9 research outputs found

    Deep Classification of Epileptic Signals

    Full text link
    Electrophysiological observation plays a major role in epilepsy evaluation. However, human interpretation of brain signals is subjective and prone to misdiagnosis. Automating this process, especially seizure detection relying on scalp-based Electroencephalography (EEG) and intracranial EEG, has been the focus of research over recent decades. Nevertheless, its numerous challenges have inhibited a definitive solution. Inspired by recent advances in deep learning, we propose a new classification approach for EEG time series based on Recurrent Neural Networks (RNNs) via the use of Long-Short Term Memory (LSTM) networks. The proposed deep network effectively learns and models discriminative temporal patterns from EEG sequential data. Especially, the features are automatically discovered from the raw EEG data without any pre-processing step, eliminating humans from laborious feature design task. We also show that, in the epilepsy scenario, simple architectures can achieve competitive performance. Using simple architectures significantly benefits in the practical scenario considering their low computation complexity and reduced requirement for large training datasets. Using a public dataset, a multi-fold cross-validation scheme exhibited an average validation accuracy of 95.54\% and an average AUC of 0.9582 of the ROC curve among all sets defined in the experiment. This work reinforces the benefits of deep learning to be further attended in clinical applications and neuroscientific research.Comment: 4 pages, 3 figure

    Noise Reduction of EEG Signals Using Autoencoders Built Upon GRU based RNN Layers

    Get PDF
    Understanding the cognitive and functional behaviour of the brain by its electrical activity is an important area of research. Electroencephalography (EEG) is a method that measures and record electrical activities of the brain from the scalp. It has been used for pathology analysis, emotion recognition, clinical and cognitive research, diagnosing various neurological and psychiatric disorders and for other applications. Since the EEG signals are sensitive to activities other than the brain ones, such as eye blinking, eye movement, head movement, etc., it is not possible to record EEG signals without any noise. Thus, it is very important to use an efficient noise reduction technique to get more accurate recordings. Numerous traditional techniques such as Principal Component Analysis (PCA), Independent Component Analysis (ICA), wavelet transformations and machine learning techniques were proposed for reducing the noise in EEG signals. The aim of this paper is to investigate the effectiveness of stacked autoencoders built upon Gated Recurrent Unit (GRU) based Recurrent Neural Network (RNN) layers (GRU-AE) against PCA. To achieve this, Harrell-Davis decile values for the reconstructed signals’ signal-to- noise ratio distributions were compared and it was found that the GRU-AE outperformed PCA for noise reduction of EEG signals

    Determinant of Covariance Matrix Model Coupled with AdaBoost Classification Algorithm for EEG Seizure Detection

    Get PDF
    Experts usually inspect electroencephalogram (EEG) recordings page-by-page in order to identify epileptic seizures, which leads to heavy workloads and is time consuming. However, the efficient extraction and effective selection of informative EEG features is crucial in assisting clinicians to diagnose epilepsy accurately. In this paper, a determinant of covariance matrix (Cov–Det) model is suggested for reducing EEG dimensionality. First, EEG signals are segmented into intervals using a sliding window technique. Then, Cov–Det is applied to each interval. To construct a features vector, a set of statistical features are extracted from each interval. To eliminate redundant features, the Kolmogorov–Smirnov (KST) and Mann–Whitney U (MWUT) tests are integrated, the extracted features ranked based on KST and MWUT metrics, and arithmetic operators are adopted to construe the most pertinent classified features for each pair in the EEG signal group. The selected features are then fed into the proposed AdaBoost Back-Propagation neural network (AB_BP_NN) to effectively classify EEG signals into seizure and free seizure segments. Finally, the AB_BP_NN is compared with several classical machine learning techniques; the results demonstrate that the proposed mode of AB_BP_NN provides insignificant false positive rates, simpler design, and robustness in classifying epileptic signals. Two datasets, the Bern–Barcelona and Bonn datasets, are used for performance evaluation. The proposed technique achieved an average accuracy of 100% and 98.86%, respectively, for the Bern–Barcelona and Bonn datasets, which is considered a noteworthy improvement compared to the current state-of-the-art methods

    An overview of deep learning techniques for epileptic seizures detection and prediction based on neuroimaging modalities: Methods, challenges, and future works

    Get PDF
    Epilepsy is a disorder of the brain denoted by frequent seizures. The symptoms of seizure include confusion, abnormal staring, and rapid, sudden, and uncontrollable hand movements. Epileptic seizure detection methods involve neurological exams, blood tests, neuropsychological tests, and neuroimaging modalities. Among these, neuroimaging modalities have received considerable attention from specialist physicians. One method to facilitate the accurate and fast diagnosis of epileptic seizures is to employ computer-aided diagnosis systems (CADS) based on deep learning (DL) and neuroimaging modalities. This paper has studied a comprehensive overview of DL methods employed for epileptic seizures detection and prediction using neuroimaging modalities. First, DLbased CADS for epileptic seizures detection and prediction using neuroimaging modalities are discussed. Also, descriptions of various datasets, preprocessing algorithms, and DL models which have been used for epileptic seizures detection and prediction have been included. Then, research on rehabilitation tools has been presented, which contains brain-computer interface (BCI), cloud computing, internet of things (IoT), hardware implementation of DL techniques on field-programmable gate array (FPGA), etc. In the discussion section, a comparison has been carried out between research on epileptic seizure detection and prediction. The challenges in epileptic seizures detection and prediction using neuroimaging modalities and DL models have been described. In addition, possible directions for future works in this field, specifically for solving challenges in datasets, DL, rehabilitation, and hardware models, have been proposed. The final section is dedicated to the conclusion which summarizes the significant findings of the paper

    Developing artificial intelligence models for classification of brain disorder diseases based on statistical techniques

    Get PDF
    The Abstract is currently unavailable, due to the thesis being under Embargo
    corecore