113 research outputs found

    Channel State Information from pure communication to sense and track human motion: A survey

    Get PDF
    Human motion detection and activity recognition are becoming vital for the applications in smart homes. Traditional Human Activity Recognition (HAR) mechanisms use special devices to track human motions, such as cameras (vision-based) and various types of sensors (sensor-based). These mechanisms are applied in different applications, such as home security, Human–Computer Interaction (HCI), gaming, and healthcare. However, traditional HAR methods require heavy installation, and can only work under strict conditions. Recently, wireless signals have been utilized to track human motion and HAR in indoor environments. The motion of an object in the test environment causes fluctuations and changes in the Wi-Fi signal reflections at the receiver, which result in variations in received signals. These fluctuations can be used to track object (i.e., a human) motion in indoor environments. This phenomenon can be improved and leveraged in the future to improve the internet of things (IoT) and smart home devices. The main Wi-Fi sensing methods can be broadly categorized as Received Signal Strength Indicator (RSSI), Wi-Fi radar (by using Software Defined Radio (SDR)) and Channel State Information (CSI). CSI and RSSI can be considered as device-free mechanisms because they do not require cumbersome installation, whereas the Wi-Fi radar mechanism requires special devices (i.e., Universal Software Radio Peripheral (USRP)). Recent studies demonstrate that CSI outperforms RSSI in sensing accuracy due to its stability and rich information. This paper presents a comprehensive survey of recent advances in the CSI-based sensing mechanism and illustrates the drawbacks, discusses challenges, and presents some suggestions for the future of device-free sensing technology

    AoA-aware Probabilistic Indoor Location Fingerprinting using Channel State Information

    Full text link
    With expeditious development of wireless communications, location fingerprinting (LF) has nurtured considerable indoor location based services (ILBSs) in the field of Internet of Things (IoT). For most pattern-matching based LF solutions, previous works either appeal to the simple received signal strength (RSS), which suffers from dramatic performance degradation due to sophisticated environmental dynamics, or rely on the fine-grained physical layer channel state information (CSI), whose intricate structure leads to an increased computational complexity. Meanwhile, the harsh indoor environment can also breed similar radio signatures among certain predefined reference points (RPs), which may be randomly distributed in the area of interest, thus mightily tampering the location mapping accuracy. To work out these dilemmas, during the offline site survey, we first adopt autoregressive (AR) modeling entropy of CSI amplitude as location fingerprint, which shares the structural simplicity of RSS while reserving the most location-specific statistical channel information. Moreover, an additional angle of arrival (AoA) fingerprint can be accurately retrieved from CSI phase through an enhanced subspace based algorithm, which serves to further eliminate the error-prone RP candidates. In the online phase, by exploiting both CSI amplitude and phase information, a novel bivariate kernel regression scheme is proposed to precisely infer the target's location. Results from extensive indoor experiments validate the superior localization performance of our proposed system over previous approaches

    Real-Time NLOS/LOS Identification for Smartphone-Based Indoor Positioning Systems Using WiFi RTT and RSS

    Get PDF

    Wi-Fi Sensing: Applications and Challenges

    Full text link
    Wi-Fi technology has strong potentials in indoor and outdoor sensing applications, it has several important features which makes it an appealing option compared to other sensing technologies. This paper presents a survey on different applications of Wi-Fi based sensing systems such as elderly people monitoring, activity classification, gesture recognition, people counting, through the wall sensing, behind the corner sensing, and many other applications. The challenges and interesting future directions are also highlighted

    Wi-Fi Sensing for Indoor Localization via Channel State Information: A Survey

    Get PDF
    Wireless Fidelity (Wi-Fi) sensing utilization has been widespread, especially for human behavior/activity recognition. It provides high flexibility since it does not require the person/object to carry any device known as device-free. This "passive" concept is also helpful for another application of Wi-Fi sensing, i.e., indoor localization. The "sensing" is conducted using particular parameters extracted from communication links of Wi-Fi devices, i.e., channel state information (CSI). This paper explores the recent trends in CSI-based indoor localization with Wi-Fi technology as its core, including their advantages, challenges, and future directions. We found tremendous benefits can be gained by employing Wi-Fi sensing in localization supported by its performance and integrability for other intelligent systems for activity recognition
    • …
    corecore