8 research outputs found

    An Attention-Guided Deep Regression Model for Landmark Detection in Cephalograms

    Full text link
    Cephalometric tracing method is usually used in orthodontic diagnosis and treatment planning. In this paper, we propose a deep learning based framework to automatically detect anatomical landmarks in cephalometric X-ray images. We train the deep encoder-decoder for landmark detection, and combine global landmark configuration with local high-resolution feature responses. The proposed frame-work is based on 2-stage u-net, regressing the multi-channel heatmaps for land-mark detection. In this framework, we embed attention mechanism with global stage heatmaps, guiding the local stage inferring, to regress the local heatmap patches in a high resolution. Besides, the Expansive Exploration strategy improves robustness while inferring, expanding the searching scope without increasing model complexity. We have evaluated our framework in the most widely-used public dataset of landmark detection in cephalometric X-ray images. With less computation and manually tuning, our framework achieves state-of-the-art results

    An End-to-end Deep Learning Approach for Landmark Detection and Matching in Medical Images

    Get PDF
    Anatomical landmark correspondences in medical images can provide additional guidance information for the alignment of two images, which, in turn, is crucial for many medical applications. However, manual landmark annotation is labor-intensive. Therefore, we propose an end-to-end deep learning approach to automatically detect landmark correspondences in pairs of two-dimensional (2D) images. Our approach consists of a Siamese neural network, which is trained to identify salient locations in images as landmarks and predict matching probabilities for landmark pairs from two different images. We trained our approach on 2D transverse slices from 168 lower abdominal Computed Tomography (CT) scans. We tested the approach on 22,206 pairs of 2D slices with varying levels of intensity, affine, and elastic transformations. The proposed approach finds an average of 639, 466, and 370 landmark matches per image pair for intensity, affine, and elastic transformations, respectively, with spatial matching errors of at most 1 mm. Further, more than 99% of the landmark pairs are within a spatial matching error of 2 mm, 4 mm, and 8 mm for image pairs with intensity, affine, and elastic transformations, respectively. To investigate the utility of our developed approach in a clinical setting, we also tested our approach on pairs of transverse slices selected from follow-up CT scans of three patients. Visual inspection of the results revealed landmark matches in both bony anatomical regions as well as in soft tissues lacking prominent intensity gradients.Comment: SPIE Medical Imaging Conference - 202

    An end-to-end deep learning approach for landmark detection and matching in medical images

    Get PDF
    Anatomical landmark correspondences in medical images can provide additional guidance information for the alignment of two images, which, in turn, is crucial for many medical applications. However, manual landmark annotation is labor-intensive. Therefore, we propose an end-to-end deep learning approach to automatically detect landmark correspondences in pairs of two-dimensional (2D) images. Our approach consists of a Siamese neural network, which is trained to identify salient locations in images as landmarks and predict matching probabilities for landmark pairs from two different images. We trained our approach on 2D transverse slices from 168 lower abdominal Computed Tomography (CT) scans. We tested the approach on 22,206 pairs of 2D slices with varying levels of intensity, affine, and elastic transformations. The proposed approach finds an average of 639, 466, and 370 landmark matches per image pair for intensity, affine, and elastic transformations, respectively, with spatial matching errors of at most 1 mm. Further, more than 99% of the landmark pairs are within a spatial

    Machine learning for outlier detection in medical imaging

    Get PDF
    Outlier detection is an important problem with diverse practical applications. In medical imaging, there are many diagnostic tasks that can be framed as outlier detection. Since pathologies can manifest in so many different ways, the goal is typically to learn from normal, healthy data and identify any deviations. Unfortunately, many outliers in the medical domain can be subtle and specific, making them difficult to detect without labelled examples. This thesis analyzes some of the nuances of medical data and the value of labels in this context. It goes on to propose several strategies for unsupervised learning. More specifically, these methods are designed to learn discriminative features from data of a single class. One approach uses divergent search to continually find different ways to partition the data and thereby accumulates a repertoire of features. The other proposed methods are based on a self-supervised task that distorts normal data to form a contrasting class. A network can then be trained to localize the irregularities and estimate the degree of foreign interference. This basic technique is further enhanced using advanced image editing to create more natural irregularities. Lastly, the same self-supervised task is repurposed for few-shot learning to create a framework for adaptive outlier detection. These proposed methods are able to outperform conventional strategies across a range of datasets including brain MRI, abdominal CT, chest X-ray, and fetal ultrasound data. In particular, these methods excel at detecting more subtle irregularities. This complements existing methods and aims to maximize benefit to clinicians by detecting fine-grained anomalies that can otherwise require intense scrutiny. Note that all approaches to outlier detection must accept some assumptions; these will affect which types of outliers can be detected. As such, these methods aim for broad generalization within the most medically relevant categories. Ultimately, the hope is to support clinicians and to focus their attention and efforts on the data that warrants further analysis.Open Acces
    corecore