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Real-time NLOS/LOS Identification for
Smartphone-based Indoor Positioning Systems

using WiFi RTT and RSS
Yinhuan Dong, Tughrul Arslan, Senior Member, IEEE , Yunjie Yang, Member, IEEE

Abstract— The accuracy of smartphone-based positioning systems
using WiFi usually suffers from ranging errors caused by non-
line-of-sight (NLOS) conditions. Previous research usually exploits
several distribution features from a long time series (hundreds of
samples) of WiFi received signal strength (RSS) or WiFi round-trip
time (RTT) to achieve a high identification accuracy. However, the
long time series or large sample size attributes to high power and
time consumption in data collection for both training and testing.
This will also undoubtedly be detrimental to user experience as the
waiting time for getting enough samples is quite long. Therefore,
this paper proposes three new real-time NLOS/LOS identification
methods for smartphone-based indoor positioning systems using
WiFi RSS and RTT distance measurement (RDM). Based on our extensive analysis of RSS and RDM dispersion features,
three machine learning algorithms were chosen and developed to separate the samples for NLOS/LOS conditions.
Experiments show that our best method achieves a discrimination accuracy of over 96% with a sample size of 10.
Considering the theoretically shortest WiFi ranging interval of 100ms of the RTT-enabled smartphones, our algorithm
is able to provide the shortest latency of 1s to get the testing result among all of the state-of-art methods.

Index Terms— Real-time NLOS identification, WiFi RTT, WiFi RSS, machine learning, smartphone, positioning.

I. INTRODUCTION

LOCATION is vital for numerous applications driven by
uncountable mobile users and developers. The global

navigation satellite system (GNSS) has been served for years
to provide high-precision localization and relevant applications
in outdoor scenarios [1]. However, the low penetration of
GNSS signal through walls and obstacles sharply decreases the
positioning accuracy in the indoor environment [2]. Numerous
indoor positioning methods have been proposed to fill the
vacancy of providing location-based services (LBS) in indoor
scenario these years, such as WiFi [3]–[5], ultra-wideband
(UWB) [6]–[8], Radio Frequency Identification Device (RFID)
[9]–[11]and, Bluetooth [12]–[14]. Since most smartphones
are WiFi-enabled, and WiFi access points (APs) are widely
installed in both private and public environments, WiFi-based
methods are widely used to provide positioning service to
users with smartphones in indoor scenarios.

WiFi-based indoor positioning methods are usually
implemented by either the fingerprinting method or range-
based method. Fingerprinting method computes the user’s
position by matching the received signal strength (RSS) from
multiple WiFi access points (AP) that are near to the RSS that

The authors are with the School of Engineering, University of
Edinburgh, Edinburgh, EH8 9YL, UK (e-mail: yinhuan.dong@ed.ac.uk;
tughrul.arslan@ed.ac.uk; y.yang@ed.ac.uk).

is pre-recorded at known locations. The range-based method
usually computes the user location by a certain algorithms,
such as multilateration and the least square, through the
estimated distance between the AP and the smartphone
according to the RSS [15]. Especially, the protocol of fine
time measurement (FTM) standardized by IEEE 802.11-2016
brought the new technology of round-trip time (RTT), which
could provide meter-level positioning accuracy [16]. Promoted
by Google, various manufacturers claim that their updated
Android-powered smartphones are WiFi-RTT enabled, this
includes Google, Xiaomi, LG, Samsung, Sharp, and so on [17].
These WiFi-RTT enabled smartphones can send WiFi ranging
requests to nearby APs to get the ranging results (such as
RSS and RTT-based distance measurement) in a short period
of time (≥200 ms in this study) without connecting to the
APs.

However, both fingerprinting and range-based localization
methods are not satisfactory as the WiFi signal is vulnerable
to multi-path effects, especially in non-line-of-sight (NLOS)
conditions when obstacles block the clear line-of-sight
between the transmitter (AP) and the receiver (smartphone).
Therefore, NLOS conditions should always be identified
first. The work from Xiao et al. [15] extracts the multiple
features from a group of RSS samples to distinguish between
LOS/NLOS conditions. The algorithm could achieve the
accuracy of around 95% and over 90% using the testing set
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(collected in the same experiment environment as the training
set) and validation set (collected in a different environment) in
the group size of 1000, respectively. Yu et al. [18] proposed a
method to reduce the impact of NLOS and multi-path through
the combination of real-time ranging model based on WiFi
RTT and pedestrian dead reckoning (PDR). Genter et al.
presented a distance estimation error model with the Gaussian
mixture model to calibrate the measuring distance using WiFi
RTT. The work from Han et al. [19] uses support vector
machine (SVM) to classify the NLOS and LOS conditions
with the features extracted from a group of WiFi RSS and RTT
samples. The accuracy of such method achieves over 92% on
the testing set (collected one the same site as the training set)
while the group size is 99.

Although the above-mentioned state-of-art methods could
achieve good performance under certain circumstances, most
of them are not real-time enough or not for real-time
positioning. Given a fixed sampling rate, it cost much time
and power consuming for smartphone to collect hundreds of
samples to identify the NLOS and LOS conditions between
the phone and the AP. This is even worse in practice as
the ranging-based method usually needs at least three APs to
calculate the user’s location. Some researchers have worked
to reduce the influence of NLOS conditions in tracking the
user’s position by integrating the PDR method. However, it
is not suitable when computing the absolute position. Even
though some work could achieve good performance on the
testing set collected on the same site as the training set; the
robustness has not been validated.

This paper proposes and compares three real-time
NLOS/LOS identification algorithms for smartphone-based
indoor positioning systems using ranging results of WiFi RSS
and RTT-based distance measurement (RDM). By analyzing a
series of temporal WiFi samples (ranging samples), we extract
several features of the ranging data and employ three machine
learning algorithms to distinguish between NLOS and LOS
conditions. The main contributions of this work are as follows:

• We propose real-time NLOS and LOS identification
methods with the highest identification accuracy but the
lowest latency using WiFi RSS and RDM.

• Our study is the first investigation of exploiting the
dispersion features of a short series (small number) of
WiFi ranging samples for real-time NLOS/LOS use.
Three machine learning-based classification techniques
are chosen to explore the various features simultaneously.

• Rather than using K-fold cross-validation, we stipulate
two testing and validating strategies to evaluate the
robustness of the proposed algorithms in different
environments.

• Our experiments are based on the data collected by
commercial smartphones and WiFi access points in real
experiment sites without any pre-setting or reconfiguring
infrastructure.

II. PROBLEM ANALYSIS AND MOTIVATION

A. Ranging with WiFi RTT
As previously mentioned, the protocol of FTM is able to

calculate the distance between RTT-enabled smartphones and

Fig. 1. Overview of FTM protocol (one FTM request gives one burst
with n FTMs (n ≤ 31).

RTT-enabled access points. As shown in Figure 1, the access
point sends acknowledgement (ACK) to the smartphone once
the FTM request is received (an Initial FTM Request (iFTMR)
should be sent first). This gives a single burst that contains
multiple FTMs (maximum of 31, excluding the iFTMR). One
burst can happen with a burst period ranging from 100ms to
every 216∗100ms (1.8 hours) , which ultimately depends by the
master [20]. As the timestamps record the time when the signal
is sent and received, the RTT can be calculated by subtracting
the timestamp from the AP and the time delay occurs in the
smartphone by:

(
∑n
k=1 t4(k)−

∑n
k=1 t1(k))− (

∑n
k=1 t3(k)−

∑n
k=1 t2(k))

n
(1)

accordingly, the distance between the smartphone and access
point (RDM) can be estimated by multiplying half the RTT to
the velocity of light (c = 3 ∗ 108m/s):

RDM =
1

2
∗RTT ∗ c (2)

Promoted by Google, the function of WiFi RTT was
introduced in Android 9 (API level 28) for more practical use.
The FTM request is named as a ranging request in Android
system for the RTT-enabled smartphones. The successful
ranging request gives the user multiple measurements, such
as RTT-based distance (in mm), RSS (in dBm), timestamp (in
ms), and so forth. We define a pair of RTT-based measured
distance (RDM) and RSS from one successful ranging request
as one ranging sample in this paper.

B. Problem Statement
Considering sending requests and receiving results to an

AP in an indoor scenario from a smartphone, the signal path
between the smartphone and the AP is usually blocked by
some obstacles, defined as NLOS conditions. As illustrated in
Figure 2, the signals between the smartphone and the APs in
the same room are in LOS condition as there is no interference
on the paths from any obstacles. However, the signals between
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Fig. 2. Illustration of LOS and NLOS cases.

the phone and the APs in different rooms are blocked by a
wall, which makes such signals in NLOS conditions.

As previously discussed in Section I, RSS is detrimentally
affected by the multi-path effect, especially in the NLOS
environment. Similarly, the NLOS condition usually causes
an inaccurate distance measurement between the smartphone
and AP due to a delay and fluctuation of the signal’s travel
time. We can observe from the ranging results in Figure 3 that
the NLOS causes significant errors in measuring the RSS and
RDM, which will degrade the positioning accuracy. Therefore,
identifying NLOS signals enable developers and researchers to
eliminate such signals or reduce their detrimental effects on
further signal processing.

C. Motivation

Some previously proposed methods have already extracted
and analyzed some features of RSS values from a set of N RSS
samples [RSS1, RSS2, ..., RSSN ] to identify NLOS signals.
For instance, Xiao et al. [15] verified that the combination
of some features of RSS (such as mean and kurtosis) could
achieve a very high identification accuracy while the set size
of N is 1000. However, this takes about 100s (considering the
shortest sampling interval of 100ms) for an Android-powered
smartphone to collect enough samples in practice. As we
consider the real-time NLOS identification for smartphones,
a small set size should always be considered in both training
and testing of the algorithm. Nevertheless, owing to fewer
samples used in real-time NLOS/LOS identification, we can
infer that most of the distribution features of RSS that were
verified to be effective to NLOS/LOS identification in previous
studies cannot help distinguish NLOS from LOS for real-
time use. Figure 4 illustrates the probability distributions of
skewness and kurtosis of RSS of a set of 10 samples. We
can observe that the fitted curves of NLOS and LOS samples
show almost the same shape and a large portion of overlapping
areas, which makes the skewness and kurtosis of RSS fail to
identify different conditions.

Different from previous studies, we exploit the dispersion
of the RDM and RSS samples in this study. We notice that the
ranging samples (especially for RDM) in Figure 3 show high
dispersion in different conditions. For example, we calculate
the quartile deviation and the number of quartiles of RDM
samples with the set size of 10. The distribution of the results

TABLE I
INTRODUCTION OF THE INVESTIGATED FEATURES

Symbol Feature

µ Mean
σ Standard deviation
Q Quartile deviation (central dispersion)
λ∗ Number of outliers
R Range
S Skewness
K Kurtosis

∗ Outliers that more than 1.5*interquartile range above the third quartile
or below the first quartile
† All the features are calculated from a set of N samples. We use the
footnote of RDM and RSS to denote the feature of different signals, for
example, µRDM is the mean of RDM

is shown in Figure 5. We can observe that there is usually a
shift between the two fitted curves of the samples collected in
different conditions, which makes the dispersion features are
able to help discriminate NLOS and LOS conditions.

Although our statistical analysis shows that some features
may or may not help identify NLOS and LOS conditions,
there are still some uncertainties about how the combination
of such features could improve the identification accuracy
and which combination shows the best performance. As we
notice in Figure 3 that RSS usually shows higher sparsity
but lower dispersion than RDM, it is speculated that some
extracted features of RSS may not be able to help to identify
the NLOS and LOS conditions. The features with a low
contribution to the improvement of identification accuracy
should be eliminated, as more features will increase the
complexity of the algorithm. Therefore, we propose to use
machine learning techniques detailed in the next section to
find the best combination of features to distinguish between
NLOS and LOS conditions by evaluating the multiple features
simultaneously. All the features and their symbols are listed
in Table I.

III. NLOS/LOS IDENTIFICATION EMPLOYING MACHINE
LEARNING

The task here is to decide whether a given set of ranging
samples corresponds to NLOS or LOS conditions. Machine
learning-based algorithms have been widely adopted by many
studies to classify NLOS and LOS samples. Least squares-
support vector machine (LS-SVM) is one of the most
popular algorithms that has been implemented in various
studies proposed by Xiao et al. [15], Chitambira et al.
[32], Han et al. [21], and so on. Alternatively, random
forest shows great performance in classification problems
with low computation complexity [26]. In recent years, deep
learning-based NLOS/LOS identification methods (such as
[24], [25]) have also attracted attention. Therefore, we design
and implement these three algorithms to solve the NLOS/LOS
discrimination problem.

1) Random forest: Random forest is an ensemble learning
algorithm that trains the model using several classifiers
(decision trees) with random sets of features [26]. It makes the
final prediction by combining the results from all the classifiers
through majority voting. As RF uses the combination of both
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(a) (b)

Fig. 3. A large amount of ranging samples collected in a variety of settings, including different smartphones, sampling rate and ground-truth
distance (details will be illustrated in Section IV), in NLOS/LOS conditions (a) original ranging samples; (b) grouped ranging samples (group size =
10).

(a)

(b)

Fig. 4. Probability distribution of the extracted features of RSS (a)
Kurtosis of RSS; (b) Skewness of RSS.

boosting and bagging, it usually produces a model that is
not highly overfitting with high efficiency. As we only have
the two labels of NLOS and LOS condition in this study,
Classification and Regression Tree (CART) is chosen to solve
this binary classification problem (we employ 10 decision trees
in this study to avoid high computation complexity [27]).
Rather than using information entropy, Gini index is used to
evaluate the features and divide the input samples in CART

(a)

(b)

Fig. 5. Probability distribution of the extracted features of RDM (a)
Quartile Deviation of RDM; (d) Number of Quartiles of RDM.

for faster computation. The Gini index is defined as:

Gini(x) =
L∑
l=1

pl (1− pl) = 1−
L∑
l=1

p2l (3)

where L is the number of categories of the dataset, and pl
denotes the probability of the sample’s label is l. As the dataset
X has 2 classes of data in this case, L is set to 2, and hence
the Gini index of X according to a given feature xi could be
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computed by:

Gini(X,xi) =
X1

X
Gini (X1) +

X2

X
Gini (X2) (4)

The Gini index reflects the uncertainty of the given set of
samples. Since the Gini index is the difference between 1 and
the sum of the probability squares of category l (as shown in
Equation 3 ), the larger Gini index, the higher uncertainty of
the samples. Therefore, the optimal partition feature x? could
be selected by minimizing the Gini index as follows:

x? = argminGini(X,xi) (5)

2) Least Square Support Vector Machine: Owing to the
easier training process and higher generalization quality of
SVM [28], we propose using SVM to identify the NLOS and
LOS conditions. Specially, the least square SVM (LS-SVM)
[29] is used in this work to avoid the quadratic programming
problem of SVM [15].

Given a training set of N samples {x, l}N , each sample
is composed by a feature matrix x (contains several features
mentioned in Section II) and a label l(x) ∈ {0, 1} (in this
case, l(x) = 1 stands for NLOS condition and l(x) = 0
represents LOS condition). The linear classification problem
of the training samples could be expressed as the following
function:

l(x) = sign[wTϕ(x) + w0] (6)

where sign is the signum function, ϕ(x) is the eigenvector of
the feature matrix x, w and w0 are the weighting parameters
learned from the training set. As the NLOS and LOS
conditions are not linearly separable, we use a Gaussian
radial basis function (RBF) [30] to realize better classification
performance:

k (x, xi) = ϕ(x)T · ϕ (xi) = exp

[
−
‖x− xi‖22

2σ2

]
(7)

where the hyper-parameter σ2 is learned from the training data
by solving the following optimization problem:

argmin
w,w0,e,σ2

1

2
‖w‖2 + c

1

2

N∑
i=1

e2i

s.t. li
[
wTϕ (xi) + w0

]
= 1− ei,∀i

(8)

where e is the penalty of misclassification, and c is the
weighting factor that controls the trade-off between training
error and model complexity. This optimization problem is a
linear programming problem [29], which could be solved by
its Lagrangian dual and Karush-Kuhn-Tucker conditions [31].
Once the parameters of the classifier have been well-trained,
the prediction could be computed by:

l(x) = sign

[
N∑
i=1

λilik (x, xi) + w0

]
(9)

where λi is the Lagrange multiplier.

Fig. 6. Illustration of the network structure.

TABLE II
DETAILS OF THE NEURAL NETWORK

Hidden layers 128-64-32-1
Activation function tanh-tanh-tanh-sigmoid

Batch size 32
Learning rate 0.001

Epoch† 100
Early stopping patience 10

Optimizer Adam
Loss function binary cross-entropy

† This is a pre-set epoch number. As early stopping strategy is applied,
the network usually stops training earlier.

3) Deep Neural Network: A deep neural network model
usually consists of multiple stacked deep hidden layers, which
tries to learn potential features using weights and biases
in each layer. Due to its remarkable learning ability and
flexible network structure, DNN has been widely used to solve
classification and regression problems.

In this paper, we design a 4-layer fully connected DNN
structure to solve the NLOS identification problem. We use
the extracted features x as the input data. As the structure of
the network is shown in Figure 6, from left to right, each layer
contains 128, 64, 32 and 1 hidden nodes, respectively. We use
tanh as the activation function of the first three layers, whereas
sigmoid is used in the last layer to ensure the output y is in
the range from 0 to 1. The output y is then mapped into the
output label by:

l(x) =

{
1, y > 0.5

0, else
(10)

where l(x) = 1 stands for NLOS condition and l(x) = 0
represents LOS condition. The details of the network structure
and training settings are listed in Table II.

IV. EXPERIMENT SETTINGS

This section illustrates the experiment sites, equipment and
methodology that we used to collect the ranging samples in
this study.

A. Experiment Sites
The experiments were conducted in two different real-

world sites, including an office and a student accommodation.
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(a) (b)

Fig. 7. Floor plan of the first floor of the Scottish Microelectronics Centre. The data collected here is for training and testing the performance of the
proposed algorithms.

Fig. 8. Floor plan of the student accommodation. The data
collected here is for validating the generalization ability of the proposed
algorithms.

Figure 7a shows the office site on the ground floor of the
Scottish Microelectronics Centre. It is a complex indoor
environment with wooden doors and concrete constructed
walls (reinforced with metal rebars), as well as different
obstacles. The volunteers were asked to collect the ranging
samples from the RTT-enabled access point following the
path. The paths are composed of multiple test points at the
interval of 1m as shown in Figure 7b. The NLOS samples
were collected from AP2 on the path marked in red, while
the LOS samples were collected from AP1 following the path
marked in blue. The two paths are separated by the wall and
other obstacles in the environment. With these settings of test
points and access point locations, the ground-truth distances
between the smartphone and access point vary from 0.5m to
12m approximately. As the access points were set on two
tripods at the height of over 1.7m at the center of the office
site, the clear line-of-site was not affected by the desks and
chairs surrounding the blue path.

Another experiment site shown in Figure 8 is a student
accommodation mainly constructed by concrete and plaster.

Fig. 9. Smartphones and access point used in this experiment

TABLE III
CORE SPECIFICATIONS OF THE SMARTPHONES AND ACCESS POINT

Device name Chipset/WiFi standard Current version

Google Pixel 2 Snapdragon 835 Android 11 (API 30)
Google Pixel 2 XL Snapdragon 835 Android 11 (API 30)

Google WiFi AC1200 MU-MIMO Wi-Fi 13099.118.19

The three access points were set on the tripods in different
rooms. Data were collected on the test points marked in green.
At each point, volunteers were asked to collect samples from
all the APs and their conditions. For example, the samples
collected in room 1 from AP1 are in LOS condition, and the
samples collected from AP2 and AP3 are in NLOS condition.

B. Devices and Software
In this experiment, four smartphones include three Google

Pixel 2 and one Google Pixel 2XL were used to collect the
ranging samples. Google WiFi access points were utilized as
the transmitter in the measurements. Some core specifications
are listed in Table III. The devices used in this work are shown
in Figure 9. In this study, we used the Android application
WifiRttScan developed by Google to send ranging requests and
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TABLE IV
NUMBER OF SAMPLES COLLECTED IN DIFFERENT EXPERIMENT SITES

Office site
(training&testing)

Student accommodation
(validation)

NLOS 116550 10592
LOS 116027 11893
Sum 232577 22485

collect the ranging results. The collected data were processed
and analyzed using Python 3.8 on a desktop with an Intel
i7-9700 CPU (3.00 GHz) and 32GB installed memory.

C. Data Collection
As previously mentioned, the lowest latency of sending the

ranging request from one RTT-enabled smartphone is 100ms
in theory. However, it is recommended by Google that the
sampling interval should not be shorter than 200ms to avoid
collision and other software problems. Therefore, the lowest
latency is set to 200ms in this work, which gives 10 ranging
samples every two seconds if all requests are successful (one
sample per 200ms). Although there is no clear evidence that
illustrates the sampling rate would affect the samples’ quality,
we set the ranging period at 200ms, 250ms, 333ms, and
500ms for the Google Pixel 2XL and other three Google Pixel
2, respectively, to reduce the uncertainty. The smartphones
were always kept waking up (the application was always
running in the foreground), face up and oriented parallel to
the ground during the data collection to avoid the effects
that may caused by some reasons, such as the gesture of
holding the phone, orientation of the antenna, or other software
problems. Besides, the volunteers were asked to collect the
samples statically. This means that the volunteers who held
the smartphone can not move once the data collection starts.
At least 600 samples were collected by each device at each
point.

V. EVALUATION

This section evaluates the proposed algorithms. We first
introduce the construction of the two datasets. This is followed
by the training and testing results of the machine learning-
based real-time NLOS/LOS identification algorithms. Finally,
we select the best features and validate the reliability of the
trained models.

A. Datasets
As listed in Table IV, we construct two datasets from

the data collected in different environments. The first dataset
contains the samples collected in the environment of the office
site that few people were walking around. This set is used for
training and testing the machine learning-based NLOS/LOS
identification algorithm. The second set of samples collected
in the student accommodation is used for validating the
generalization ability of our methods in a different experiment
site. It is essential that the algorithms could work in different
scenarios to avoid repeated training process which is usually
labour intensive and time consuming.

TABLE V
SUBSETS OF DIFFERENT COMBINATIONS OF FEATURES

Features C1 C2 C3 C4 C5 C6 C7 C8

µ X X X X X X X X
σ X X X
S X X
K X X
Q X X X
λ X X X
R X X

B. Training
We train and test the proposed method trough different

combinations of the features. The combinations of features are
represented by Ci (i = 1, 2, . . . , 8). The subsets of different
combinations of features are shown in Table V. As the features
are extracted from either RDM or RSS signals, we design
four different schemes to assemble the features from different
signals:

• CRDMi (i = 1, 2, . . . , 8): Each subset of different features
in this scheme uses only RDM features, including µRDM ,
σRDM , QRDM , λRDM , RRDM , SRDM , KRDM .

• CRSSi (i = 1, 2, . . . , 8): Each subset of different features
in this scheme uses only RDM features, including µRSS ,
σRSS , QRSS , λRSS , RRSS , SRSS , KRSS .

• CFTMi (i = 1, 2, . . . , 8): This scheme uses all the features
from RDM and RSS (also called FTM features).

• CSELi (i = 1, 2, . . . , 8): The selected features are used in
this scheme (also called SEL features). This contains all
the features from RDM samples and only the mean value
of RSS: µRDM , µRSS ,σRDM , QRDM , λRDM , RRDM ,
SRDM , KRDM .

C. Testing
We evaluate the proposed algorithms using three metrics, i.e.

fail rate (the algorithm fail in detecting NLOS), false alarm
rate (the algorithm identifies NLOS while the samples are from
LOS), and overall false detection rate (the sum of fail rate
and false alarm rate). They are denoted by PN , PL and PO,
respectively.

1) Using a single source of the signal: We first evaluate
the test results using the features of a single source of the
signal (either RSS features or RDM features). The NLOS
identification errors are shown in Figure 10. We can observe
from Figure 10a that for each machine learning-based NLOS
identification algorithm, the extracted features from the RSS
signal are not able to reduce the NLOS identification error
significantly. Compared to the benchmark false detection rates
of 0.2399, 0.1614, and 0.1568 using DNN, RF, and SVM with
only RSS mean values (CRSS1 ), there is a little improvement
when the extracted features are used. The lowest errors of
different algorithms are 0.1808 (CRSS5 ), 0.1604 (CRSS3 ) and
0.1568(CRSS1 ) , respectively.

On the contrary, we can observe from Figure 10b that
some of the extracted RDM features can help to improve the
identification rate significantly. Compared to the benchmark
overall false detection rates of using DNN, RF, and SVM with
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(a) (b)

Fig. 10. Testing results of fail rate (PN ), false alarm rate (PL) and false detection rate (PO) of the machine learning-based NLOS identification
algorithms using different features (a) RSS features; (b) RDM features.

only RDM mean values (CRDM1 ), the subsets of CRDM3 and
CRDM4 can usually provide lower errors. For example, the
lowest error of using DNN with features in CRDM4 is 0.1847,
which is 37% lower than the benchmark error of 0.2928. This
illustrates that the dispersion features of standard deviation
and quartile deviation of the RDM signal effectively improve
identification accuracy.

Although there is some improvement in the detection rate
with some extracted features, the NLOS identification error is
still high when a single source of the signal is used. Therefore,
we propose to use both signals and their features to provide a
better identification rate. The evaluation is as follows.

2) Using hybrid sources of signals: We evaluate the
proposed machine learning-based NLOS identification
algorithms with extracted features from RSS and RDM
signals. We can observe from Figure 11a that the detection
errors are sharply reduced when both RDM and RSS features
are involved in detecting the NLOS and LOS cases. The
lowest errors of using DNN, RF and SVM are 0.05956
(CFTM3 ), 0.0304 (CFTM1 ) and 0.0492 (CFTM1 ), which are
at least 70% lower than using either RDM or RSS features.
Nevertheless, in exchange for the extremely low identification
errors, the computation complexity is higher. As we use
both RSS and RDM features, each subset of CFTMi contains
doubled features than either CRSSi or CRDMi . To maintain the
low detection error and reduce the computation complexity
(number of features), we evaluate the machine learning
algorithms on some selected features next.

The analysis of our previous experiments on NLOS
identification using a single source of the signal has shown that
the RSS features cannot help reduce the error significantly. In
contrast, some of the RDM features (such as standard deviation
and quartile deviation) could improve the detection accuracy.
Hence, rather than using all features from both signals, we
keep only RDM features and the mean value of RSS in each
subset of CSELi . As the results are shown in Figure 11b, the
detection errors of three machine learning-based algorithms

using SEL features maintain at a similar level as FTM features
in general; however, the number of features nearly halved. We
can also observe from the figure that the standard deviation
and quartile deviation of RDM in subset CSEL2 , CSEL3 and
CSEL4 can usually provide better results than other features.

Summary: Our testing results reveal that the RSS features
provide a slight improvement in identifying NLOS. In
contrast, some RDM features, such as standard deviation
and quartile deviation, can help to improve the detecting
accuracy significantly. However, the identification accuracy of
using either RSS or RDM features is still not high enough
(about 80%, approximately). Hence, we applied the machine
learning algorithms to the FTM features (the joint of RSS
and RDM features). The detection accuracy can be improved
significantly to higher than 90% when RSS and RDM features
are used. Nevertheless, more features may provide better
detection accuracy but also contribute to higher computation
complexity. Only useful features should be kept. As our
previous experiments have shown that most of RSS features
cannot help improve the detection accuracy significantly, we
designed SEL features by selecting only the mean value
of RSS signals and the RDM features. The testing results
demonstrate that the SEL features can well maintain the
detection accuracy at a similar level as the FTM features but
halve the number of features. In the next subsection, we will
illustrate how we validate the algorithms in a different site
(than from where we collected the training samples) to verify
the robustness against environmental change.

D. Validation

It is essential that the designed algorithms are able to work
in different sites without repeated training to avoid the time-
consuming site survey. In order to select the best algorithm,
we validate the accuracy of the algorithms in a different site
of student accommodation (Figure 8) than from where we
collected the training samples (Figure 7a).
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(a) (b)

Fig. 11. Testing results of fail rate (PN ), false alarm rate (PL) and false detection rate (PO) of the machine learning-based NLOS identification
algorithms using different features (a) FTM (RDM and RSS) features ; (b) SEL features (selected features of RDM and RSS).

Fig. 12. Validating results of fail rate (PN ), false alarm rate (PL)
and false detection rate (PO) of the machine learning-based NLOS
identification algorithms using different features (a) RDM and RSS; (b)
RDM and RSS (selected features).

As the results are shown in Figure 12, for each machine
learning-based NLOS identification algorithm, SEL features
of CSEL7 can always provide the lowest detection error. This
illustrates that the combination of all extracted features can
effectively help to improve identification accuracy. As the
results of the top three feature subsets with the lowest error are
listed in Table VI, besides using all features of CSEL7 , the three
machine learning algorithms can still achieve good results
when CSEL3 and CSEL4 features are used. Although there is a
slight increase in the error when some features are eliminated,
CSEL3 and CSEL4 features can maintain the detection error at
a similar level of using CSEL7 but almost halve the number
of features. This again proves that the standard deviation and
quartile deviation of the RTT-based distance measurements can
help to detect the NLOS signals.

We can also observe from the results that the DNN-based

NLOS identification algorithm provides 96.42% accuracy,
which outperforms the others in terms of the algorithms trained
by all selected features. The RF-based algorithm can also
provide good accuracy of 92.76%. However, SVM shows
the worst accuracy of 76.90%. When some of the features
are eliminated, and only the dispersion features are kept
(CSEL4 and CSEL5 ), although there is a slight decrease in the
detection accuracy, DNN-based solution can still maintain the
best performance. This result indicates that the DNN-based
algorithm is more robust with the selected dispersion features
than RF and SVM in the NLOS identification problem.

In addition, the training time of each model is listed in
Table VI. There is a trade-off between the detection accuracy
and the training time using DNN. Although the DNN solution
can always provide the best accuracy, the higher computation
complexity leads to a much longer training time than others. In
contrast, the RF solution shows extremely low training costs
with moderate detection accuracy.

E. Summary

In summary, the testing and validation results can be
concluded as follows:

• Using a single signal source signal of either RSS or RDM
cannot provide good performance in real-time NLOS
identification for smartphone-based indoor positioning
systems. While the hybrid of the two signals and their
features can sharply reduce the identification error.

• The extracted RDM features of RTT signals are more
helpful to improve the NLOS identification accuracy
than RSS features. Specifically, the dispersion features,
such as standard deviation and quartile deviation of
the RTT-based distance measurements, can improve the
identification accuracy whether which other features are
added or eliminated. This study also follows our previous
analysis in Section II that RSS usually shows higher
sparsity but lower dispersion than RDM, which makes
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TABLE VI
COMPARISON OF DIFFERENT MACHINE LEARNING-BASED ALGORITHMS USING THE TOP 3 FEATURE SUBSETS

Algorithm Top 3 feature subsets (s) Number of features Correct detection rate PC (1-PO) Training time (s)

DNN CSEL
7 , CSEL

4 , CSEL
3 8, 5, 4 96.42%, 96.42%, 93.73% 52.33, 48.05, 44.45

Random Forest CSEL
7 , CSEL

3 , CSEL
4 8, 4, 5 92.76%, 90.33%, 85.34% 0.90, 0.96, 0.93

LS-SVM CSEL
7 , CSEL

4 , CSEL
3 8, 4, 5 76.90%, 72.36%, 71.12% 0.91, 0.93, 0.93

the RDM features more suitable to identify NLOS and
LOS cases.

• The DNN-based NLOS identification algorithm can
provide the best detection accuracy in both training and
validating data with the selected features, which shows
good generalization ability to the environment change.
However, the DNN solution also provides the highest
computation complexity, which takes the longest time to
train the model.

• Compared to DNN, RF solution can provide moderate
detection accuracy and robustness but significantly
training costs. A good balance between the detection
accuracy and the training cost is essential, as repeated
training may be needed in some complex indoor
environments with a large volume of data, such as airports
and mega shopping malls.

VI. CONCLUSION AND FUTURE WORK

This paper proposed three real-time NLOS/LOS
identification algorithms for smartphone-based indoor
positioning systems using WiFi ranging. Previous research
shows that some distribution features (such as kurtosis
and skewness of RSS) from a long series of samples
can effectively identify NLOS/LOS for non-real-time use.
However, according to our analysis of multiple extracted
features from a large amount of ranging samples, we infer
that such features cannot help improve the identification
accuracy when the sample size shrinks for real-time use.
Rather than using distribution features in the literature, we
explored the effect of dispersion features of ranging samples
on real-time identification. Three machine learning algorithms
have been adopted to investigate the impact of different
feature combinations on real-time NLOS/LOS discrimination
accuracy. The testing results illustrate that the dispersion
features of RDM combined with the mean value of RSS
could provide the best real-time discrimination accuracy.
In addition, the validation results show that the proposed
DNN-based algorithm has the highest generalization ability to
environmental change but also the highest training complexity
(longest training time). In comparison, the Random Forest-
based solution can provide moderate accuracy with a much
lower training complexity (shorter training time).

As this study focuses on real-time NLOS/LOS identification
for positioning use, the algorithms are designed to distinguish
the ranging samples collected in different conditions while the
user is stationary. Future work will investigate the NLOS/LOS
identification in tracking and navigating (considering the user
motion) in indoor scenarios.
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