4 research outputs found

    Mercury: a vision-based framework for Driver Monitoring

    Get PDF
    In this paper, we propose a complete framework, namely Mercury, that combines Computer Vision and Deep Learning algorithms to continuously monitor the driver during the driving activity. The proposed solution complies to the require-ments imposed by the challenging automotive context: the light invariance, in or-der to have a system able to work regardless of the time of day and the weather conditions. Therefore, infrared-based images, i.e. depth maps (in which each pixel corresponds to the distance between the sensor and that point in the scene), have been exploited in conjunction with traditional intensity images. Second, the non-invasivity of the system is required, since driver’s movements must not be impeded during the driving activity: in this context, the use of camer-as and vision-based algorithms is one of the best solutions. Finally, real-time per-formance is needed since a monitoring system must immediately react as soon as a situation of potential danger is detected

    Deep Head Pose Estimation from Depth Data for In-car Automotive Applications

    No full text
    Recently, deep learning approaches have achieved promising results in various fields of computer vision. In this paper, we tackle the problem of head pose estimation through a Convolutional Neural Network (CNN). Differently from other proposals in the literature, the described system is able to work directly and based only on raw depth data. Moreover, the head pose estimation is solved as a regression problem and does not rely on visual facial features like facial landmarks. We tested our system on a well known public dataset, extit{Biwi Kinect Head Pose}, showing that our approach achieves state-of-art results and is able to meet real time performance requirements.Recently, deep learning approaches have achieved promising results in various fields of computer vision. In this paper, we tackle the problem of head pose estimation through a Convolutional Neural Network (CNN). Differently from other proposals in the literature, the described system is able to work directly and based only on raw depth data. Moreover, the head pose estimation is solved as a regression problem and does not rely on visual facial features like facial landmarks. We tested our system on a well known public dataset, Biwi Kinect Head Pose, showing that our approach achieves state-of-art results and is able to meet real time performance requirements.Recently, deep learning approaches have achieved promising results in various fields of computer vision. In this paper, we tackle the problem of head pose estimation through a Convolutional Neural Network (CNN). Differently from other proposals in the literature, the described system is able to work directly and based only on raw depth data. Moreover, the head pose estimation is solved as a regression problem and does not rely on visual facial features like facial landmarks. We tested our system on a well known public dataset, Biwi Kinect Head Pose, showing that our approach achieves state-of-art results and is able to meet real time performance requirements

    Deep face profiler (DeFaP): Towards explicit, non-restrained, non-invasive, facial and gaze comprehension

    Get PDF
    Eye tracking and head pose estimation (HPE) have previously lacked reliability, interpretability, and comprehensibility. For instance, many works rely on traditional computer vision methods, which may not perform well in dynamic and realistic environments. Recently, a widespread trend has emerged, leveraging deep learning for HPE specifically framed as a regression task; however, considering the real-time applications, the problem could be better formulated as classification (e.g., left, centre, right head pose and gaze) using a hybrid approach. For the first time, we present a complete facial profiling approach to extract micro and macro facial movement, gaze, and eye state features, which can be used for various applications related to comprehension analysis. The multi-model approach provides discrete human-understandable head pose estimations utilising deep transfer learning, a newly introduced method of head roll calculation, gaze estimation via iris detection, and eye state estimation (i.e., open or closed). Unlike existing works, this approach can automatically analyse the input image or video frame to produce human-understandable binary codes (e.g., eye open or close, looking left or right, etc.) for each facial component (aka face channels). The proposed approach is validated on multiple standard datasets, indicating outperformance compared to existing methods in several aspects, including reliability, generalisation, completeness, and interpretability. This work will significantly impact several diverse domains, including psychological and cognitive tasks with a broad scope of applications, such as in police interrogations and investigations, animal behaviour, and smart applications, including driver behaviour analysis, student attention measurement, and automated camera flashes

    Detection of Driver Drowsiness and Distraction Using Computer Vision and Machine Learning Approaches

    Get PDF
    Drowsiness and distracted driving are leading factor in most car crashes and near-crashes. This research study explores and investigates the applications of both conventional computer vision and deep learning approaches for the detection of drowsiness and distraction in drivers. In the first part of this MPhil research study conventional computer vision approaches was studied to develop a robust drowsiness and distraction system based on yawning detection, head pose detection and eye blinking detection. These algorithms were implemented by using existing human crafted features. Experiments were performed for the detection and classification with small image datasets to evaluate and measure the performance of system. It was observed that the use of human crafted features together with a robust classifier such as SVM gives better performance in comparison to previous approaches. Though, the results were satisfactorily, there are many drawbacks and challenges associated with conventional computer vision approaches, such as definition and extraction of human crafted features, thus making these conventional algorithms to be subjective in nature and less adaptive in practice. In contrast, deep learning approaches automates the feature selection process and can be trained to learn the most discriminative features without any input from human. In the second half of this research study, the use of deep learning approaches for the detection of distracted driving was investigated. It was observed that one of the advantages of the applied methodology and technique for distraction detection includes and illustrates the contribution of CNN enhancement to a better pattern recognition accuracy and its ability to learn features from various regions of a human body simultaneously. The comparison of the performance of four convolutional deep net architectures (AlexNet, ResNet, MobileNet and NASNet) was carried out, investigated triplet training and explored the impact of combining a support vector classifier (SVC) with a trained deep net. The images used in our experiments with the deep nets are from the State Farm Distracted Driver Detection dataset hosted on Kaggle, each of which captures the entire body of a driver. The best results were obtained with the NASNet trained using triplet loss and combined with an SVC. It was observed that one of the advantages of deep learning approaches are their ability to learn discriminative features from various regions of a human body simultaneously. The ability has enabled deep learning approaches to reach accuracy at human level.
    corecore