4 research outputs found

    Deep Boosted Regression for MR to CT Synthesis

    Get PDF
    Attenuation correction is an essential requirement of positron emission tomography (PET) image reconstruction to allow for accurate quantification. However, attenuation correction is particularly challenging for PET-MRI as neither PET nor magnetic resonance imaging (MRI) can directly image tissue attenuation properties. MRI-based computed tomography (CT) synthesis has been proposed as an alternative to physics based and segmentation-based approaches that assign a population-based tissue density value in order to generate an attenuation map. We propose a novel deep fully convolutional neural network that generates synthetic CTs in a recursive manner by gradually reducing the residuals of the previous network, increasing the overall accuracy and generalisability, while keeping the number of trainable parameters within reasonable limits. The model is trained on a database of 20 pre-acquired MRI/CT pairs and a four-fold random bootstrapped validation with a 80:20 split is performed. Quantitative results show that the proposed framework outperforms a state-of-the-art atlas-based approach decreasing the Mean Absolute Error (MAE) from 131HU to 68HU for the synthetic CTs and reducing the PET reconstruction error from 14.3% to 7.2%.Comment: Accepted at SASHIMI201

    Deep learning for MRI-based CT synthesis: a comparison of MRI sequences and neural network architectures

    Full text link
    [Otros] Synthetic computed tomography (CT) images derived from magnetic resonance images (MRI) are of interest for radiotherapy planning and positron emission tomography (PET) attenuation correction. In recent years, deep learning implementations have demonstrated improvement over atlasbased and segmentation-based methods. Nevertheless, several open questions remain to be addressed, such as which is the best of MRI sequences and neural network architectures. In this work, we compared the performance of different combinations of two common MRI sequences (T1- and T2-weighted), and three state-of-the-art neural networks designed for medical image processing (Vnet, HighRes3dNet and ScaleNet). The experiments were conducted on brain datasets from a public database. Our results suggest that T1 images perform better than T2, but the results further improve when combining both sequences. The lowest mean average error over the entire head (MAE = 101.76 ± 10.4 HU) was achieved combining T1 and T2 scans with HighRes3dNet. All tested deep learning models achieved significantly lower MAE (p < 0.01) than a well-known atlas-based method.This work was supported by the Spanish Government grants TEC2016-79884-C2 and RTC-2016-5186-1, and by the European Union through the European Regional Development Fund (ERDF)Larroza, A.; Moliner, L.; Álvarez-Gómez, JM.; Oliver-Gil, S.; Espinós-Morató, H.; Vergara-Díaz, M.; Rodríguez-Álvarez, MJ. (2019). Deep learning for MRI-based CT synthesis: a comparison of MRI sequences and neural network architectures. IEEE. 1-4. https://doi.org/10.1109/NSS/MIC42101.2019.9060051S1

    Registration of serial sections: An evaluation method based on distortions of the ground truths

    Get PDF
    Registration of histological serial sections is a challenging task. Serial sections exhibit distortions and damage from sectioning. Missing information on how the tissue looked before cutting makes a realistic validation of 2D registrations extremely difficult. This work proposes methods for ground-truth-based evaluation of registrations. Firstly, we present a methodology to generate test data for registrations. We distort an innately registered image stack in the manner similar to the cutting distortion of serial sections. Test cases are generated from existing 3D data sets, thus the ground truth is known. Secondly, our test case generation premises evaluation of the registrations with known ground truths. Our methodology for such an evaluation technique distinguishes this work from other approaches. Both under- and over-registration become evident in our evaluations. We also survey existing validation efforts. We present a full-series evaluation across six different registration methods applied to our distorted 3D data sets of animal lungs. Our distorted and ground truth data sets are made publicly available.Comment: Supplemental data available under https://zenodo.org/record/428244
    corecore