220,618 research outputs found

    Deep Multi-View Learning for Visual Understanding

    Get PDF
    PhD ThesisMulti-view data is the result of an entity being perceived or represented from multiple perspectives. Plenty of applications in visual understanding contain multi-view data. For example, the face images for training a recognition system are usually captured by different devices from multiple angles. This thesis focuses on the cross-view visual recognition problems, e.g., identifying the face images of the same person across different cameras. Several representative multi-view settings, from the supervised multi-view learning to the more challenging unsupervised domain adaptive (UDA) multi-view learning, are investigated. Novel multi-view learning algorithms are proposed correspondingly. To be more specific, the proposed methods are based on the advanced deep neural network (DNN) architectures for better handling visual data. However, directly combining the multi-view learning objectives with DNN can result in different issues, e.g., on scalability, and limit the application scenarios and model performance. Corresponding novelties in DNN methods are thus required to solve them. This thesis is organised into three parts. Each chapter focuses on a multi-view learning setting with novel solutions and is detailed as follows: Chapter 3 A supervised multi-view learning setting with two different views are studied. To recognise the data samples across views, one strategy is aligning them in a common feature space via correlation maximisation. It is also known as canonical correlation analysis (CCA). Deep CCA has been proposed for better performance with the non-linear projection via deep neural networks. Existing deep CCA models typically decorrelate the deep feature dimensions of each view before their Euclidean distances are minimised in the common space. This feature decorrelation is achieved by enforcing an exact decorrelation constraint which is computationally expensive due to the matrix inversion or SVD operations. Therefore, existing deep CCA models are inefficient and have scalability issues. Furthermore, the exact decorrelation is incompatible with the gradient based deep model training and results in sub-optimal solution. To overcome these aforementioned issues, a novel deep CCA model Soft CCA is introduced in this thesis. Specifically, the exact decorrelation is replaced by soft decorrelation via a mini-batch based Stochastic Decorrelation Loss (SDL). It can be jointly optimised with the other training objectives. In addition, our SDL loss can be applied to other deep models beyond multi-view learning. Chapter 4 The supervised multi-view learning setting, whereby more than two views exist, are studied in this chapter. Recently developed deep multi-view learning algorithms either learn a latent visual representation based on a single semantic level and/or require laborious human annotation of these factors as attributes. A novel deep neural network architecture, called Multi- Level Factorisation Net (MLFN), is proposed to automatically factorise the visual appearance into latent discriminative factors at multiple semantic levels without manual annotation. The main purpose is forcing different views share the same latent factors so that they are can be aligned at all layers. Specifically, MLFN is composed of multiple stacked blocks. Each block contains multiple factor modules to model latent factors at a specific level, and factor selection modules that dynamically select the factor modules to interpret the content of each input image. The outputs of the factor selection modules also provide a compact latent factor descriptor that is complementary to the conventional deeply learned feature, and they can be fused efficiently. The effectiveness of the proposed MLFN is demonstrated by not only the large-scale cross-view recognition problems but also the general object categorisation tasks. Chapter 5 The last problem is a special unsupervised domain adaptation setting called unsupervised domain adaptive (UDA) multi-view learning. It contains a fully annotated dataset as the source domain and another unsupervised dataset with relevant tasks as the target domain. The main purpose is to improve the performance of the unlabelled dataset with the annotated data from the other dataset. More importantly, this setting further requires both the source and target domains are multi-view datasets with relevant tasks. Therefore, the assumption of the aligned label space across domains is inappropriate in the UDA multi-view learning. For example, the person re-identification (Re-ID) datasets built on different surveillance scenarios are with images of different people captured and should be given disjoint person identity labels. Existing methods for UDA multi-view learning problems are aligning different domains either in the raw image space or a feature embedding space for domain alignment. In this thesis, a different framework, multi-task learning, is adopted with the domain specific objectives for a common space learning. Specifically, such common space is proposed to enable the knowledge transfer. The conventional supervised losses can be used for the labelled source data while the unsupervised objectives for the target domain play the key roles in domain adaptation. Two novel unsupervised objectives are introduced for UDA multi-view learning and result in two models as below. The first model, termed common factorised space model (CFSM), is built on the assumptions that the semantic latent attributes are shared between the source and target domains since they are relevant multi-view learning tasks. Different from the existing methods that based on domain alignment, CFSM emphasizes on transferring the information across domains via discovering discriminative latent factors in the proposed common space. However, the multi-view data from target domain is without labels. Therefore, an unsupervised factorisation loss is derived and applied on the common space for latent factors discovery across domains. The second model still learns a shared embedding space with multi-view data from both domains but with a different assumption. It attempts to discover the latent correspondence of multi-view data in the unsupervised target data. The target dataā€™s contribution comes from a clustering process. Each cluster thus reveals the underlying cross-view correspondences across multiple views in target domain. To this end, a novel Stochastic Inference for Deep Clustering (SIDC) method is proposed. It reduces self-reinforcing errors that lead to premature convergence to a sub-optimal solution by changing the conventional deterministic cluster assignment to a stochastic one

    Multi-view Data Analysis

    Get PDF
    Multi-view data analysis is a key technology for making effective decisions by leveraging information from multiple data sources. The process of data acquisition across various sensory modalities gives rise to the heterogeneous property of data. In my thesis, multi-view data representations are studied towards exploiting the enriched information encoded in different domains or feature types, and novel algorithms are formulated to enhance feature discriminability. Extracting informative data representation is a critical step in visual recognition and data mining tasks. Multi-view embeddings provide a new way of representation learning to bridge the semantic gap between the low-level observations and high-level human comprehensible knowledge beneļ¬tting from enriched information in multiple modalities.Recent advances on multi-view learning have introduced a new paradigm in jointly modeling cross-modal data. Subspace learning method, which extracts compact features by exploiting a common latent space and fuses multi-view information, has emerged proiminent among different categories of multi-view learning techniques. This thesis provides novel solutions in learning compact and discriminative multi-view data representations by exploiting the data structures in low dimensional subspace. We also demonstrate the performance of the learned representation scheme on a number of challenging tasks in recognition, retrieval and ranking problems.The major contribution of the thesis is a uniļ¬ed solution for subspace learning methods, which is extensible for multiple views, supervised learning, and non-linear transformations. Traditional statistical learning techniques including Canonical Correlation Analysis, Partial Least Square regression and Linear Discriminant Analysis are studied by constructing graphs of speciļ¬c forms under the same framework. Methods using non-linear transforms based on kernels and (deep) neural networks are derived, which lead to superior performance compared to the linear ones. A novel multi-view discriminant embedding method is proposed by taking the view difference into consideration. Secondly, a multiview nonparametric discriminant analysis method is introduced by exploiting the class boundary structure and discrepancy information of the available views. This allows for multiple projecion directions, by relaxing the Gaussian distribution assumption of related methods. Thirdly, we propose a composite ranking method by keeping a close correlation with the individual rankings for optimal rank fusion. We propose a multi-objective solution to ranking problems by capturing inter-view and intra-view information using autoencoderlike networks. Finally, a novel end-to-end solution is introduced to enhance joint ranking with minimum view-speciļ¬c ranking loss, so that we can achieve the maximum global view agreements within a single optimization process.In summary, this thesis aims to address the challenges in representing multi-view data across different tasks. The proposed solutions have shown superior performance in numerous tasks, including object recognition, cross-modal image retrieval, face recognition and object ranking
    • ā€¦
    corecore