8 research outputs found

    A review of Generative Adversarial Networks for Electronic Health Records: applications, evaluation measures and data sources

    Full text link
    Electronic Health Records (EHRs) are a valuable asset to facilitate clinical research and point of care applications; however, many challenges such as data privacy concerns impede its optimal utilization. Deep generative models, particularly, Generative Adversarial Networks (GANs) show great promise in generating synthetic EHR data by learning underlying data distributions while achieving excellent performance and addressing these challenges. This work aims to review the major developments in various applications of GANs for EHRs and provides an overview of the proposed methodologies. For this purpose, we combine perspectives from healthcare applications and machine learning techniques in terms of source datasets and the fidelity and privacy evaluation of the generated synthetic datasets. We also compile a list of the metrics and datasets used by the reviewed works, which can be utilized as benchmarks for future research in the field. We conclude by discussing challenges in GANs for EHRs development and proposing recommended practices. We hope that this work motivates novel research development directions in the intersection of healthcare and machine learning

    Cross domain Image Transformation and Generation by Deep Learning

    Get PDF
    Compared with single domain learning, cross-domain learning is more challenging due to the large domain variation. In addition, cross-domain image synthesis is more difficult than other cross learning problems, including, for example, correlation analysis, indexing, and retrieval, because it needs to learn complex function which contains image details for photo-realism. This work investigates cross-domain image synthesis in two common and challenging tasks, i.e., image-to-image and non-image-to-image transfer/synthesis.The image-to-image transfer is investigated in Chapter 2, where we develop a method for transformation between face images and sketch images while preserving the identity. Different from existing works that conduct domain transfer in a one-pass manner, we design a recurrent bidirectional transformation network (r-BTN), which allows bidirectional domain transfer in an integrated framework. More importantly, it could perceptually compose partial inputs from two domains to simultaneously synthesize face and sketch images with consistent identity. Most existing works could well synthesize images from patches that cover at least 70% of the original image. The proposed r-BTN could yield appealing results from patches that cover less than 10% because of the recursive estimation of the missing region in an incremental manner. Extensive experiments have been conducted to demonstrate the superior performance of r-BTN as compared to existing solutions.Chapter 3 targets at image transformation/synthesis from non-image sources, i.e., generating talking face based on the audio input. Existing works either do not consider temporal dependency thus yielding abrupt facial/lip movement or are limited to the generation for a specific person thus lacking generalization capacity. A novel conditional recurrent generation network which incorporates image and audio features in the recurrent unit for temporal dependency is proposed such that smooth transition can be achieved for lip and facial movements. To achieve image- and video-realism, we adopt a pair of spatial-temporal discriminators. Accurate lip synchronization is essential to the success of talking face video generation where we construct a lip-reading discriminator to boost the accuracy of lip synchronization. Extensive experiments demonstrate the superiority of our framework over the state-of-the-arts in terms of visual quality, lip sync accuracy, and smooth transition regarding lip and facial movement

    A survey of generative adversarial networks for synthesizing structured electronic health records

    Get PDF
    Electronic Health Records (EHRs) are a valuable asset to facilitate clinical research and point of care applications; however, many challenges such as data privacy concerns impede its optimal utilization. Deep generative models, particularly, Generative Adversarial Networks (GANs) show great promise in generating synthetic EHR data by learning underlying data distributions while achieving excellent performance and addressing these challenges. This work aims to survey the major developments in various applications of GANs for EHRs and provides an overview of the proposed methodologies. For this purpose, we combine perspectives from healthcare applications and machine learning techniques in terms of source datasets and the fidelity and privacy evaluation of the generated synthetic datasets. We also compile a list of the metrics and datasets used by the reviewed works, which can be utilized as benchmarks for future research in the field. We conclude by discussing challenges in GANs for EHRs development and proposing recommended practices. We hope that this work motivates novel research development directions in the intersection of healthcare and machine learning

    Conditional Image Synthesis by Generative Adversarial Modeling

    Get PDF
    Recent years, image synthesis has attracted more interests. This work explores the recovery of details (low-level information) from high-level features. The generative adversarial nets (GAN) has led to the explosion of image synthesis. Moving away from those application-oriented alternatives, this work investigates its intrinsic drawbacks and derives corresponding improvements in a theoretical manner.Based on GAN, this work further investigates the conditional image synthesis by incorporating an autoencoder (AE) to GAN. The GAN+AE structure has been demonstrated to be an effective framework for image manipulation. This work emphasizes the effectiveness of GAN+AE structure by proposing the conditional adversarial autoencoder (CAAE) for human facial age progression and regression. Instead of editing on the image level, i.e., explicitly changing the shape of face, adding wrinkle, etc., this work edits the high-level features which implicitly guide the recovery of images towards expected appearance.While GAN+AE being prevalent in image manipulation, its drawbacks lack exploration. For example, GAN+AE requires a weight to balance the effects of GAN and AE. An inappropriate weight would generate unstable results. This work provides an insight to such instability, which is due to the interaction between GAN and AE. Therefore, this work proposes the decoupled learning (GAN//AE) to avoid the interaction between them and achieve a robust and effective framework for image synthesis. Most existing works used GAN+AE structure could be easily adapted to the proposed GAN//AE structure to boost their robustness. Experimental results demonstrate the correctness and effectiveness of the provided derivation and proposed methods, respectively.In addition, this work extends the conditional image synthesis to the traditional area of image super-resolution, which recovers the high-resolution image according the low-resolution counterpart. Diverting from such traditional routine, this work explores a new research direction | reference-conditioned super-resolution, in which a reference image containing desired high-resolution texture details is used besides the low-resolution image. We focus on transferring the high-resolution texture from reference images to the super-resolution process without the constraint of content similarity between reference and target images, which is a key difference from previous example-based methods
    corecore