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Abstract

Compared with single domain learning, cross-domain learning is more challenging due to the

large domain variation. In addition, cross-domain image synthesis is more difficult than other

cross learning problems, including, for example, correlation analysis, indexing, and retrieval,

because it needs to learn complex function which contains image details for photo-realism.

This work investigates cross-domain image synthesis in two common and challenging tasks,

i.e., image-to-image and non-image-to-image transfer/synthesis.

The image-to-image transfer is investigated in Chapter 2, where we develop a method

for transformation between face images and sketch images while preserving the identity.

Different from existing works that conduct domain transfer in a one-pass manner, we design

a recurrent bidirectional transformation network (r-BTN), which allows bidirectional domain

transfer in an integrated framework. More importantly, it could perceptually compose partial

inputs from two domains to simultaneously synthesize face and sketch images with consistent

identity. Most existing works could well synthesize images from patches that cover at

least 70% of the original image. The proposed r-BTN could yield appealing results from

patches that cover less than 10% because of the recursive estimation of the missing region

in an incremental manner. Extensive experiments have been conducted to demonstrate the

superior performance of r-BTN as compared to existing solutions.

Chapter 3 targets at image transformation/synthesis from non-image sources, i.e.,

generating talking face based on the audio input. Existing works either do not consider

temporal dependency thus yielding abrupt facial/lip movement or are limited to the

generation for a specific person thus lacking generalization capacity. A novel conditional

recurrent generation network which incorporates image and audio features in the recurrent

unit for temporal dependency is proposed such that smooth transition can be achieved for
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lip and facial movements. To achieve image- and video-realism, we adopt a pair of spatial-

temporal discriminators. Accurate lip synchronization is essential to the success of talking

face video generation where we construct a lip-reading discriminator to boost the accuracy

of lip synchronization. Extensive experiments demonstrate the superiority of our framework

over the state-of-the-arts in terms of visual quality, lip sync accuracy, and smooth transition

regarding lip and facial movement.
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Chapter 1

Introduction

Human excels in image understanding and imagination by integrating information from

various sources (sound, text, taste, and etc). For example, by just listening to the baby

crying, people can imagine how the baby’s face looks like when crying. By reading a

story from a fiction, people can picture the corresponding scene in mind according to the

description in text. Every day, people create and consume massive amount of data from

various sources, such as sound, image, text. For example, people text messages through

smart phones, post status through Twitter or Facebook, watch movies on Youtube, share

images on Instagram, listen to music from Apple Store. This incredible amount of data have

enabled researchers to investigate the visual understanding and collaboration mechanism

across different information sources in human brains.

This work aims to develop methods with the power of extracting common features from

different domains (e.g., text, sound, image) to effectively and consistently express themselves

visually. Appealing results have been achieved in many computer vision tasks with data from

one single domain. For example, image classification or speech recognition approaches only

aim to extract abstract features to be distinguishable in their own domain. However, it is

common that in many real applications, data are from different domains with large domain

variation. For example, the same image with different styles, same objects described by

text or images or sound. We refer to learning from these different sources as cross domain

learning.
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There are many challenges when dealing with cross domain data, for example, correlation

analysis, domain adaption, domain transformation and generation. This dissertation focuses

on image transformation and generation, i.e., visual synthesis. Different from visual

understanding (e.g., image classification, image retrieval) which aims to extract compact

concepts from rich visual information, visual synthesis works in the opposite way which

generates rich visual data only from abstract and compact concepts while preserving

the photo-realism. Besides the importance of being interesting purely from a scientific

standpoint, visual synthesis has a range of important practical applications. For example, the

ability to generate high-quality images can reduce the amount of bandwidth needed in video

coding/transmission. Generating object or product based on the description can better serve

the image searching when human do online shopping. Previously, only professional artist or

painter can create sketch portrait image or cartoon portrait, with image transformation and

synthesis algorithm, images with different styles can be generated in second for everyone.

In this dissertation, the problem of image generation and transformation in cross domain

scenario (Section 1.2) is first clarified. The traditional method which relies on hand-crafted

feature or low-level feature for visual modeling tends to yield artifact and unreal results. By

taking the advantage of deep learning and recently developed generative model, a generator

network can be trained in an adversarial scheme (Section 1.3) which could largely increase the

photo-realism. The cross domain image transformation and generation problems are explored

in two problems: solving practices sketch (face) to face (sketch) image transformation

(Chapter 2) and audio to video generation (Chapter 3). Chapter 4 offers some discussions

and possible future directions.

1.1 Cross Domain Learning

Different domains refer to Information sources that have different data distribution or large

domain variation. For example, text, audio, and image are different information sources, i.e.,

different domains. Painting, cartoon, sketch, and natural image should also refer to different

domains due to the large style variations, although they are all in image domain. There

are many essential need to analyze data from multiple sources collaboratively to extract

2



information and make a new discovery. Cross domain learning refers to the learning of a

mapping function through information provided from multiple domains (i.e., source domain

and target domain) with large variation. Many cross domain learning applications are listed

here according to their source and target domains,

• Audio2Text: For example, speech recognition in natural language processing aims

to extract feature in the audio domain, and translate into words. It has been widely

applied to voice search in smart devices in recent years.

• Text2Image: Human can imagine a picture in mind based on the description of text.

Similarly, recent computer vision techniques can generate images based on the text

description. [54]

• Image2Audio: Some recent works can predict the corresponding audio based on the

event from a video. For example, it [61] can predict the baby crying based on a salient

baby crying video. Or [27] can predict the sound when the object shown in a picture

is hit or scratched.

Single domain techniques assume that data are drawn from the same distribution, and thus

they are not suitable for cross domain problems where the data are related but with large

variations. Although many joint representation learning works have been widely explored,

these methods mainly focus on information retrieval and indexing. Cross domain learning

itself is challenging due to the large domain variation, and cross domain generation si even

more challenging as it needs to handle both unseen or unheard samples. Nonetheless, these

have been many cross domain generation tasks developed recently, including for example,

creating art works and zero-shot learning [54, 61, 27]. This dissertation mainly focuses on

image generation and transformation problems.

3



Figure 1.1: Image Transformation Examples

1.2 Cross domain Image Transformation and Genera-

tion

Image transformation is a class of vision and graphics problems where the goal is to learn the

mapping between a source image domain and a target image domain. The source and target

images may have differences in content, style or color as shown in Figure 1.1. There are many

computer vision problems can be posed as the image-to-image transformation problem. For

example, super-resolution can be considered as a problem of mapping a low-resolution image

to a corresponding high-resolution image; colorization can be considered as a problem of

mapping a gray-scale image to a corresponding color image, stylization can be considered as

a problem of mapping an image with another corresponding style.

Different from cross domain image transformation, where the source and target domain

share high correlation in content, style or shape, etc., but all in image domains, image

generation refers to generating image samples from the source where no image information

can be contained. For example, directly generating images from noise [10] or generating

images based on text description [54] or based on audio information [4], as shown in Fig. 1.2.

Although there are many existing image generation works [12, 49, 55, 59], these methods

either generate image by stitching or compositing with the best-matching patches from

the training samples or learning the mapping based on the low-level feature while yielding

unsatisfactory results. Recently developed generative models (see Sec. 1.3) have achieved

4



Figure 1.2: Cross domain Image Generation Examples. Text2Image [54] directly generate
the corresponding image according to the text description. Audio2Image [39] generate a
sequence of frames with the correct lip shape based on the given audio information.

appealing results in the task of image generation and transformation. The original generative

models mainly generate images from one domain by mapping a latent code drawn from

a prior distribution to the samples with the same data distribution. But when data are

from different domains, the latent code can be either drawn from a prior distribution or

extracted from another domain. The latter is the cross domain transformation or generation

problem. These methods are mainly developed from encoder-decoder network where the

encoder extracts the features of source images and the decoder decodes the information

into the target domain. In order to preserve the similarity between the predicted result and

ground truth, a reconstruction error is used as the objective function. However, recent works

have indicated that only using reconstruction error will yield blurred results. An adversarial

training scheme is used in this dissertation to achieve the photo-realism. More details will

be discussed in Sec. 1.3.
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1.3 Generative Models

In probability and statistics, generative modeling refers to the modeling of the data either

drawn from a probability density function or as an intermediate step to form a conditional

probability density function. There are many traditional generative model methods such as

Multi-Gaussian model, Hidden Markov model, Naive Bayes, Restricted Boltzmann machine,

etc. If the observed data are truly sampled from the generative model, then fitting the

parameters of the generative model would maximize the data likelihood. However, learning

a generative model for images is challenging due to their high dimensionality and complicated

distribution (unknown or nondeterministic). Most traditional methods focus on modeling

local properties and small patch representations. They may work well for low-level imaging

tasks such as image denoising and image deblurring, but difficult to be adopted for higher

level visual information generation.

By the availability of a large amount of visual data and the power of representation

learning through the deep neural network, recently developed deep generative models, such

as Autoregressive, variational autoencoder (VAE), generative adversarial network (GAN) [10]

have achieved much success in image generation related tasks. Autoregressive models train

a network that models the conditional distribution of every individual pixel given previous

pixels. VAE formalize this problem in the framework of probabilistic graphical models which

aim to maximize a lower bound on the log likelihood of the data. The encoder maps an

image into a latent variable following the prior distribution by minimizing the difference

between the learned posterior distribution and the prior distribution. An decoder inversely

maps a latent variable back into an image by minimizing the reconstruction loss. The

original GAN work introduced a novel framework for training generative models which can

guarantee the photo-realism. It simultaneously trains two models: the generative model G

and discriminative model D in an adversarial manner. The generative model G captures the

distribution of training samples and generates new samples which look like real samples, while

the discriminative model D aims to distinguish the generated ones from the real samples. It
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is achieved by a min-max game as shown in Eq. 1.1.

min
G

max
D

Ex∼Pdata(x) log(1−D(x)) + Ez∼P (z) log(1−D(G(z)), (1.1)

where z denotes a vector randomly sampled from certain distribution p(z) (e.g., Gaussian

or uniform), and the data distribution is pdata(x), i.e., the training data x ∼ pdata(x). In

this dissertation, this adversarial training scheme is used to improve the photo-realistic

performance.

1.4 Dissertation Organization and Contribution

In this dissertation, we explore the cross domain image transformation and generation

problem through deep neural network. Two cross domain image generation problems, i.e.,

within image source transformation and generation in Chapter 2 and non-image source

transformation and generation in Chapter 3, are studied respectively.

Image source transformation and generation: Images differ in style, color and

texture could be referred to as sub-domains within the image domain, such as face images

and the corresponding sketch images. Existing face/sketch synthesis works [49, 41, 59,

37] synthesize target faces from the source domain through patch-wise searching of similar

patches in the training set. Without the generative capability, these methods fail to render

reasonable pixels for large missing areas. The rapid development of generative adversarial

networks (GANs) [10] has shown impressive performance in face generation [33, 57], domain

transformation [62], and inpainting [52, 29]. However, generating faces from small patches

in either single or cross domains has not been explored. Intuitively, combining domain

transformation and inpainting works could be a potential solution. However, with the large

missing area, the generated results tend to be blurred and may look unrealistic. The recursive

generation by bidirectional transformation networks (r-BTN), which learns both a forward

and backward mapping function between cross domains is proposed to enable a recursive

update of the generated faces/sketches for more consistent and high-fidelity results even

with large portions of missing data. The capacity of r-BTN in fusing multiple patches
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from multiple domains and multiple people (i.e., , face composite) to output a realistic and

consistent face in a generative manner is also explored.

Non image source transformation and generation: Given arbitrary audio and

one identity image, talking face generation task need to synthesize the video where the lip

movement synchronizes to the given audio. Compared with face/sketch image transformation

and generation problem, talking face generation is more challenging. The challenge of the

talking face generation problem is three-fold. First, video generation is, in general, more

challenging than still image generation since humans are sensitive with any subtle artifacts

and temporal discontinuities. Second, audio to video speech generation poses extra rigid

requirement on the accuracy of lip synchronization. Third, due to the large variation in

human pose, talking speed and style, how to train a model with the generalization capacity

for both unseen audio and face image is quite challenging. A novel conditional recurrent

generation network is proposed which incorporates both image and audio in the recurrent

unit for temporal dependency such that smooth transition can be achieved for both lip

and facial movements. A pair of spatial-temporal discriminators for both image-realism and

video-realism is designed. In addition, a lip-reading discriminator is constructed to boost the

accuracy of lip synchronization. A sample selection method is designed to largely removes

the highly redundant samples without sacrificing performance. The proposed network could

be extended to model the natural pose and expression of talking face on Obama Dataset by

applying the generated frame as input to the subsequent recurrent unit to preserve smooth

transition.

In chapter 4, the contributions of this dissertation and several future directions in cross

domain image transformation and generation problems are summarized and studied.
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Chapter 2

Sketch and Face Generation and

Transformation

2.1 Introduction

This task is motivated by an interesting yet challenging question, “If provided with limited

facial patches from sketch/face domains where human beings may be able to generate a

real face image in brain [18] as shown in Fig. 2.1, can advanced computer vision techniques

generate the whole face image?” Recently, several face synthesis methods built on neural

networks have emerged [57, 35]. These methods can generate face/sketch images based on

whole face information from one domain. However, how to generate realistic faces/sketches

that are consistent to the given sketch/face patches is still a challenging task because large

missing area could lead to blurry generated images. In addition, some existing methods

(e.g., Photofit [Photofit]) synthesize faces by stitching patches from cross domains which

deteriorates the consistency and photo-reality. It is still unclear how to preserve the

color/domain consistency between patches with large domain variations.

In this chapter, the above-mentioned problems which would play a key role in many

applications is studied, such as face image stitching, face blending, face editing, etc. To the

best of my knowledge, this work represents the first attempt to cross-filling large missing

area in both face and sketch domains. Existing works that may potentially address this

problem are mainly in the perspectives of face/sketch synthesis/transformation and image
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Face composite Face synthesis

from limited patch

Figure 2.1: Illustration of face composite based on cross-domain patches and face synthesis
from limited facial patch.

inpainting. The face/sketch synthesis works [49, 41, 59, 37] synthesize target faces from the

source domain through patch-wise searching of similar patches in the training set. Without

the generative capability, these methods fail to render reasonable pixels for large missing

areas. The rapid development of generative adversarial networks (GANs) [10] has shown

impressive performance in face generation [33, 57], domain transformation [62, 13], and

inpainting [52, 29]. However, generating faces from small patches in either single or cross

domains has not been explored. Intuitively, combining domain transformation and inpainting

works could be a potential solution. However, with large missing area, the generated results

tend to be blurred and may look unrealistic.

In this chapter, the problem of cross-domain face/sketch generation conditioned on a

given small patch of sketch/face is investigated. The faces and sketches are assumed to lie

on high-dimensional manifolds I and S, respectively, as shown in Fig. 2.2 (right). The given

small sketch/face patch will initially deviate from the corresponding manifold due to large

amount of missing data. With the learned bidirectional transformation network (BTN), i.e.,

f and F , the given patch will be recursively mapped forward and backward between I and

S. Each mapping will yield a result progressively closing in onto either the face or sketch

manifold, and eventually approaching the real whole face/sketch images as shown in Fig. 2.2

(middle). An adversarial network is imposed on both f and F , forcing more photo-realistic

faces/sketches. The rationale and benefit of the proposed r-BTN will be further discussed.

This chapter makes the following contributions: 1) The challenging problem of face/sketch

generation from small patches are tackled, estimating large missing area based on limited

information while alleviating the blur effect suffered by existing works. 2) The recursive
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Origin Input
patch

Recursive Generation based on Bidirectional Transformation
1st iteration 2nd 10th 20th 100th 𝓘

𝓢

f F

Origin Input
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Recursive Generation based on Bidirectional Transformation
1st iteration 2nd 10th 20th 100th 𝓘

𝓢

f F

Figure 2.2: Examples of recursive generation from small patches by the bidirectional
transformation network. Upper: Original face/sketch and the corresponding input patches
extracted from them. Inside of the dashed box demonstrates the generated face/sketch at
different iteration steps. Lower: Illustration of transformation between the face and sketch
manifolds I and S, respectively. The green dot denotes a given face patch. The red and blue
arrows are the learned mapping f and F , respectively. The red and blue dots are generated
sketches and faces through corresponding mapping.
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generation by bidirectional transformation networks (r-BTN) is proposed, which learns both

a forward and backward mapping function between cross domains to enable a recursive

update of the generated faces/sketches for more consistent and high-fidelity results even

with large portions of missing data. 3) The capacity of r-BTN in fusing multiple patches

from multiple domains and multiple people (i.e., face composite) to output a realistic and

consistent face in a generative manner is further explored.

2.2 Related Works

The related works are discussed from three closely related areas, namely, face/sketch

synthesis/transformation, image inpainting, and face manipulation.

2.2.1 Face/Sketch Synthesis/Transformation

Face/sketch domain transformation related works mainly fall into two categories: matching-

based and generation-based methods. Most face/sketch synthesis works [49, 55, 59] are

matching-based, which synthesize faces from best matched patches by searching from the

training dataset. For example, [49] divided a given face/sketch image into patches, each

of which was matched to a series of similar patches from the training dataset. Then,

the patches in the target domain corresponding to the matched patches were stitched via

Markov random field to synthesize a transformed face. The matching-based methods have

two drawbacks: 1) The matching procedure is time-consuming for a large training dataset,

and 2) they cannot effectively estimate the patch content from missing area. The generation-

based methods [40, 13] are mainly developed from encoder-decoder networks and adversarial

generative networks. For example, [13, 63] proposed a general domain transformation method

through conditional generative adversarial network. It could also be utilized for face/sketch

transformation. However, it is not trained for the purpose of estimating missing areas.

Moreover, to achieve bidirectional face/sketch transformation, two transformation networks

(i.e., face to sketch and sketch to face) need to be learned independently.
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2.2.2 Image Inpainting

Image inpainting aims to fill in unwanted or missing part of an image. Most inpainting

methods [9, 36, 7] estimate the missing part based on surrounding pixels, and therefore are

not suitable for filling in large missing areas. Although some recent works [52, 29] claimed

the ability of filling in up to 80% missing regions, they tend to generate blurred results,

which may be with visible inconsistency between the given and estimated areas. In addition,

inpainting related methods train on randomly masked inputs and perform filling in a single

domain, while the proposed work uses the whole face/sketch pairs in training and perform

cross-domain filling.

2.2.3 Face Manipulation

Face manipulation works [57, 51] could be a potential solution to the proposed task because

they can generate faces by manipulating the latent variables. Given a small patch, they

may search the latent space for a best matched face. Thus, the generative model performs

like matching-based methods which may be time-consuming. A more efficient way is to

minimize the error between the generated face and the given patch. However, it cannot

ensure consistent results because only the patch location (where the error comes from) will

be updated regardless of its surroundings.

2.3 The Bidirectional Transformation Network

In this section, the benefit of the proposed BTN through a comparison with unidirectional

transformations is first elaborated. This is followed by a detailed description of the training

and testing stages of the proposed r-BTN. The training stage learns the bidirectional

transformation between the face and sketch domains using whole face/sketch pairs. The

testing stage recursively generates the whole face/sketch from given small sketch/face

patches.
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Figure 2.3: Comparison of unidirectional and bidirectional transformations between I and
S domains. E and D are the encoder-decoder networks. The patch (eyes) generates the
sketch, and then the sketch is transformed back where facial outline has been estimated.

2.3.1 The Bidirectional Network Structure

Assume a training set in I × S, where I and S denote the face and sketch domains,

respectively. The unidirectional transformation, e.g., [13], learns a mapping f : I → S

which could be implemented by encoder-decoder networks, as shown in Fig. 2.3 (left). The

BTN, on the other hand, simultaneously involves the forward mapping f and backward

mapping F : S → I, as shown in Fig. 2.3 (right). The bidirectional transformation forms a

closed loop where the output of f serves as the input to F , and the output of F serves as

the input to f in the next iteration. The forward transformation f may discard information

in general due to the domain difference (e.g., color information will be discarded from I

to S), but the backward transformation F closes the loop by connecting the output from

f in the S domain and the original input in the I domain and generates an intermediate

result in I where additional face information (e.g., facial outline) has been estimated and

the discarded information (e.g., color) restored. The bidirectional network structure enables

the recursive update of the face (from F ) and sketch (from f), taking advantage of the

progressively learned knowledge in both domains and generate full face/sketch with high

fidelity. The effectiveness of the recursive bidirectional transformation between face and

sketch domains is well demonstrated in Fig. 2.2. In general, the missing area is roughly

filled at the beginning (iteration 1 and 2) although it is blurred. Then, facial details are

progressively enhanced (iteration 10) and sharpened (iteration 20). Finally, a realistic
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face/sketch, including reasonable hair style, is generated. Because of the very limited

information provided in the input patch, it is difficult to generate a face/sketch exactly

the same as the original. However, the generated face/sketch still preserves the pixel-level

content of the given patch.

2.3.2 Training Stage

Fig. 2.4 illustrates the details of the BTN structure where the mapping functions, f and F ,

are learned in a bidirectional fashion instead of the commonly used unidirectional mapping.

Given the original face/sketch pair xI and xS , the following transformations are

performed,

x0
S = f(xI), x

1
I = F (x0

S) = F (f(xI)),

x0
I = F (xS), x1

S = f(x0
I) = f(F (xS)).

The objective is to learn the bidirectional transformations between I and S, so that any

face/sketch pair could be uniquely mapped forward and backward into another domain.

To achieve invertible transformation, i.e., preserving the identity of face and sketch during

transformations, the reconstruction error Lrec between real and generated faces or sketches

is minimized as Eq. 2.1.

Lrec =
1∑

i=0

(
‖xI − xiI‖1 + ‖xS − xiS‖1

)
, (2.1)

where the `1-norm instead of the `2-norm is used to avoid blurry results. Besides Lrec,

an adversarial constraint is employed to encourage photo-realistic face/sketch pairs. The

discrimination loss can be written as

Ladv = ExI∈I
xS∈S

[logD(xI , xS)] + Eω∈Ω [1− logD(ω)] , (2.2)

15



𝒙𝓘

𝒙𝓘
𝟏 𝒙𝓢

𝒙𝓢
𝟏

𝒙𝓘
𝟎 𝒙𝓢

𝟎 𝑫

Loss

Loss Loss

Loss

𝒙𝓘 𝒙𝓢

𝒙𝓘 𝒙𝓢
𝟎

𝒙𝓢𝒙𝓘
𝟎

𝒙𝓘
𝟏 𝒙𝓢

𝟎

𝒙𝓢
𝟏𝒙𝓘

𝟎

Real

Fake

F

f

Figure 2.4: Training flow of the bidirectional transformation network. xI and xS are the
real face/sketch pair. Red and blue arrows denote the transformation paths of xI and xS ,
respectively. The transformation functions f and F could be encoder-decoder networks.
Loss denotes the `1-norm. The discriminator D is trained on real and generated (fake)
face/sketch pairs.

where

Ω =
{

(xI , x
0
S)j, (x

1
I , x

0
S)j, (x

0
I , xS)j, (x

0
I , x

1
S)j
}

= {(xI , f(xI))j, (F (f(xI), f(xI)))j,

(F (xS), xS)j, (F (xS), f(F (xS)))j}

indicates the fake face/sketch pairs, and j indexes the fake pairs generated from the jth real

pair in a mini-batch. Note that only (xI , xS) is the real pair. Combining Eqs. 2.1 and 2.2,

the objective function is

min
f,F,D

Ladv + λLrec, (2.3)

where λ balances the adversarial loss and reconstruction loss. In optimization, f , F , and D

are updated alternatively. The discriminator D is updated by minimizing Ladv. The update
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of f and F is performed by

min
f

Eω∈Ωf
[logD(ω)] + λ

1∑
i=0

‖xS − xiS‖1, (2.4)

min
F

Eω∈ΩF
[logD(ω)] + λ

1∑
i=0

‖xI − xiI‖1, (2.5)

where

Ωf =
{

(xI , x
0
S)j, (x

0
I , x

1
S)j
}

=
{

(xI , f(xI))j, (x
0
I , f(x0

I))j
}
,

ΩF =
{

(x0
I , xS)j, (x

1
I , x

0
S)j
}

=
{

(F (xS), xS)j, (F (x0
S), x0

S)j
}
,

and Ω = Ωf ∪ ΩF . Here, j is again the index of training samples in a mini-batch.

2.3.3 Testing Stage

During testing, given an arbitrary patch from either domain, a whole face from the other

domain could be generated in a recursive manner through the bidirectional transformation.

The testing flow is shown in Fig. 2.5, which demonstrates the case of given a face patch

pI . Similarly, if a sketch patch pS is given, it will be fed to xS and similar testing flow can

be carried out to generate a whole face image. In this chapter, a patch is created through

multiplying a whole face/sketch by a mask M , e.g., pI = xI � M where � denotes the

element-wise multiplication.

The bidirectional transformation network structure enables a recursive generation

between sketches and faces. Given the current result xkI , the next generation xk+1
I can

be obtained by
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Figure 2.5: Testing flow of r-BTN, assuming a face patch pI as the input. At step k, the
generated face is xkI . Replacing the corresponding area of xkI by the patch pI and transforming
xkI to xkS , a face/sketch pair

(
xkI , x

k
S
)

can be obtained. Then, this pair is adjusted by the error
back propagated from D as comparing to the output of real pairs. Finally, xkS is transformed
back to the face domain, generating xk+1

I .

xkI ← xkI � (1−M) + pI , (2.6)

xkS ← f
(
xkI
)
, (2.7)

xkS ← xkS −
∂D(xkI , x

k
S)

∂xkS
, (2.8)

xk+1
I ← F

(
xkS
)
. (2.9)

In order to generate photo-realistic faces/sketches such that the given patch and the

estimated complement blend together in a consistent fashion, two constraints are applied

during the recursive generation process. First, the given patch, pI , is kept as the anchor

that remains the same across different iterations. In other words, pI directly covers the

corresponding area of the newly generated face to explicitly preserve the given content

(Eq. 2.6). Then, xkI is transformed to the sketch domain by f (Eq. 2.7). Unlike most

GANs related works which utilize D only in the training stage, D is utilized as a second

constraint in the testing process to ensure realistic faces/sketches generation in each iteration

such that small deviations get to be corrected instead of accumulated through iterations.

Given a small patch, the testing stage needs multiple iterations to gradually generate a

whole face/sketch, as illustrated previously in Fig. 2.2. In each iteration, backpropagating

the loss of D will enforce the photo-reality during the recursive generation. In the case of
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Input patch No constraints Adv Patch Patch & Adv

Figure 2.6: Comparison of generated results with/without the given patch (Patch) and
adversarial (Adv) constraints.

Fig. 2.5, the backpropagation error is used to adjust the generated sketch xkS as shown in

Eq. 2.8. Finally, xkS is mapped back to the face domain (Eq. 2.9), generating xk+1
I as an

improved version of xkI with more details. Repeating this procedure, the large missing area

can be filled up gradually.

To illustrate the effect of the two constraints, i.e., the given patch and the adversarial con-

straints, applied during the testing stage, Fig. 2.6 shows the generated results with/without

the constraints. The given patch and the adversarial constraints are denoted as “Patch”

and “Adv”, respectively. It is interesting to observe that the generated face/sketch without

“Patch” (the second and third columns) cannot preserve the identity of the input patch, and

those without “Adv” (the second and forth columns) tend to yield unrealistic face/sketch

(e.g., the left ear location) or hair style (e.g., the extra hair below the left ear in the fourth

column). The results with both constraints obviously outperform the others.

2.4 Experiments and Results

2.4.1 Data Collection

1,577 face/sketch pairs are collected from the datasets CUHK [49], CUFSF [56], AR [23],

FERET [31], and IIIT-D [1]. Because the dataset with face/sketch pairs is limited, a face
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Figure 2.7: The collected faces and their sketches generated through Pix2Pix.

to sketch transformation network is trained based on Pix2Pix [13] to generate sketches from

faces as shown in Fig.2.7. The frontal face images with uniform background and controlled

illumination from datasets CFD [22], SiblingsDB [45], and PUT [15], as well as from searching

engines by keywords like “XXX University faculty profile” are collected. Finally, there are

3,126 face/sketch pairs, from which 300 pairs are randomly selected as the testing dataset.

2.4.2 Implementation Details

All the face/sketch images are cropped and well-aligned based on the eye locations, and

preprocessed to be uniform white background. The transformations f and F are implemented

by the Conv-Deconv network as shown in Table 2.1. The discriminator D is implemented

by the Conv network but adding a fully-connected layer of single output with the sigmoid

activation function. In addition, the input layer is modified to be 2562 × 6 because the

inputs to D are image pairs. Inspired by [13], each Conv layer is concatenated to its

symmetrically corresponding Deconv layer, thus more details bypass the bottleneck. In

the training, ADAM [17] (α = 0.0002, β = 0.5) is used. Because D is used to enforce

realistic generations during testing, an approximately optimal D is preferred. Therefore, D
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Table 2.1: Network structure used for transformation

Conv. (LeakyReLU) Deconv. (ReLU)
2562 × 3, 1282 × 64, 22 × 1024, 42 × 1024,
642 × 128, 322 × 256, 82 × 1024, 162 × 512,
162 × 512, 82 × 1024, 322 × 256, 642 × 128,
42 × 1024, 22 × 1024 1282 × 64, 2562 × 3

is updated three times for each update of f and F . The parameter λ in Eq. 2.3 is set to be

100. After 100 epochs, the results as shown can be achieved in this chapter.

During testing, given a small patch from either the face or the sketch domain, it will be

transformed recursively as discussed in testing stage. Empirically, the generated images will

have most facial features filled quickly at the first five to ten iterations and then tend to

converge after 50 iterations. The results shown in this chapter are mostly obtained at the

100th iteration.

2.4.3 Qualitative Evaluation

Face Synthesis from Limited Facial Patches

The results generated by the proposed r-BTN with respect to different missing percentage

are shown in Fig. 2.8 and 2.9. The red boxes indicate the given face/sketch patches. The rest

rows are correspondingly generated sketches/faces by the denoted methods. From the result,

it demonstrated that the proposed method cannot preserve the identity when the missing

percentage is more than 70%. This phenomenon is consistent with human cognitive. For

human beginnings, if only providing limited information, it is still hard to imagine a unique

result. The proposed r-BTN is compared with Pix2Pix [13] and image inpainting [29].

Inpainiting method can well preverse the identity when missing percentage is more than

70%, however, it shows inconsistent results. Pix2pix cannot generate whole face or sketch

image when the missing percentage is more than 40%.
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Figure 2.8: Example 1: Comparison of different methods in generating faces/sketches from
patches with different missing percentage. The red boxes indicate the given face/sketch
patches. The rest rows are correspondingly generated sketches/faces by the denoted methods.
Please zoom in to see the details for small missing percentages.
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Figure 2.9: Example 2: Comparison of different methods in generating faces/sketches from
patches with different missing percentage. The red boxes indicate the given face/sketch
patches. The rest rows are correspondingly generated sketches/faces by the denoted methods.
Please zoom in to see the details for small missing percentages.
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The proposed r-BTN is compared with Pix2Pix [13] and image inpainting [29]. The

inpainting method compared in this chapter is modified from [29] to achieve cross-domain

inpainting. Specifically, the inputs are faces/sketches with random mask (20%∼80%

masked), and the outputs are the whole sketch/face. Pix2Pix and r-BTN are trained with

the whole face/sketch pairs. All methods are trained on the same training dataset with

the same parameter setting. The comparison results are shown in Figs. 2.10 and 2.11.

The results generated by Pix2Pix demonstrate unclear face/sketch boundary. With the

capability of filling missing area, inpainting methods can generate clear boundary of the

face/sketch images, however, it generate images with obvious boundary with variation in

color and content. The proposed r-BTN generated photo-realistic face/sketch images even

with limited patches.

Fig. 2.12 displays more results generated from eyes, nose, mouth, and random regions

using the proposed r-BTN. This experiment results aim to investigate whether the proposed

method will converge into the same solution if providing different part of the same identity.

The results demonstrate that by providing very limited patch of the same identity (even

symmetric part, e.g., left eye and right eye), it could not converge into the same identity.

In addition, we provide more quantitative results of generated faces from three methods

— Pix2Pix, inpainting, and r-BTN. Fig. 2.8 and 2.9 visualize the comparison through two

examples. The proposed r-BTN generates higher fidelity and more smooth results. However,

the proposed method cannot preserve the identity when the missing percentage is more than

70%. The Pix2Pix and inpainting methods train face-sketch and sketch-face transformation

networks independently, so the identity between generated sketches and faces cannot be

preserved. For example, comparing the two rows labeled with “inpainting”, especially the

4th-6th columns, the sketches seem female while the faces appear like male. In addition,

the inpainting results present apparent discontinuity between the given patch and the

estimated area. On the other hand, the results from r-BTN demonstrate higher fidelity,

better consistency to given patches, and better identity preservation.
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Figure 2.10: Comparison with other potential methods for filling large missing areas.
The first row shows the input patches, and the rest rows display the results from different
methods. The percentage indicates missing proportion (missing area over image area).
Because Pix2Pix is for domain transfer rather than missing area filling, its results cannot
compete with inpainting or r-BTN. They are shown here to provide the baseline of domain
transfer methods in filling large missing areas.
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Figure 2.11: Comparison with other potential methods for filling large missing areas.
The first row shows the input patches, and the rest rows display the results from different
methods. The percentage indicates missing proportion (missing area over image area).
Because Pix2Pix is for domain transfer rather than missing area filling, its results cannot
compete with inpainting or r-BTN. They are shown here to provide the baseline of domain
transfer methods in filling large missing areas.
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Figure 2.12: Generated faces/sketches from small patches of eyes, nose, mouth, and random
regions by r-BTN.
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Figure 2.13: Examples of generated faces/sketches from multiple patches, which are from
different people and/or different domains. Four examples are displayed in a 2-by-2 matrix.
In each cell, the original faces and sketches are given on the left. The patches are extracted
from where indicated by the arrows. The right are generated face/sketch pairs.

Face Composite

By providing multiple patches that may be from two domains and multiple people, the

capability of r-BTN to generate consistent and realistic faces is explored. Examples generated

from multiple patches are shown in Fig. 2.13, demonstrating the great versatility of r-BTN.

The strong consistency and fidelity between the generated face/sketch pairs is observed.

2.4.4 Quantitative Analysis

Evaluation Metrics

To numerically evaluate the quality of generated faces, the metric named “face recognition

rate (FRR)” is designed. It evaluates whether the generated images present facial elements

and geometric structure, i.e., reasonable position of eyebrows, eyes, nose, lips, and chin. The

off-the-shelf face landmark detection method [16] is adopted to detect and localize those facial

elements. An unsuccessful detection indicates a failure of face generation. Therefore, FRR

28



Missing percentage
0 0.2 0.4 0.6 0.8 1

FR
R

0

0.2

0.4

0.6

0.8

1

r-BTN
Pix2Pix
Inpainting

k
20 40 60 80 100

A
vg

. a
bs

. r
es

id
ua

l

0.02

0.04

0.06

0.08
95%
80%
60%
40%
20%

k
20 40 60 80 100

A
vg

. r
es

id
ua

l

0

0.01

0.02

0.03 95%
80%
60%
40%
20%

Figure 2.14: Left:Comparison of different methods on the proposed metrics: FRR. Middle
and Right: Convergence evaluation of the proposed r-BTN. Averaged absolute (middle) and
average (right) of residual with respect to iteration k are shown at missing percentage of
95%, 80%, 60%, 40%, and 20%, respectively.

is the ratio between the numbers of successfully detected and total generated faces. Fig. 2.14

(left) shows FRR of each method, computed from 300 generated faces using patches with

different missing percentages. When the missing percentage is larger than 50%, Pix2Pix fails

to generate reasonable faces while inpainting and r-BTN maintain high and similar FRR.

However, Figs. 2.10 and 2.11 demonstrates that inpainting results are not photo-realistic as

r-BTN although they are both capable of preserving the facial structure.

Convergence of Recursive Generation

Will the generated faces/sketches converge to a certain point? How many iterations are

sufficient to achieve a photo-realistic result? This section mainly answers these two questions.

The residual in the face domain between subsequent iterations as rk+1 =
(
xk+1
I − xkI

)
is first defined, where xkI and xk+1

I denote the kth and k+1th generated results. The

convergence is mainly evaluated by calculating the averaged residual on testing samples

(i.e., 300 samples generated with different missing percentage) with respect to k as shown

in Fig. 2.14 (middle). However, the average residual is not sufficient to demonstrate the

convergence because some pixels may significantly increase while the other decrease with

the same level. In this case, the averaged absolute residual is calculated to illustrate the

changing amplitude as shown in Fig. 2.14 (right).

With more iterations, the averaged residual approaches zero while the averaged absolute

residual stabilizes at a small value. This well demonstrates that the generated faces are

29



stable. In addition, from the experiments (e.g., Fig. 2.2 and ??), the generated faces/sketches

will not significantly change after 20 iterations. Therefore, it can be empirically concluded

that the recursive generation will converge to certain face/sketch for a given patch.

Similarity/Diversity Evaluation

Intuitively speaking, the generated faces from the patches of the same person should be

similar. By contrast, patches from different persons are supposed to yield diverse faces. To

verify this property, 50 faces and pick patches of different size around the eyes, the nose,

and the mouth are collected. The proposed r-BTN is then applied to generate full faces

from those patches. To measure the similarity/diversity between generated faces, the pre-

trained VGG-Face [28] model is utilized to extract high-level features and compute their

Euclidean distance. Two comparisons are performed: 1) self comparison (similarity) and 2)

mutual comparison (diversity), conducting on faces generated from patches of the same and

different persons, respectively. Fig. 2.15 (left) shows the averaged distance and standard

deviation with respect to missing percentage. The blue circles shows the results of self

comparison, and the red triangles denote mutual comparison.

With lower missing percentage, e.g., 0.1 to 0.6, the generated faces preserve relatively

high intra-class (same person) similarity and inter-class (different persons) diversity. As the

missing percentage increases, the two curves eventually intersect, indicating the generated

faces from very small patches (e.g., 95% missing) have lost the identity of the original face.

Interestingly, it demonstrated that the generated faces from either the left or right eye of the

same person still tend to be more similar as compared to those generated from nose/mouth

as illustrated in Fig. 2.15 (right). This discovery is well in line with the quality of different

biometrics where studies have shown eyes to carry more valuable cues than nose or mouth

in face recognition tasks. This finding, from another perspective, demonstrates the high

effectiveness of r-BTN in generating high-fidelity and realistic faces/sketches.
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Figure 2.15: Left: Evaluation of similarity/diversity with increasing missing percentage.
The bars indicate corresponding standard deviation. Middle and Right: High-level feature
of generated faces at missing percentage of 10% and 95%, respectively. There are three same
markers for type (person), denoting the generated faces from patches around left eye, right
eye, and mouth. Solid lines connect the faces generated from eyes, and the dashed lines
connect to the faces generated from mouth.

2.5 Discussion and Future works

In this chapter, the challenging task of cross-domain face generation with large missing area

is proposed and solved . A novel recursive generation method by bidirectional transformation

networks (r-BTN) was proposed to achieve high-fidelity and consistent face/sketch even with

as large as 95% missing area. The effectiveness of r-BTN by comparing to some potential

solutions like pix2pix and inpainting is demonstrated. However, r-BTN requires well-aligned

faces/sketches. Otherwise, the generated results may not be visually pleasing because the

network would fail to localize facial components and thus missing their geometric structure.

In the future, the proposed r-BTN can be improved from four perspectives: 1) concatenating

a face calibration mechanism to r-BTN to battle against the alignment problem, 2) extending

this work to be unsupervised like [8, 40] to alleviate the requirement for paired dataset, 3)

generalizing r-BTN as a framework for cross-domain transformation, especially with large

missing area, and further evaluating the performance on other datasets [58], and 4) adopting

this for mobile network applications [20].
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Chapter 3

Talking Face Generation by

Conditional Recurrent Network

3.1 Introduction

The talking face generation problem aims to synthesize naturally looking talking face videos

provided with a still facial image and a piece of audio speech. Aside from being an interesting

topic from a research standpoint, it has a wide-range of applications, including, for example,

video bandwidth reduction [39], face animation, and other entertainment applications.

Nevertheless, the talking face generation problem still faces extreme challenges as can

be summarized from the following three perspectives. First, video generation is, in general,

more challenging than still image generation since humans are quite sensitive to temporal

discontinuities in videos. Second, audio speech to video generation poses extra rigid

requirement on the accuracy of lip synchronization. Third, due to the large variations in

human pose, talking speed and style, obtaining a video generation model with generalized

capacity for unseen audio and face images is quite difficult.

Most existing works simplify the video generation problem as a temporal-independent

image generation problem. For example, one related work proposed by Chung et al. [4]

directly embeds the encoded visual (containing the identity information) and audio features

(reflecting the lip movement condition) as the input to the decoder network to generate

face image frame. The final video is generated by stacking all frames together where each
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frame is independently treated. Similarly, Karras et al. [14] used a sliding window to extract

audio segment which may include the phoneme coarticulation with appropriately chosen

window size. However, video generation is intrinsically a temporal-dependent problem. In

all these works, the temporal dependency in content (i.e., face) is largely left out and the

coarticulation effect cannot be adequately modeled.

Some works choose to model the temporal dependency in order to generate smooth

results. For example, [39] models the dynamics of audio features through recurrent neural

network (RNN) where the audio features are used to represent the lip shape. By measuring

the similarity between the given probe audio feature and the gallery audio feature set which

are extracted from the source video set, they can find the best matching mouth region. The

matched mouth sequence and the target video are then re-timed and synthesized into the

output video. Although the result seems very promising, it only works for a given person

which largely restricts the generalization capability. In addition, this method only models

the lip and mouth region without considering the expression or head pose variations as a

whole.

Compared with these approaches, the proposed framework incorporates both image and

audio in the recurrent unit to achieve temporal dependency in the generated video on

both facial and lip movements, such that smooth transition across different video frames

can be realized. The image and audio features (or hybrid features) learned by minimizing

the reconstruction error between the generated and ground truth frames are insufficient to

accurately guide lip movement. This is because the reconstruction error only calculates the

averaged pixel-wise distance, instead of semantically penalizing inaccurate lip movements. In

order to guide the network to learn features related to semantic lip movements, a lip-reading

discriminator is adopted to train the network in an adversarial manner. In addition, a

spatial-temporal discriminator is deployed to improve both photo-realism and video-realism.

Compared to previous approaches, no extra image deblurring or video stabilization procedure

is needed in our framework. Our method can also be extended to model single person video

with natural pose and expression. Instead of only using the hybrid feature to feed into the

next recurrent unit, the previously generated image frame is also included such that the
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natural pose and expression of talking face can be intrinsically modeled. Our contributions

are thus summarized as follows:

• A novel conditional recurrent generation network that incorporates both image and

audio in the recurrent unit is proposed for temporal dependency such that smooth

transition can be achieved for both lip and facial movements.

• A pair of spatial-temporal discriminators for both image-realism and video-realism is

designed.

• A lip-reading discriminator to boost the accuracy of lip synchronization is constructed.

• The network is extended to model the natural pose and expression of talking face on

Obama Dataset by applying the generated frame as input to the subsequent recurrent

unit to preserve smooth transition.

3.2 Related Works

Speech Face Animation.

Speech face animation is a computer graphic problem that models and controls the facial

features to synchronize lip motion with the audio. Traditional speech animation methods

either use professional animators to manually produce the result or simply use the lip viseme

gallery to synthesize speech animation. The former is time consuming and costly, while

the latter generates low quality and less discriminative result. Since the lip motion is a

complex and codependent facial action with the muscle, chin, tongue and etc, recent works

apply neural network to achieve more accurate performance. In recent years, some new

developments have been reported. For example, [39] trained the lip model for only one

person, i.e., President Barack Obama. The basic idea is to find the best matched mouth

region image from his mouth gallery through audio features matching. And the final whole

face image was not generated but synthesized by composing the mouth image with the target

video. The trained model is difficult to adapt to other persons due to the large variation in

mouth texture and content. [14] learned a mapping between raw audio and 3D meshes by
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an end-to-end network. In addition, an extra branch of emotional representation learning

was needed to increase the photo-realism. Since this method aims to generate 3D mesh

animation, it cannot capture the tongue, wrinkles, eyes, head motion which is required for

image level face animation. [4] proposed a conditional auto-encoder based network, where

the audio feature and image identity feature were extracted by two convolutional encoder

networks, respectively. The intuition is conditional image manipulation where by fixing the

identity feature and changing the condition variables (i.e., the audio feature), the same face

with different lip shape images can be generated. However, this work generates each single

frame independently which breaks the temporal dependency between frames. Although

the results demonstrate accurate lip shape and better generality, the result looks unreal with

rigid lip motion and unchanged face expression, pose, etc. [42] learned the mapping between

audio and phoneme categories, then matched the best predefined lip region model according

to the phoneme label. The final output was generated by re-targeting the lip region model

with given input. The phoneme label is either manually provided by human or automatically

generated by a speech recognition system. Manually providing phoneme is time consuming

and cost inefficient which also limited the real-time application, while automatic phoneme

labeling tends to be error-prone and restricts the performance.

Conditional Generation Adversarial Net. Generative adversarial network (GAN) [10]

was first proposed in 2014 by Goodfellow and has gained extraordinary popularity within

recent two years. Compared with other generative models, such as variational autoencoder

(VAE), GAN can generate much sharper and more photo-realistic images. Compared with

the vanilla GAN, condition GANs can generate images under controllable factors rather

than generating images from random noise. For example, Pix2pix [13] and CycleGAN [63]

generated images with different colors, styles, and content conditioning on given reference

images. CAAE [57] generated face images with aging effect conditioning on different

age labels. SRGAN [19] generated super-resolution images conditioning on low resolution

images. [29] filled in the incomplete holes of an image conditioning on the surrounding

pixels. Most aforementioned works conduct image generation or translation within the same

modality (i.e., image modality). Few works conducted image generation between different

modalities with large variations. For example, the text to image generation works [34][54]
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synthesized image content based on given text description. [19] predicted instrument images

by providing the music audio played by some instruments.

Video Prediction and Generation. Video prediction has been widely studied in

many works [24, 26, 38, 21] which aims to predict the future frames conditioned on several

previous frames. Different from video prediction, video generation directly generates frame

sequences from noise. With the success of adversarial image generation network, a few

works have attempted to generate videos through the adversarial training procedure. [47]

decomposed video generation into motion dynamic and background content generation,

where background image is generated using 2D convolution while the foreground motion

which contains temporal information is modeled by 3D convolution. In this case, it is

restricted to generate only fixed length videos. MoCoGAN [44] disentangled the video

generation problem as content and motion generation. By fixing the content representation

and changing the motion latent variables, the video can be generated with motion dynamic

under the same content. Similarly, [46] decomposed the motion and content, and the

future frame is predicted with fixed content and dynamic motion. However, with the

unconditional setting, the generated video suffers from low-resolution and fixed short length

issues. Different from generating video from noise, conditional video generation needs each

synthesized frame to be consistent and stable in content with the given condition. In order

to model this temporal consistency, Vid2Vid [48] proposed a sequential generation scheme

where current frame depends on previously generated frame or L frames in its more general

form; however, large L will increase both the training time as well as the memory cost. If

L is set to be a small number as used in the setting of Vid2Vid, the generated frames will

only capture the short term dependency which would cause the changing content problem

in a longer term.

Concurrent Works. Concurrent with our work, there have been two recent closely

related works [2, 60]. Chen et al. [2] focuses on generating the lip region movement. However,

keeping the identity across different frames while preserving the video-realism is challenging.

Even if the generated lip region images can be blended into the whole face image, the

noticeable inconsistency and the existence of those unrealistic static regions will still affect

the video-realism. Compared to [2], [60] designed different network architectures as well as
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loss functions such that the whole face is modeled. Nonetheless, the video is generated by

stacking sequence of independently generated frames, thus the temporal dynamic is not well

modeled which has caused strong inconsistency between frames and quite noticeable “Zoom

in and out” effect. In this case, a post-processing of “video stabilization” has to be applied

in order to generate satisfactory results.

3.2.1 Problem Formulation

The audio to video generation can be formulated as a conditional probability distribution

matching problem. In this case, the problem can be solved by minimizing the distance be-

tween real video distribution and generated video distribution in an adversarial manner [10].

Let A ≡ {A1, A2, · · · , At, · · · , AK} be the audio sequence where each element At represents

the audio clip in this audio sequence. Let I ≡ {I1, I2, · · · , It, · · · , IK} be the corresponding

real talking face sequence. And I∗ ∈ I is the identity image which can be any single image

chosen from the real sequence of images. Given the audio sequence A and one single identity

image I∗ as condition, the talking face generation task aims to generate a sequence of frames

Ĩ = {Ĩ1, Ĩ2, · · · , Ĩt, · · · , ĨK}, so that the conditional probability distribution of Ĩ given A and

I∗ is close to that of I when given A and I∗, i.e., p(Ĩ|A, I∗) ≈ p(I|A, I∗).

Generally speaking, there have been two schemes developed for conditional video

generation, namely, frame-to-frame (Fig. 3.1a) and sequential frame generation as used in

Vid2Vid [48] (Fig. 3.1b). The frame-to-frame scheme former simplifies the video generation

problem into image generation by assuming the i.i.d between different frames. On the other

hand, the sequential scheme generates the current frame based on previously generated frame

to model the short term dependency.

For the talking face generation problem in specific where only the audio sequence and

one single face image are given, it requires the generated image sequence to 1) preserve the

identity across a long time range, 2) have accurate lip shape corresponding to the given audio,

and 3) be both photo- and video-realistic. The video generated by the frame-to-frame scheme

tends to exhibit jitter effect because no temporal dependency is modeled. The sequential

generation scheme cannot preserve the facial identity in long duration because only short

term dependency is modeled. To solve these issues, instead, the so-called recurrent frame
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(a) Frame (b) Sequential (c) Recurrent

Figure 3.1: Illustration of different condition video generation schemes. (a) Frame-to-frame
generation scheme (no correlation across different frames). (b) Sequential frame generation
scheme (only short term frame correlation is considered). The dash block indicates when
L = 2. (c) Recurrent frame generation scheme where the identity image I∗ is fed into all the
future frame generation to preserve long-term dependency.

generation scheme is proposed, as shown in Fig. 3.1c, where the next frame is generated not

only depending on the previously generated frames but also the identity frame in order to

preserve long term dependency.

The recurrent scheme, however, suffers from the latency problem where previously

generated frames need to be formulated beforehand which is memory-consuming. As

illustrated in Fig. 3.1c, another problem with this modeling scheme is that although it

considers the image temporal dependency, the audio temporal relation is still ignored. In

order to solve these problems, a hybrid recurrent feature generation modeling scheme is

proposed to capture both the visual and audio dependency over time. A recurrent neural

network is used to ingest both the image and audio sequential signal and generate the image

sequence directly from a decoder network.

3.2.2 Conditional Recurrent Video Generation

In order to map independent features to a sequence of correlated ones, the recurrent unit

on the hybrid features is applied to enforce the temporal coherence on both image and

audio signals. The proposed conditional recurrent video generation network is illustrated in

Fig. 3.3. The inputs to the network are collected by the following feature extraction modules.

Audio Feature Extraction: Given an entire audio sequence A, a sliding window is used

to clip the audio file into several audio segments. In Fig. 3.2, each At represents the Mel-

Frequency Cepstral Coefficients (MFCC) features of each audio segment. In recent audio
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Figure 3.2: Mel-Frequency Cepstral Coefficients (MFCC) features are extracted and
fed into a convolutional encoder network. Image identity information is also encoded by
convolutional network. The audio feature zA and image feature zI are 1D vector extracted
from fully connected layers. The final image is reconstructed by an image decoder/generator.

to video works, different types of audio information have been employed, including, for

example, the raw audio [14], the MFCC features of audio [39][4], and the Log-amplitude

of Mel-Spectrum (LMS) [3]. The MFCC feature is chosen due to its effectiveness in speech

recognition, good linear separation between phonemes, and readiness to work with RNN

models. In addition, each audio segment corresponds to 350ms information and MFCC

feature is extracted from a length of 20ms audio segment with overlap of 10ms. The first

coefficient from original MFCC vector is removed, eventually yielding a 35 × 12 MFCC

features for each audio segment. Each audio MFCC feature At is feed into an audio encoder

EA to extract the audio feature zAt = EA(At) as shown in Fig. 3.2.

Image Feature Extraction: Frames that have the corresponding lip shapes are

extracted according to the starting and ending time of each audio segment At. There are

usually multiple frames correspond to one audio segment, where the middle one as the image

It with the corresponding lip shape is simply used. The identity image I∗ can be randomly

selected from I. The image feature zI is calculated by an image encoder as zI = EI(I
∗).

A series of audio feature variables denoted as zA = [zA0 , z
A
1 , · · · , zAt , · · · , zAK ] and the

image feature zI are concatenated to generate a hybrid feature where both the face and

audio information are incorporated as shown in Fig: 3.2. The concatenated feature is later

fed into the decoder network Dec to generate the target image with desired lip shape while

preserving the same identity using the reconstruction loss Lrec.
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Lrec =
∥∥∥It − Ĩt∥∥∥

1
, (3.1)

where Ĩt = Dec(zI , zA) = G(A, I∗) and It are the generated and ground truth video frames,

respectively.

3.2.3 Adversarial Learning

Lip-Reading Discriminator

The reconstruction error alone is insufficient to accurately guide the lip movement during

the training stage because it only calculates the averaged pixel-wise distance, instead of

semantically penalizing the inaccurate lip movements. To solve this problem, a lip-reading

model is used as a semantic lip guidance, i.e., a lip-reading discriminator, to update the

generator in an adversarial manner. The objective function for updating the lip-reading

model Dl is shown in Eq. 3.2.

Ll =
∑

y log
(
Dl

(
IK
))
−
∑

y log
(
Dl

(
ĨK
))

, (3.2)
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where y is the real word label, the output of Dl is the predicted probability. IK and ĨK are

the real and fake frame sequence, respectively. By minimizing Ll, the predictions of fake

frame sequences through Dl is forced to be misclassified, while the predictions of real frame

sequences are pushed toward their true labels.

Spatial-Temporal Discriminator

Both image discriminator and video discriminator are adopted to improve the image quality

as well as temporal realism. Although the functionality of the two discriminators overlaps in

enhancing image quality, it will be demonstrated in Sec. 3.4.3 that the image discriminator

is more effective in single image enhancement because it focuses relatively more on each

individual frame. Meanwhile, the video discriminator helps achieve smooth transition

between frames.

Image discriminator. DI aims to generate realistic images. The corresponding objective

is expressed in Eq. 3.3,

LI = EIt∼pI [logDI (It)] +

EĨt∼pĨ

[
log
(

1−DI

(
Ĩt

))]
,

(3.3)

where pI and pĨ denotes the distribution of real images in the training videos and the

generated images, respectively.

Video discriminator. DV works on a sequence of images/frames to mainly improve the

smoothness and continuity between generated image sequences. Eq. 3.4 shows the objective

function.

LV = EIK∼pI
[
logDV

(
IK
)]

+

EĨK∼pĨ

[
log
(

1−DV

(
ĨK
))]

.
(3.4)

Finally, the total loss for updating our generation network G is

L = Lrec + λILI + λVLV + λlLl, (3.5)
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where λI , λV , and λl are weighting parameters for the corresponding loss functions,

respectively.

3.3 Sample Selection

Most recent audio to video works capitalize on the large amount of talking face dataset from

website, for example, the news, interview, etc. Although learning from large dataset which

contains rich information can achieve good generalization and discriminative capability, it

also consumes the training time. For example, [39] collected around 300 videos from Obama’s

weekly addresses. The VoxCeleb dataset [25] contains 1,251 celebrities, for each identity there

are around 10 video sequences, and each video is segmented into different clips to guarantee

that only one single person’s face appears in the video. Training on such large dataset is

inefficient and quite time consuming, especially for video generation tasks.

Phoneme is the smallest detectable unit of a language and is produced by a combination

of the movement of lips, teeth, and tongues of the speaker. We first exploit the

phoneme distribution of the original dataset by extracting all the phonemes from the

videos. In order to obtain the phoneme histogram for each audio sample, we use the

“you-get” [You-Get Tools] tool to fetch the valid English subtitles based on the YouTube

ID provided by VoxCeleb. Then audio and subtitle are aligned by the Penn Phonetics

Lab Forced Aligner (P2FA) [Penn Phonetics Lab] tools. This is followed by phonemes

being extracted by the CMU Lexicon Tool [CMU Lextool Tools] which defines 39 phoneme

categories. Finally we select more than 15,114 videos which have valid English subtitle files.

The overall phoneme histogram is shown in Fig. 3.4. It is easy to observe that the phoneme

“ZH” only appears 4,800 times while “AH” appears 11,010,000 times.

Based on the above analyses, we propose a sample selection method to drastically

reduce the number of training samples taking advantage of the biased histogram of different

phonemes without affecting the general distribution of the phoneme.

The details of sample selection is shown in Algorithm 1. To preserve those more important

phonemes with lower occurrence rate in sample selection, the video clips are first ranked

according to their individual phoneme distribution, where the lower the occurrence rate, the
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(a)

(b)

Figure 3.4: The phoneme histogram before (a) and after (b) sample selection. The number
of training samples is reduced by a factor of 100.

higher the rank of the phoneme. Then, samples are selected based on the rank. We randomly

select n sample where n is in range of nmin, and nmax. In the experiment, nmin is set to be

5,000 and nmax to be 15,114. We repeat this selection k times where k is set to be 50. The

best result is the one with shortest distance to uniform distribution, U.

3.4 Experimental Results

The effectiveness of the proposed method on three popular datasets is evaluated (Sec. 3.4.1),

and the advantages over the state-of-the-art works is demonstrated as well. Specifically, the

evaluation is conducted in terms of image quality, lip movement/shape accuracy, and video

smoothness. Both qualitative (Sec. 3.4.3) and quantitative (Sec. 3.4.4) studies demonstrate
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Algorithm 1: Sample Selection Algorithm

Input : A list of video clips FN .
Output : A list of selected video clips Fn.
Initialization: The overall phoneme distribution Pph.

The maximum and minimum length of Fn, nmax and nmin.
The initial selection criterion δ, and iteration times k.

1 Rph ← sort(Pph, ascending)
2 FN ← sort(FN , Rph)
3 for 1 to k do
4 Randomly sample n ∼ U(nmin, nmax).
5 Calculate phoneme distribution of the top n video clips, Pn

ph

6 if dist(Pn
ph,U) < δ then

7 δ = dist(Pn
ph,U)

8 Fn ← top n of FN

9 end

10 end

the superior performance and generality of the proposed method in generating talking face

videos.

3.4.1 Datasets

TCD-TIMIT [11], LRW [5], and VoxCeleb [25] are used in the experiments.

TCD-TIMIT is built for audio-visual speech recognition, where the sentences contain rich

phoneme categories, and the videos are captured under well-controlled environment.

LRW is collected from the real world accompanied by truth labels (words), and the videos

are short, i.e., lasting only a few seconds.

VoxCeleb also contains real world videos with large variation in face pose and occlu-

sion/overlap of faces and speech/audio, and longer duration than LRW. For the LRW and

VoxCeleb datasets, those video segments with extreme facial poses or noisy audios are first

filter out in order to generate more stable video result and facilitate the training process.

For a fair comparison and performance evaluation, each dataset is split into training and

testing sets following the same experimental setting as previous works [4, 2, 60].
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3.4.2 Experimental Setup

Network Inputs: The video frames are extracted to make them synchronized with audio

segments. For the input/ground truth images, face regions are cropped from the videos and

resized to 128×128. For the audio inputs, different window sizes are tried for MFCC feature

and find that 350ms gives the best result. For the lip-reading discriminator, only the mouth

regions are fed in order to avoid other interference, such as facial expressions and large head

movements.

Network Architecture: The audio encoder EA, image encoder EI , image discriminator

DI , and image decoder Dec are constructed by convolutional or deconvolutional networks.

To capture the spatial-temporal information, 3D convolution is used to build the video

discriminator DV . In order to preserve the identity, especially for unseen faces during the

training, the idea of U-Net are adopted to add more low level features to the image decoder

Dec. The detailed network structures of the audio encoder EA, image encoder EI , image

decoder Dec, image discriminator DI , video discriminator DV , and lip-reading discriminator

Dl are listed in Tables 3.1, 3.2, 3.3, 3.4, 3.5, and 3.6, respectively. In all network structures,

unless otherwise specified, the kernel size, stride step and padding size follow the setting

described in the caption of each table.

Training Scheme: The ADAM [17] is used as the optimizer with α = 0.0002 and β = 0.5

in the experiment. The network is first trained without discriminators for 30 epochs, and

then add DI , DV , Dl to finetune the network for another 15 epochs. Dl is initialized from

a pre-trained lip-reading model. The weights for LI , LV , and Ll are 1e-3, 1e-2, and 1e-3,

respectively. Since no word/sentence labels are contained in VoxCeleb and TCD-TIMIT

dataset, the Ll is only applied on LRW samples during the training.
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Table 3.1: Network structure of the audio encoder EA. In EA, the strides (S) is set to
(1, 1), kernel (K) size is 3 and the padding (P) method is “SAME”.

# Layer name(s) Output size

0 Input 12× 35× 1
1 Conv, BN, ReLU 12× 35× 16
3 Conv, BN, ReLU, S=2 6× 18× 32
4 Conv, BN, ReLU 6× 18× 64
5 Conv, BN, ReLU 6× 18× 128
6 Conv, BN, ReLU, S=2 3× 9× 256
8 FC, BN, ReLU 512

Output zA FC 512

Table 3.2: Network structure of the image encoder EI . In EI , the strides (S) is set to (2, 2),
the kernel (K) size is 5, and the padding (P) method is “SAME”.

# Layer name(s) Output size

0 Inputs 128× 128× 3
1 Conv, BN, ReLU 64× 64× 16
2 Conv, BN, ReLU 32× 32× 32
3 Conv, BN, ReLU 16× 16× 64
4 Conv, BN, ReLU 8× 8× 128
5 FC, BN, ReLU 512

Output zI FC 512

Table 3.3: Network structure of the image decoder Dec. In Dec, the strides (S) is set to
(2, 2), the kernel (K) size is 5, and the padding (P) method is “SAME”.

# Layer name(s) Output size

0 Inputs: zA and zI 1024
1 FC, ReLU 8× 8× 256
2 Deconv, BN, ReLU 16× 16× 256
3 Deconv, BN, ReLU 32× 32× 196
4 Deconv, BN, ReLU 64× 64× 128
5 Deconv, BN, ReLU 128× 128× 80

Output Conv, S=1, Tanh 128× 128× 3
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Table 3.4: Network structure of the image discriminator DI . In DI , the strides (S) is set
to (2, 2), the kernel (K) size is 3, and the padding (P) method is “SAME”.

# Layer name(s) Output size

0 Inputs 128× 128× 3
1 Conv, BN, LeakyReLU 64× 64× 16
2 Conv, BN, LeakyReLU 32× 32× 32
3 Conv, BN, LeakyReLU 16× 16× 64
4 Conv, BN, LeakyReLU 8× 8× 128

Output Conv 8× 8× 1

Table 3.5: Network structure of the video discriminator DV . In DV , the strides (S) is set
to (1, 2, 2), the padding is (0, 1, 1), the kernel (K) size is 3. L denotes the sequence length.

# Layer name(s) Output size

0 Inputs 128× 128× 3× L
1 Conv3D, BN, LeakyReLU 64× 64× 64× (L− 2)

2 Conv3D, BN, LeakyReLU 32× 32× 128× (L− 4)

3 Conv3D, BN, LeakyReLU 16× 16× 256× (L− 6)

Output Conv3D 8× 8× 1× (L− 8)

Table 3.6: Network structure of the lip-reading discriminator Dl. In Dl, the strides (S)
setting is (1, 1), the kernel (K) size is 3, and the padding (P) method is “SAME”. The input
images are lip region images cropped from the global face images. The lip-reading input
should be a sequence of images with length L, however, the operations from layer 1-4 are
applied on single image. In layer 6, we use the LSTM output of the last time step.

# Layer name(s) Output size

0 Inputs 40× 40× 3× L
1 Conv, BN, ReLU, MaxPooling 20× 20× 16× L
2 Conv, BN, ReLU, MaxPooling 10× 10× 32× L
3 Conv, BN, ReLU, MaxPooling 5× 5× 64× L
4 FC, BN 512× L
5 LSTM 512× L
6 LSTM 512

Output FC, softmax 500
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3.4.3 Qualitative Evaluation

Comparison with Other Methods

In this section, the proposed method is qualitatively compared with three related works,

i.e., Chen et al. [2], Chung et al. [4] and Zhou et al. [60] as shown in Fig. 3.5. The input

audio is saying “high education”, which is randomly selected from the LRW testing set. The

corresponding ground truth frames are listed in the first row, and the input faces are shown

in the first image column. We feed the same input audio and faces to different methods

for fair comparison. Note that Chen et al. [2] only works on the mouth region instead of

the whole face. As visualized in Fig. 3.5, the frames generated by the proposed method

present higher visual quality, i.e., sharper skin texture, more realistic winkles and clearer

details (e.g., teeth) than all other methods (please zoom in for better visualization), which

demonstrates the effectiveness of using spatial-temporal discriminator as in our framework.

The second observation is that the proposed method outperforms other methods by

generating sharper and more discriminative mouth shapes. One reason is due to the

application of the lip-reading discriminator. Because of the usage of the lip-reading

discriminator, the generator is forced to generate more accurate mouth shapes in order

to predict the correct word label. Without such semantic guidance on the lip movement, the

generated mouth shapes usually present less expressive and discriminative semantic cues,

such as the comparison results listed in Fig. 3.5 from [4, 60].

In addition, video frames generated by [4] and [60] contain inter-frame discontinuities

and motion inconsistency which are more obvious in the video than in Fig. 3.5. The proposed

method reduces these discontinuities by performing the recurrent generation to model the

temporal dynamics, which has not been considered in other methods.
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Figure 3.5: Comparison between the proposed method and the state-of-the-art algorithms.
The first row shows the ground truth video, saying “high edu(cation)” which is the input
audio, and the first image column gives the input faces. Chen et al. [2] can only generate the
lip region. Frames corresponding to the letters inside parentheses are not presented here.
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Ablation Study

To compare different generation schemes and analyze the effectiveness of different loss

functions in our method, we carry out extensive ablation studies as follows.

Effectiveness of different losses in the proposed method (Eq. 3.5) is compared

and demonstrated in Fig. 3.6, where Lr, LI , LV , Ll represent reconstruction loss, image

adversarial loss, video adversarial loss, and lip-reading adversarial loss, respectively. We

use the results (first row) produced by only using Lr as the baseline. From Fig. 3.6, we

can see that after adding the image adversarial loss LI , the generated images present more

details, e.g., the teeth region becomes much clearer. Adding the video adversarial loss Lr,I,V

further sharpens the images (see the teeth region as well) and smooth out some jittery

artifacts between frames. Finally, the addition of lip-reading discriminator helps achieve

more obvious lip movement. Although the recurrent network in our framework also aims

at maintaining the temporal consistency, it plays a more important role on the global video

smoothness such as avoiding pose inconsistency (e.g., zoom-in and zoom-out effect).

Effectiveness of different schemes is compared in Fig. 3.7. We compare the recurrent

generation (bottom block) with other two existing schemes, i.e., sequential generation (top

block) and frame-to-frame generation (middle block) as introduced in Sec. 3.2.1. Obviously,

the sequential generation scheme fails to preserve the identity while the frame-to-frame

scheme exhibits large variance between adjacent frames as illustrated by the optical flow.

The gray-scale map represents the motion intensity map1 which is calculated by averaging

the optical flow for the whole sequence, where brighter pixels illustrate larger variation

between adjacent frames. Compared with frame-to-frame generator, the recurrent scheme

preserves the identity information well and achieves the smooth flow between frames, i.e.,

most movements are around the mouth area.

1Assume (u, v) = opticalflow(I1, I2) is the optical flow between two continuous frames, the motion
intensity for each pixel is calculated by u2 + v2.
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Figure 3.6: Ablation study on the loss functions used in the proposed method. The
rows show the continuous frames generated from the same audio input but different loss
combinations as denoted on the left. The subscripts r, I, V , and l indicates Lrec, LI , LV ,
and Ll in Eq. 3.5, respectively.

3.4.4 Quantitative Evaluation

Evaluation Metrics

The same as current related works [4, 60], PSNR and SSIM are used to evaluate the image

quality. To measure the lip movement accuracy, lip-reading accuracy [5] and Landmark

Distance Error (LMD) [2] are used as the measuring criteria to understand the lip movement

from the semantic level and pixel level respectively. Note that [2] is excluded in our

quantitative study because it only focuses on the lip region which would not be a fair

comparison.
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Figure 3.7: Effect of different generation schemes. The sample is randomly selected
from the TCD-TIMIT dataset. From top to bottom: sequential generation, frame-to-frame
generation, and our recurrent generation schemes. Optical flow is calculated on the frame-
to-frame and recurrent schemes as shown under the face images.

Results

The quantitative evaluation results as well as the comparison with other methods on the LRW

dataset are listed in Table 3.7. Our recurrent video generation framework has demonstrated

better performance over other frame-by-frame generators.

The results of the proposed method using different loss functions are also listed. The key

observation is that by applying discriminators, especially the image and video discriminators,

both the PSNR and SSIM values are negatively affected, though they greatly improve the

visual quality by adding more details which may not appear in the original images. The

reason for this phenomenon is that both PSNR and SSIM calculate pixel level differences

which cannot well reflect the visual quality. This phenomenon has been studied in many
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Table 3.7: The quantitative evaluation on the LRW testing dataset. The second block
lists the results of our recurrent network using different loss functions. LRA (Top1/Top5)
denotes the lip-reading accuracy.

PSNR SSIM LMD LRA
Chung [4] 27.16 0.917 3.15 15.2%/28.8%
Zhou [60] 26.43 0.894 5.21 18.2%/38.6%
Lr,l,I,V 27.43 0.918 3.14 36.2%/63.0%
Lr,I,V 27.43 0.913 3.14 18.5%/38.0%
Lr,V 27.41 0.919 3.10 18.7%/34.3%
Lr 27.77 0.924 3.01 18.2%/38.6%

super-resolution related works. Similarly, it could be observed that the best LMD value

is achieved by using only the reconstruction loss. It is important to point out that LMD

cannot precisely reflect the lip movement accuracy mainly from two aspects. First, for

the same word, different people may pronounce it in different ways, e.g., very exaggerated

mouth opening range. The generated samples are not necessarily to be the same way as the

ground truth. Second, this may be caused by the landmark detection error especially for

non-frontal faces. In other words, PSNR, SSIM and LMD cannot accurately reflect whether

the generated lip movement is correct or not.

For better evaluation of the lip sync result, the-state-of-the-art deep lip-reading model

which is trained on real speech videos is used to quantify the accuracy. Computer vision

based lip-reading models have been used to aid correction of lip movements to improve

human’s pronunciation [50], and thus should be an ideal metric to justify the authenticity of

the generated speech videos. It could be observed that with lip-reading discriminator, the

lip-reading accuracy is improved from 18.5% and 38.0% to 36.2% and 63.0% on top1 and

top5, which approaches the accuracy on real videos (60% and 80% top1 and top5).

User Study

The user study is further conducted for more subjective evaluation.Amazon Mechanical Turk

(AMT) is chosen as the user study platform and all the workers are required to be from either

“UK” or “USA”. In the study, workers are asked to perform pair-wise comparison between

videos generated by Chung et al. [4], Zhou et al. [60], and ours. Human evaluation is very

subjective and different people may focus on different perspectives. Therefore clear user
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Table 3.8: User study of generated videos from proposed method vs other state-of-the-art
methods.

Voting to
ours vs.
others

Lip Ac-
curacy

Video
Real-
ism

Image
Quality

Chung [4]
0.74/0.26 0.66/0.34 0.73/0.27

Zhou [60]
0.68/0.32 0.87/0.13 0.70/0.30

instructions is given, and ask people to evaluate the result from three perspectives: whether

the generated video has good smoothness like a real video (realistic of video); whether the

lip shape is accurate and synchronized well with the audio (lip movement accuracy); and

whether the image frames are blurred or with artifacts (image quality). In total, each worker

is asked to evaluate 60 test samples from the VoxCeleb dataset and the LRW dataset, each of

which has been used to generate 3 videos by three compared methods. For each test sample,

videos generated by our method and a compared method are provided to workers, and they

are asked to select the better video according to the instruction. Each sample is evaluated

by 10 different workers. The results are summarized and listed it in Table 3.8.

As shown in Table 3.8, our method clearly outperforms recent approaches [4, 60]. In

specific, our method outperforms the other two methods on lip movement accuracy which

is also consistent with the lip-reading model result in Table 3.7. In addition, our framework

is superior on the video realistic metric as well as image quality since other methods suffer

from lots of motion artifacts like pose discontinuity and unstable face sizes between frames.

3.5 Extension Study on Single Person Generation with

Natural Pose and Expression

One potential problem for the proposed structure and other concurrent works is that it is

difficult to generate the talking face video with natural poses and expressions. It could

be observed that instead of only using the hybrid features as inputs to the next recurrent
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Figure 3.8: The first row is the ground truth image, the second row is our generated results.

unit, the previously generated image frame is also included such that the natural pose and

expression of talking face can be intrinsically modeled.

Many people have strong talking pattern, i.e., how they express and appear, what is

their head movement while talking in terms of natural poses and expressions. For example,

Obama’s talking pattern could be observed from his weekly address footage. However, it

is difficult to generate the talking face video with natural poses and expressions with the

proposed network structure as shown in Fig. 3.9a. There are mainly two reasons. First, most

available datasets (i.e., LRW, VoxCeleb and TCD-TIMIT) contain multiple persons with

large variations in pose, occlusion etc. Second, each person does not have sufficient video

samples that the network can catch his/her specific talking pattern. In order to solve the

large variation issue, face alignment is applied on the extracted face frames to get satisfiable

and stable results which will break the natural pose pattern. Obama weekly address footage

videos [39] provide enough talking samples to capture Obama’s talking pattern. In order

to intrinsically model the natural poses, face alignment should be ignored. The modified

network structure is shown in Fig. 3.9b. Different from our network structure which uses

the same identity image at each time step as shown in Fig. 3.9a, frames of previous step is
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used2 as input, i.e., Ĩ0, Ĩ1, · · · , Ĩt, to feed into image encoder of the next step, because the

generated frames are trained by minimizing the reconstruction error between ground truth

frames which naturally contain expressions and poses.

This modification actually integrates our recurrent generation scheme into the sequential

generation scheme. By taking the advantage of recurrent network, we can involve long term

dependency which largely solves the changing face issue and improve the smoothness in both

temporal and spatial domain.

3.6 Summary

In this chapter, we presented a new conditional adversarial network for talking face video

generation. Our framework mainly utilizes the recurrent adversarial network to capture the

temporal dependency of sequential audio features and image information simultaneously.

Furthermore, the framework incorporates three discriminators to further improve the image

quality, video realism and lip movement accuracy in an adversarial training manner. Our

extensive experimental results obtained from public constrained and unconstrained data

demonstrated the superiority over state-of-the-arts under different performance metrics.

One of the areas that deserve further investigation is the design of a true end-to-end

generation framework, where the raw audio file instead of the MFCC features is used as

input to the network. The other area is the incorporation of a sentence-level lip-reading

discriminator for guiding better lip motion generation.

2During training, the previous step frames could be generated frames or ground truth frames. A parameter
is set, i.e., teacher forcing rate, to control the ratio between generated frames and ground truth frames.
Fig. 3.9b shows the case of testing setting where the previous step frames are only generated frames.
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Figure 3.9: (a) Our generation network structure for multiple person talking face problem.
(b) The modified generation network structure for single person talking face problem.
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Chapter 4

Conclusion and Future Works

This dissertation focuses on cross-domain image transformation and generation through the

deep neural network. Cross-domain problem is challenging due to the large domain variation.

On the other hand, generating images with high-fidelity while preserving the consistency

with the information from another domain is also challenging. Inspired by the recently

developed deep learning based generative modeling, the GAN-based image generation and

transformation network was proposed. Cross-domain image transformation refers to the

generation of images with different content, or style, or color changes. While cross-domain

image generation refers to the generation of images based on the information from other

sources, for example, text or audio, etc. Two research topics have been studied to explore

cross-domain image transformation and generation problems. Since directly generating

images with the reconstruction loss tends to yield blurred results, we adopt the adversarial

training scheme to generate photo-realistic results. Different from image generation, video

generation needs to consider the temporal consistency, the recurrent condition generation

framework was proposed which largely improves the smooth transformation between frames.

Our future research mainly lies in two aspects. First, the current image transformation

and generation problems focus on small size images (i.e., around 100 × 100 pixels). If directly

applying the proposed methods to high quality images (i.e., around 1000 × 1000 pixels), it

will bring large artifacts and distortions. In the future work, a multi-stage image generation

framework will be designed where some stages focus on image manipulation while the others

focus on generating realistic details for high quality requirement.
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Second, the proposed networks cannot handle face images with large variations in

occlusion, illumination, and pose. There are some existing works [43] that integrate 3D

feature with 2D feature to help solve these issues. In the future work, the 3D feature can be

integrated with 2D feature as an extra constraint to deal with the challenge of variance in

occlusion, illumination, and pose.

59



Bibliography

60



[1] Bhatt, H. S., Bharadwaj, S., Singh, R., and Vatsa, M. (2012). Memetically optimized

MCWLD for matching sketches with digital face images. IEEE Transactions on

Information Forensics and Security, 7(5):1522–1535. 19

[2] Chen, L., Li, Z., Maddox, R. K., Duan, Z., and Xu, C. (2018). Lip movements generation

at a glance. arXiv preprint arXiv:1803.10404. xiv, 36, 44, 48, 49, 51

[3] Chen, L., Srivastava, S., Duan, Z., and Xu, C. (2017). Deep cross-modal audio-visual

generation. In Proceedings of the on Thematic Workshops of ACM Multimedia 2017, pages

349–357. ACM. 39

[4] Chung, J. S., Jamaludin, A., and Zisserman, A. (2017). You said that? British Machine

Vision Conference (BMVC). 4, 32, 35, 39, 44, 48, 49, 51, 53, 54

[5] Chung, J. S. and Zisserman, A. (2016). Lip reading in the wild. In Asian Conference on

Computer Vision, pages 87–103. Springer. 44, 51

[CMU Lextool Tools] CMU Lextool Tools. Cmu lextool tools.

http://www.speech.cs.cmu.edu/tools/lextool.html. [Online]. 42
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