s accuracy and simplicity
    corecore