
147

A Survey of Generative Adversarial Networks for

Synthesizing Structured Electronic Health Records

GHADEER O. GHOSHEH, University of Oxford, United Kingdom

JIN LI, Nanjing University of Information Science and Technology (NUIST), China

TINGTING ZHU, University of Oxford, United Kingdom

Electronic Health Records (EHRs) are a valuable asset to facilitate clinical research and point of care applica-

tions; however, many challenges such as data privacy concerns impede its optimal utilization. Deep generative

models, particularly Generative Adversarial Networks (GANs), show great promise in generating synthetic

EHR data by learning underlying data distributions while achieving excellent performance and addressing

these challenges. This work aims to survey the major developments in various applications of GANs for EHRs

and provides an overview of the proposed methodologies. For this purpose, we combine perspectives from

healthcare applications and machine learning techniques in terms of source datasets and the fidelity and pri-

vacy evaluation of the generated synthetic datasets. We also compile a list of the metrics and datasets used

by the reviewed works, which can be utilized as benchmarks for future research in the field. We conclude by

discussing challenges in GANs for EHRs development and proposing recommended practices. We hope that

this work motivates novel research development directions in the intersection of healthcare and machine

learning.

CCS Concepts: • Computing methodologies → Machine learning; • Applied computing → Health

informatics;

Additional Key Words and Phrases: Generative models, generative adversarial networks, electronic health

records, synthetic data

ACM Reference format:

Ghadeer O. Ghosheh, Jin Li, and Tingting Zhu. 2024. A Survey of Generative Adversarial Networks for Syn-

thesizing Structured Electronic Health Records. ACM Comput. Surv. 56, 6, Article 147 (January 2024), 34 pages.

https://doi.org/10.1145/3636424

1 INTRODUCTION

Since the early 2010s, machine learning models have proven to have a high potential for support-
ing medical applications by using data collected in electronic health records (EHRs) [149, 177].
Hospitals and medical providers are increasingly adopting and deploying EHR systems. In the
U.S. alone, 84% of hospitals adopted EHR systems as of 2015, which is a ninefold increase since
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2008 [79]. The widespread recording of structured EHRs is paving the way for research opportu-
nities in healthcare applications, such as patient-stratification [152], drug repurposing [33], public
health surveillance [16], as well as the novel discovery of disease mechanisms and correlations as
seen in the early COVID-19 applications [44]. EHRs also provide a valuable asset to develop data-
driven and patient-specific clinical decision support systems for diagnostic, prognostic, health-
care cost containment and workflow improvement applications [110, 154, 160]. However, the full
utilization of the wealth of the EHR data in such applications is impeded by several challenges,
including data sharing and privacy concerns [101], where data protection guidelines and regula-
tions such as the Health Insurance Portability and Accountability Act [61] in the United States
and the General Data Protection Regulation (GDPR) [170] in Europe have detailed control-
ling measures that prevent direct access to much of the data for patient privacy purposes. Other
data-specific challenges that make EHR processing burdensome include class imbalance [151], data
missingness [118], noise [103], heterogeneity [42], and irregular sampling [159]. To mitigate these
challenges, deep generative models have been proposed to generate synthetic data [31], notably
variational autoencoders (VAE) [105], and Generative Adversarial Networks (GANs) [69].

In this article, we review GANs for EHR applications, which is a fast-emerging yet understudied
application of deep generative models. There exist several reviews and surveys related to GANs
evaluation [147], GANs applications for medical imaging [96], and observational health data [64].
However, in this survey, we focus on GANs for structured EHRs and their applications, evaluation,
and challenges, which serve as a basis for a reading audience with diverse backgrounds. Other
related reviews include the work of Brophy et al. [19] and Zhang et al. [199] where their focuses
were time-series data in general and not necessarily EHRs. One of the most related works is that
of Hernandez et al. [80], where the authors reviewed the works of GANs for EHRs. Although the
authors described the applications of GANs for EHRs, they only focused on a narrow aspect of
GANs—the “generation” functionality. In comparison, our work reviews a broad range of appli-
cations of GAN for EHRs and is not restricted to the native generative functionality. Examples
of applications included in our work are treatment effects estimation, semi-supervised learning,
missing value imputation and privacy preservation. Furthermore, Hernandez et al. grouped the
evaluation metrics into three categories: resemblance evaluation, utility evaluation, and privacy
evaluation, respectively. While useful, the grouping is limited to metrics only used to evaluate the
native data-generation task and does not include those for other applications. In addition, the re-
semblance evaluation category grouped metrics on a high level without describing the differences
in the purpose, or mathematical implications of each metric. Other related works such as that of El
Emam et al. [56] examined the impact of utility metrics on the predictive performance of synthetic
data generated using GANs but did not consider the privacy and qualitative assessment that are
presented in our work.

To this end, our work extends the previous reviews of GANs for EHRs to include applications
such as imputation and treatment effects. Overall, we provide a comprehensive and up-to-date
review of the current works and group them based on their target application in healthcare, not
only for generating synthetic samples but also for mitigating many of the data challenges in the
EHR domain. To the best of our knowledge, this is the first work to present a comprehensive
grouping and provide a more detailed comparison of the various metrics used with mathematical
formulation, examples from the literature and a discussion on the utility of such metrics for tabular
and time-series EHRs. We also discuss several open-ended challenges and themes to motivate
new research directions in both the computational and healthcare fields. Relevant literature was
identified by searching Google Scholar using the following keywords and keyword combinations,
(1) “GAN ” AND “EHR,” (2) “synthetic health data,” and (3) “GAN ” AND “Health” up until January
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Fig. 1. An overview of the architecture of GANs showing the function of both the generator and discriminator

neural networks. The generator takes an noise vector z as input and outputs the synthetic data. The discrim-

inator is trained to distinguish between the real and synthetic data. Both G and D are then fine-tuned by

back-propagation.

2022. We then filtered out papers that used generative models other than GANs, also those used
biomedical signals collected from wearable data as well as duplicates

The outline of the article is as follows. In Section 2, we briefly review the working principles and
architecture of GANs and provide an overview of EHR data types in Section 3. We then survey the
research papers that used GANs for various EHR applications, in Section 4. We discuss and curate
a list of commonly used evaluation metrics in Section 5, along with the most commonly used
data sources in the literature in Section 6. We conclude by discussing challenges as well as future
directions of GANs for EHRs in Section 7.

2 GENERATIVE ADVERSARIAL NETWORKS

2.1 Principles and Architecture

Since the introduction of GANs in 2014 [69], they have shown great potential in generating realistic
data for various applications. The working principle of GANs essentially involves the training of
a pair of deep neural networks in competition with each other [43]. The first neural network,
the generator G, takes a noise vector z from latent space as an input and generates the synthetic
samplesG (z) [43], while the other neural network, the discriminator, D is given both the real x and
generated samplesG (z) and is trained to discriminate between the real and synthetic ones [69]. The
discriminator outputs a vector of probability predictions of whether the inputted samples were real
or synthetic. Both the generator and discriminator are fine-tuned using the discriminator’s output
via back-propagation as shown in Figure 1. The training involves both finding the parameters of a
discriminator that maximize its classification accuracy and finding the parameters of a generator
that minimize the discriminator’s ability to tell the real and synthetic samples apart [69]. In other
words, the objective loss function for the original GANs is as follows:

min
G

max
D

V (D,G ) = Ex[logD (x)] + Ez

[
log(1 − D (G (z)))].

2.2 GAN Variants

The initial results of GANs were promising [69], which motivated researchers to propose modi-
fications and adaptations for specific tasks and applications. Notably, Reference [130] proposed
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the Conditional Generative Adversarial Net, which generated data by conditioning the GAN on a
selected variable or label y, where y is fed to the generator and discriminator as a part of the input.
Another important work is deep convolutional GAN, which utilized a pair of deep convolutional
networks for each of the G and D [141]. Around the same time, an Information Maximizing Gen-
erative Adversarial Network was proposed to provide additional interpretability where semantic
meaning was introduced to the variables in the latent space [32]. Recurrent GAN (RCGAN) [57]
extended the original GAN model to generate sequential data by using recurrent neural net-

works (RNNs) for EHR applications, motivating several GAN applications for time-series data.
Other important works include CycleGAN [205] and STARGAN [39], which were adapted to allow
for domain translation, and diversity sensitive conditional GAN, which regularizes the generator
to produce diverse outputs [184].

2.3 GAN Training Challenges

Despite their high potential, training GANs involves many challenges, notably mode collapse.
Mode collapse refers to the case where the generator maps different inputs to a small set of syn-
thetic outputs rather than producing diverse outputs that reflect the input [69]. Another challenge
is vanishing gradients [4], where the discriminator is performing very well and not providing use-
ful information to improve the generator training, leading the generator’s gradient to vanish [4]. To
address these challenges, some architectures and modifications to the loss function were proposed
as seen in Wasserstein Generative Adversarial Networks (WGAN). WGAN modified the loss
function to improve GAN training stability by using the Wasserstein distance metric to measure
the distribution similarity of real and synthetic data [5, 72]. Other modifications were minibatch
discrimination [68, 148], minibatch averaging [36], unrolled GANs [128], and noise injection [148].
Notwithstanding the advantages of GANs, improving GAN training stability remains one of the
bottlenecks in scaling GAN applications in real-world settings.

2.4 Related Deep Generative Models

While GANs are considered as one of the prominent deep generative models, they belong to
a family of models that demonstrate strong performance in different applications. For example,
likelihood-based models such as VAEs [105] and diffusion models [85] are commonly used in var-
ious deep generative applications [140, 143, 186] where diffusion models recently outperformed
GANs [52]. Both VAEs and diffusion models rely on mapping the data to a latent space represen-
tation where the generation process involves learning a transformation from the latent space to
the observational data. Despite their similarities such as having lower-bound-based loss functions,
VAEs tend to learn compressed embeddings in latent space while diffusion models’ embeddings
are noisy augmentation of the original data. Other related models include transformers that were
introduced in 2017 [169]. Transformers rely on self-attention mechanisms and positional encoding
for learning sequence-to-sequence mapping. While often used for machine translation, text sum-
marization, and other natural language processing tasks, transformer-based models were proposed
for other generalized tasks in imaging [102] and tabular data generation [9].

All of the aforementioned models perform well in various generative tasks, but they present
limitations. VAEs are very good at learning a compressed version of the data; however, they often
generate noisy and blurry outputs with compromised quality [129]. Diffusion models, however,
are inefficient in training and tend to generate less private synthetic data compared to other deep
generative models [26]. Compared to adversarial models such as GANs, likelihood-based models
such as VAEs and diffusion models, transformers require large datasets to train and often have a
large number of parameters to optimise to achieve stable performance, and hence more inherently
complex.
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Fig. 2. The two main types of EHR data, tabular and time series, are shown in their various forms. Discrete,

categorical, and continuous tabular data are shown in (a), (b), and (c), respectively. Time-series data are

shown in (d), where the record is shown on the left and a corresponding plot of the data is shown on the

right.

3 STRUCTURED EHRS: DATA TYPES AND CLINICAL SETTINGS

In medical practice, medical staff use EHRs to record and capture various forms of data about a
patient during an encounter. Like paper records, EHRs store data such as hospitalization infor-
mation and patient-level information such as demographics, comorbidities, medical history, vital
signs, laboratory tests, prescribed medication, administered interventions, diagnosis, and clinical
outcomes [16]. The nature of each of these kinds of data differs, which results in multiple types of
EHR data. While there are similarities between physiological signal data such as photoplethys-

mography (PPG) and electrocardiogram (ECG) and structured EHRs, the purpose and nature
of the recording is often different. For the sake of this work, we focus on structured EHRs collected
in clinical settings that are often presented in either tabular or time-series formats, as shown in
Figure 2. Tabular data store information that presents a representation of the patient’s encounter
such as demographic features, aggregated mean, or a one time measurement of vital signs, where
each sample has one value for each feature. Time-series data, however, present a record of data
points indexed in time order, which might be used to present disease progression over time as
seen in longitudinal data [81] or even short-term records as seen in vital signs [157]. The variables
recorded in each of the two data types can be discrete, categorical, or continuous. Discrete variables
represent values that can be obtained by counting and stored as integers such as age or number
of visits per month, as seen in Figure 2(a) and (d). Categorical variables, however, are used when
there is a finite number of categories such as sex or ethnicity, as shown in as seen in Figure 2(b) and
(d). Last, continuous variables are variables whose value is obtained by measurement and is not
limited to whole numbers. Examples of continuous variables can be seen in many laboratory tests
and vital signs such as albumin, body temperature, and total cholesterol, as shown in Figure 2(c)
and (d). It is worth noting that different EHR data types usually coexist in the same patient record.
For example, a patient might have both tabular and time-series data recorded for the same visit.
This heterogeneous nature of EHRs often results in complexity in terms of its analysis, modeling,
and use for machine learning purposes [42, 177].
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EHR data can be recorded in different settings and stages of a patient encounter or observa-
tion. During a hospital visit, a patient encounter can be classified as either inpatient or outpatient,
where the first requires hospitalization and admission, while the latter does not. For an inpatient
encounter, a patient could go through various units within the same facility, which depends on the
clinical status [195], availability of human and material resources [51], or hospital capacity [59]. At
the beginning of a hospital presentation, patients can be presented to the emergency wards where
initial diagnosis and interventions take place [162], where the focus is to admit and then triage the
patient based on the medical need. In the general inpatient-wards, patients get regular laboratory
tests, vital sign checks, treatment administration, and other required procedures as requested by
the doctor. Patients who deteriorate or those whose cases require higher care are admitted to the
Intensive Care Unit (ICU), where the data tend to be frequently collected as the patient is under
close monitoring. Data collected in ICUs are usually referred to as critical care data [91]. The other
types of EHR data are those of outpatient encounters, where the data collected are for patients who
were not admitted to the hospital, as seen in the case of specialist consultations [78] and visits to
general practitioners [81]. The nature of outpatient data varies across countries, depending on the
availability of primary care and the need for referrals to get a specialist consultation.

4 APPLICATION OF GANS FOR STRUCTURED EHRS

The applications of GANs in the medical domain are very diverse, specifically in medical imaging.
For instance, GANs have been used for various radiology tasks that ranged from data augmentation
to data segmentation and denoising [120, 189, 201]. However, there is much less work on using
GANs to generate realistic structured healthcare data such as EHRs. The lag in the use of GANs
for EHR data can be attributed to the many data challenges, such as complexity, heterogeneity,
and missingness [177]. In comparison with other data modalities such as images and text, which
can be intuitively and visually evaluated for realism, assessing the quality of the generated EHR
data is difficult. In Table 1, we summarise major works that used GANs for EHR applications
and group them based on their target application. The main groups are (1) generation of diverse
types of EHRs, (2) semi-supervised learning and data augmentation, (3) imputation of missingness,
(4) treatment effect estimation, and (5) privacy preservation. The works are reviewed in terms of
the used models, task, dataset size, open-access code and data, as well as evaluation components
used to assess the quality of the synthetic data.

4.1 Generation of Diverse Types of EHRs

In the following subsections, we describe GAN-based works that generated different types of EHR
data, tabular and time series, in Sections 4.1.1 and 4.1.2, respectively. We also survey papers that
attempted to explore heterogeneity aspects in either tabular or time-series EHRs in Section 4.1.3.

4.1.1 Generating Tabular EHRs. The early GANs for EHRs works focused on generating struc-
tured discrete tabular EHRs such as diagnosis and billing ICD codes. For example, medGAN was
one of the first GANs architectures to address the incompatibility of the original GANs to gen-
erate tabular EHRs with binary or discrete count features [37]. The authors’ model incorporated
an autoencoder to learn the salient features of discrete variables in tabular EHRs, which assists
GANs in learning the distribution of multi-label discrete binary and count features. Building on
the success of medGAN for generating discrete data, medWGAN and medBGAN were proposed
based on Wasserstein GAN with gradient penalty (WGAN-GP) [72] and boundary-seeking

GANs (BGAN) [84], respectively. The authors’ major contribution was in the area of improving
the quality of generated data of that generated by the original medGAN [10]. In MC-medGAN, the
authors proposed adaptations to medGAN to allow for better representation of multi-categorical
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Table 1. Summary of the Various Uses of GANs for EHRs and Comparison of Target Application,

Evaluation Measures, Medical Datasets, and Open Access

Problem Evaluation Medical Dataset Open Access

References Year Model Task DWS LDS JDS IDRS PP DU Qual Dataset Dataset size (N/R) Dataset Code
Generation of Diverse
types of EHRs

[37] 2017 medGAN Generating discrete tabular EHR data � ✗ ✗ � � ✗ �
MIMIC-III 46,520/ NA �*

�Sutter PAMF 258,559/ NA ✗
Sutter Heart failure Cohort 30,738/ NA ✗

[57] 2017 RGAN, RCGAN Generating continuous time-series EHRs ✗ ✗ � ✗ � � � Philips eICU 17,693/ NA �* �
[180] 2017 GAN for DLEs Generating continuous time-series Drug Laboratory Effects (DLEs) ✗ ✗ � ✗ ✗ ✗ � Private New York EHR dataset 4,830/ NA ✗ ✗
[193] 2018 RadialGAN Leveraging multiple tabular datasets by using multiple GAN ✗ ✗ ✗ ✗ ✗ � ✗ 14 RCTs from MAGGIC 528-13279/ NA �* �
[10] 2019 medWGAN, medBGAN

Itegrating medGAN with WGAN-GP & BGAN for generating � ✗ ✗ � ✗ ✗ ✗
MIMIC-III 46,517 / 46,517 �* �

discrete tabular EHRs NHIRD Taiwan 498,909 / 498,909 ✗
[34] 2019 WGAN Generating heterogeneous discrete tabular EHRs � ✗ � ✗ � � � NMDS NA / 2,873,466 ✗ ✗

[172] 2019 SC-GAN
Generating continuous sequentially coupled time-series EHRs � ✗ ✗ � ✗ � � MIMIC-III 29,278 / NA �* ✗
data for patient sate & medication dosage

[204] 2020 EMR-WGAN, EMR-CWGAN Improved EHR generation training stability and evaluation � � � � � ✗ ✗ VUMC Synthetic Derivative 2,246,444 / NA ✗ ✗
[67] 2020 MC-medGAN Generating multi-categorical tabular EHRs � � ✗ � � ✗ � SEER’s research dataset NA / 366,631 �* �
[183] 2020 HGAN

Generating Heterogeneous tabular EHRs while preserving feature � � � � � ✗ � VUMC Synthetic Derivative 928,089 / NA ✗ ✗
constraints and inter-dimensional dependencies

[185] 2019 GcGAN
Generating tabular EHRs while preserving grouped coorlations � ✗ ✗ � ✗ � ✗ Private Pediatric EHR NA /17,000 ✗ ✗

[165] 2020 CorGAN
Correlation-Capturing generation of continuous and discrete � ✗ ✗ � � � ✗

MIMIC-III NA / 46,000 �* �
tabular EHRs UCI Epileptic Seizure Recognition 500 / 11,500 �

[142] 2020 SmoothGAN
Generating tabular EHRs with smooth conditions � ✗ ✗ � � � � Cerner HealthFacts NA /47,412 ✗ ✗

[203] 2021 SynTEG Generating discrete time-series EHRs of diagnostic events � � ✗ ✗ � � ✗ VUMC Synthetic Derivative NA / 2,187,629 ✗ �
[111] 2020 DAEE Generating time-series EHRs of discrete diagnostic codes ✗ ✗ � ✗ � ✗ � MIMIC-III 7,537 / 19,993 �* �

UT-Physicians 13,025 / 85,845 ✗

[112] 2021 EHR-M-GAN Generating mixed-type time-series EHRs � ✗ � � � � �
MIMIC-III 28,344 / 28,344 �*

�Philips eICU 99,015 / 99,015 �*
HiRID 14,129 / 14,129 �*

[174] 2021 WGAN Federated learning for GAN for discrete, binary EHRs � ✗ � ✗ � ✗ � MIMIC-III NA / 46,520 �* ✗
Semi-Supervised Learning
and Data Augmentation

[30] 2017 ehrGAN,SSL-GANs
Augmenting data for imbalanced SSL tasks using EHRs

✗ ✗ ✗ � ✗ � � Private insurance dataset 218,680 / 14,969,489 ✗ ✗
of sequences of diagnosis codes

[113] 2018 GAN for SSL
SSL based GANs for detecting rare diseases in unlabelled

✗ ✗ ✗ ✗ ✗ � ✗ IQVIA Rx & Dx 2,961,750 / NA ✗ �
tabular discrete & continuous EHRs

[196] 2019 GAN for SSL
SSL based GANs for detecting rare diseases in unlabelled

✗ ✗ ✗ ✗ ✗ � ✗ IQVIA Rx & Dx 1,792,760 / NA ✗ ✗
time-series EHRs

[187] 2019 GAN
SSL based labeling of unlabled data, and GAN-based

✗ ✗ ✗ ✗ ✗ � � 20 datasets from UCI NA / 80-2,000 �
✗

data augmentation in tabular EHRs Cerebral stroke private dataset 11,039 / NA ✗
Imputation of Missingness

[192] 2018 GAIN GAN-based discrete & categorical tabular data imputation ✗ ✗ � ✗ ✗ � ✗ UCI Breast dataset NA / 569 � �
[200] 2018 Stackelberg GAN

Stabilizing GAIN imputation for discrete, continuous, &
✗ ✗ ✗ ✗ ✗ � ✗

MIMIC-III 38,645 / 58,000 �* ✗
categorical EHRs using Stackelberg principles

[116] 2018 GAN with GRUI GAN-based multivariate time-series EHR imputation ✗ ✗ ✗ ✗ ✗ � ✗ PhysioNet Challenge 2012 NA/ 4,000 � �
[117] 2019 E2GAN Improved GAN-based multivariate time-series EHR imputation ✗ ✗ ✗ ✗ ✗ � ✗ PhysioNet Challenge 2012 dataset NA/ 4,000 � �
[188] 2019 Categorical GAIN Improving GAIN imputation of categorical tabular EHRs ✗ ✗ ✗ ✗ ✗ � ✗

UCI Breast Cancer NA/ 286 �
✗

PRAEGNANT study 1234 / NA ✗

[24] 2019
GAIN adaptation Improving GAIN imputation of mixed tabular EHRs, including

✗ ✗ ✗ ✗ ✗ � ✗ UCI breast dataset NA / 569 � �
multi-categorical features

[46] 2021 MI-GAN
GAN-based multiple imputation for

✗ ✗ ✗ ✗ ✗ � ✗ ADNI dataset NA / 649 �* ✗
categorical time-series EHRs

[74] 2021 Bi-GAN Concurrent imputation and prediction in time-series EHRs ✗ ✗ ✗ ✗ ✗ � ✗
Nemours Pediatric 66,878 / NA �* �

All of Us 34,226 / NA �
Treatment Effect Estima-
tion

[194] 2018 GANITE
Generating missing counterfactual data and individualized

✗ ✗ ✗ ✗ ✗ � ✗
Twins 11,400 / 11,400 � �

treatment effects estimation in tabular EHRs IHDP 747 / 747 �
[125] 2018 CWR-GAN

Generating time-series post-treatment outcomes for ITE
✗ ✗ ✗ ✗ ✗ � ✗ MIMIC-III 2,000 / NA �* �

estimation in biomedical translation tasks

[63] 2020 MGANITE
Estimating effects of continuous, binary and categorical

✗ ✗ ✗ ✗ ✗ � ✗ AML dataset NA/212 �* �
treatments via conditional GANs on tabular EHRs

[114] 2020 GAD
Continuous treatment effect estimation by deconfounding

✗ ✗ ✗ ✗ ✗ � ✗ Twins 4,821 / NA � ✗
in tabular EHRs

[65] 2021 PSSAM-GAN Propensity score augmentation matching for tabular EHRs ✗ ✗ ✗ ✗ ✗ � ✗
S. aureus dataset NA / 2,006 ✗ �

IHDP 747 / 747 �
Privacy Preservation

[178] 2018 DPGAN
Generating differential private EHR data using moment- � ✗ ✗ � � ✗ ✗ MIMIC-III NA / 46,520 �* �
accounting techniques

[99] 2018 PATE-GAN Generating differential private tabular data using PATE ✗ ✗ ✗ ✗ � � ✗

UCI Epileptic Seizure Recognition NA / 11,500 �
�Kaggle Cervical Cancer NA / 858 �

UNOS Transplant NA / 23,706 �*
MAGGIC NA / 30,389 �*

[11] 2019 AC-GAN
Generating Differntially private GAN via discriminator clipping � ✗ ✗ � � � � SPRINT 6,502 / NA �* �
for tabular EHRs MIMIC-III 8,260 / NA �*

[173] 2020 PART-GAN Improving private GAN training of time-series EHRs � ✗ � ✗ � ✗ ✗ Philips eICU 200,000 / 224,026,866 �* ✗

[190] 2020 ADS-GAN
Anonymizing generated tabular EHR data while � ✗ � � � � � MAGGIC (RCT data) 30,389 / NA �* �
minimizing patient identifiability 3 UNOS Transplant datasets 23,706-56,822 / NA �*

[182] 2020 HealthGAN
Improved End-to-End privacy-preserving WGAN-GP with a � ✗ � ✗ � � � MIMIC-III NA / 27,000 �* �
focus on privacy & resemblance metrics

[92] 2021 HCGAN
Improving robustness to privacy attacks by training Cramér

✗ ✗ ✗ ✗ � � ✗
UCI Breast dataset NA / 699 �

✗
GANs for tabular EHRs Texas Hospital Data NA / 186,976 ✗

1 The included evaluation components are (DWS): Dimension-wise Similarity, (LDS): Latent Distribution Similarity,

(JDS): Joint Distribution Similarity, (IDRS): Inter-dimensional Relationship Similarity, (PP): Privacy Preservation, (DU)

Data Utility, and (Qual) Qualitative Evaluation, which are explained in details in Section 5. 2 The dataset size is

reported in the format of (N/R) where N refers the number of patients an R refers to number of records, reported in

each of the works. 3 The symbol �* refers to data sources that can be accessed after going through an application

process.

data [22, 67]. To achieve this aim, the authors used a gumbel-softmax activation function to enable
backpropagating for random samples of discrete variables, which has notable improvements for
multi-categorical features [93].

Other researchers focused on improving the capturing of local correlations in tabular EHRs
by proposed Correlation Capturing GAN (CorGAN) [165]. CorGAN combined Convolutional
GAN and Convolutional Autoencoders to capture the local correlation between features in both
discrete and continuous data. Another example is Grouped Correlational GAN (GcGAN) [185]
where the authors introduced encoders inspired by CorrNN [29] to capture the coorelations be-
tween the treatment and diseases. Specifically, GcGAN focused on learning a disease vector that
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embeds the curative effect based on predefined treatment efficacy outcomes. Unlike previous works
on tabular EHRs, SMOOTH-GAN (Sharp sMOOTh eHr) [142] focused on generating laboratory
values and medications conditioned on diagnosis codes. The architecture of SMOOTH-GAN relied
on a conditional generator; however, they introduced smooth labels to allow for more flexibility
when generating various disease stages. By using a random forest–based heuristic function that es-
timates the condition in a continuous space, they better represent the disease stage and the quality
of the synthetic data.

More recent works focused on improving the training stability, such as the work proposed in
EMR Wasserstein GAN (EMR-WGAN). The authors removed the autoencoder that was inher-
ited from medGAN to account for discrete features, applied a filtering strategy to enhance GANs
training for low-prevalence clinical concepts [204]. With the new changes, EMR-WGAN was able
to generate high-fidelity data with reduced noise and improved training stability [204].

4.1.2 Generating Time-series EHRs. While it is useful to generate tabular EHR data that presents
patients’ state at a single timepoint, tabular data do not capture the dynamics and changes effec-
tively compared with time-series data, in which variables are recorded along a series of timepoints.
To address this issue, a framework for Synthetic Temporal EHR Generation was recently presented
where the authors focused on generating timestamped diagnostic events (ICD-codes) [203]. Their
architecture addresses the problem in a two-stage approach. The first stage sequentially extracts
temporal patterns from visits and adopts a self-attention layer [169]. The second stage generates
data conditioned on the learned patterns using Wasserstein GAN [5]. In a similar application, the
authors proposed to synthesize sequences of EHRs from patients’ chronological visits by using the
dual adversarial autoencoder (DAAE) along with two GANs components [111]. By utilizing the
recurrent autoencoder-based generators, DAAE can synthesize sequences of set-valued medical
records such as diagnosis ICD-codes. Another GAN adaptation for continuous time-series EHRs
was that of Reference [180], whose work generated time-series drug laboratory effects (DLEs)

trajectories. Their work has many applications for monitoring patients after exposure to interven-
tions, which can prevent adverse drug reactions [161]. In Reference [57], the authors worked on
a model to generate continuous time-series EHR data using Recurrent GANs (RGAN), and its
conditional generative version, RCGAN. A kind of recurrent neural network, Long Short-Term

Memory (LSTM) [86], was used for both the generator and discriminator of RCGAN, which are
commonly used models for sequential data tasks [86, 121]. Motivated by the clinical practice of
dosage adjustments based on patient state and that both components have a mutual influence on
each other, Reference [172] developed Sequentially Coupled GAN (SC-GAN). Their model has
two distinct LSTM-based generators that coordinate the generation of patient state and medica-
tion dosage data. The output of the patient-state generator is fed to the dosage generator, which
mimics the clinical practice of assigning dosage based on the patient status [172].

4.1.3 Generating Heterogeneous EHRs. To mimic the heterogeneous nature of EHRs, which in-
clude various types (including demographic information, ICD codes, vital sign time series, etc.),
developing GANs that target synthesizing mixed-type EHRs and capturing the dependencies be-
tween various features is of vital importance. In Reference [34], the authors used WGAN to gen-
erate discrete tabular EHR data containing both administrative and diagnostic data, which they
referred to as heterogeneous EHRs.

In parallel, Reference [183] developed a model to account for constraints and preserve rela-
tionships across generated heterogeneous tabular EHRs that combined binary, categorical, and
continuous values. To do so, the authors incorporated penalization for the violation during
GAN training [183]. To simultaneously generate continuous-valued and discrete-valued time-
series EHRs, GANs for synthesizing Mixed-type longitudinal EHR data (EHR-M-GAN) was lately
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proposed [112]. The authors utilized a dual variational autoencoder to generate a shared latent
space representation of mixed EHR types. In addition, a sequentially coupled generator imple-
mented with bilateral LSTM was adopted during data generation to capture the temporal correla-
tions between heterogeneous types of EHRs.

4.2 Semi-supervised Learning and Data Augmentation

It is often the case in healthcare datasets that different outcome classes are not equally prevalent,
as seen in mortality and rare disease prevalence; this issue is referred to as class imbalance in the
machine learning domain [94]. Another commonly seen issue is the absence of labels for some
samples, which is referred to as unlabelled samples. Learning from both labelled and unlabelled
data gained increasing attention in the machine learning community, where semi-supervised

learning (SSL) approaches such as classification and clustering have proven to be effective in
various applications [206].

Some researchers extended the GANs’ role for SSL problems by forcing the GANs to output class
labels for unlabelled samples [137, 148]. In their proposed setup, a GAN-based model is trained on
a dataset with the samples belonging to one of K classes, where there’s a high percentage of un-
labelled samples. Then the discriminator’s role is adjusted to predict which of K+1 classes the
samples belong to, where an extra class refers to the synthetic samples [137, 148]. The extension
of the discriminator’s role to predict classes opened the door for many applications with a high
prevalence of unlabelled samples, such as the case of rare diseases where misdiagnosed or delayed
diagnosis is common [107]. The work proposed in Reference [113] extended the discriminator’s
goal to finding the class assignment of real EHR samples to be able to detect rare diseases in a ma-
jority unlabelled tabular dataset. In addition, the authors used a modified loss for their generator,
where the objective is to generate samples with minimal divergence from the target distribution.
This objective is achieved by over-representing samples with low densities in the original distri-
bution, referred to as “complement samples” as initially proposed in Reference [47]. Based on the
success of Reference [113], the authors extended the work of GANs for SSL for predicting rare
diseases to be compatible with longitudinal data [196]. The main modification to the GAN models
was the usage of RNNs for both the generator and discriminator architecture, which allowed for
time-series generation.

GAN-based data augmentation methods have been proposed to mitigate imbalanced and unla-
belled data. In such cases, generated data from a specific class can be used in conjunction with
the real data to improve model performance, generalizability and decrease over-fitting [28]. Data
augmentation can be beneficial when the target dataset has highly unlabelled points or is severely
imbalanced, as seen in semi-supervised learning applications. For instance, Reference [30], modi-
fied the original GANs and proposed ehrGAN to learn the transition distribution of the samples by
using a generator with variational contrastive divergence [197]. ehrGAN is then used as a part of
the loss function of a semi-supervised learning GANs framework SSL-GAN to augment the train-
ing data in a semi-supervised learning manner for sequences of diagnosis codes. By learning the
transition distribution of real samples, rich structures of the data manifold around true examples
are utilized in SSL-GAN to improve performance.

In a similar application, Reference [187] simultaneously addressed the problems of both the un-
labelled and unbalanced data by using a GAN-based approach. The authors presented a framework
in which the GAN takes labelled data as inputs and uses it to generate new samples. The generated
labelled data are then used to train two independent classifiers to predict sample labels. Next, the
authors used the classifiers’ predictions to assign pseudo-labels for unlabelled samples. Samples
with the same pseudo-label predictions from both classifiers are added to the labelled set. The au-
thors then use GANs again to generate new samples in an attempt to re-balance the minority class
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labels [187]. The final augmented dataset was used to train a classifier that achieved superior per-
formance on various benchmark datasets. It is worth noting that in many of the semi-supervised
uses of GANs, the generated data distribution does not need to match the real data distribution,
since the objective might be to over-represent the minority class [47].

4.3 Imputation of Missingness

Handling missing data remains one of the major challenges when dealing with EHRs, where data
can be highly missing for various reasons. Using incomplete data for training machine learning
algorithms can harm their performance, especially in cases where algorithms may not be robust
to missingness [122]. Missing data are usually regarded as one of the following depending on the
missingness pattern, missing completely at random (MCAR), missing at random (MAR), and
not missing at random [115]. In the healthcare domain, missingness can come in any of the three
types, depending on the underlying missingness cause. Examples of healthcare-related causes of
missing data in EHRs include data recording errors and machine failure, irregular sampling and
inconsistent medical visits [108], unmeasured lab tests due to the lack of medical need [54], or even
high cost and dangerous to acquire information such as invasive or radiology procedures [20, 104]
and other factors related to patient severity and diagnosis [2].

GANs are naturally suitable for generative tasks not only generating completely new samples
but also generating missing values that can be used to impute the original samples. While most
data imputation methodologies are often based on either parametric or non-parametric probability
density estimation, GANs can perform data imputation without calculating a probability density
first [188]. The first GAN-based missing data imputation paper had a focus on image comple-
tion [90]. This work motivated a series of GAN-based imputation methods that are application-
specific and tailored for various data types including medical data. For instance, Reference [192]
proposed the use of an adjusted version of the original GANs that they refer to as Generative Ad-

versarial Imputation Nets (GAIN). In their work, the generator’s role was adjusted to generate
and accurately impute missing data. The discriminator’s role, however, was adjusted to distin-
guish between original and imputed components, analogous to distinguishing between real and
synthetic samples [192]. To increase the performance and the quality of the generated imputation
data, the discriminator is also given additional information “hints,” which reveals to the discrimina-
tor partial information about the missingness of the original sample. Their work focused on MCAR
missingness in multiple tabular datasets. The results of GAIN were benchmarked against various
data imputation methods such as MICE [168], missForest [158], and Expectation-maximization
[134].

Others were motivated by the high missingness in the commonly used EHR data such as the
MIMIC III dataset [97], where missingness reached as high as 74% [200]. Reference [200] com-
bined the structure proposed in Reference [192] with principles of Stackelberg competition in the
domain of game theory [60]. The main adaptations of GAIN are in the use of multiple genera-
tors (followers), rather than one, which team up against the discriminator (leader). Their results
showed that the Stackelberg-GAN was able to capture complex data distributions and achieved
high performance when compared with other state-of-the-art imputation methodologies. The au-
thors evaluated their work on discrete, continuous, and categorical tabular EHRs [200].

In a similar work, Reference [188] proposed a modification to GAIN that focused on improv-
ing performance in generating categorical tabular EHR data. The authors hypothesized that the
original GANs architecture and the one used in Reference [192] is not optimal for categorical fea-
tures due to the softmax function’s ability to produce values between 0 and 1 [188]. To address this,
Reference [188] introduced a fuzzy binary coding of categorical features, where values are encoded
using real numbers between 0 and 1 to preserve the categorical information aspect of the data. To
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further improve GAIN for mixed-type tabular EHRs, Reference [24] modified its model structure
where the generator and discriminators had multiple inputs as well as multiple outputs [24]. The
major contributions focused on variable splitting and the usage of gumbel-softmax activation that
accounts for categorical variables and their discrete distributions [93]. While most works focused
on MCAR cases, the authors of Multiple Imputation via GANs (MI-GAN) introduced an ar-
chitecture that is theoretically supported for both MCAR and MAR cases. The authors combined
ideas from both GAIN and Multiple Imputation machine learning works to solve the problem of
MAR blockwise pattern missingness where the missing probabilities depend on the observed val-
ues in the dataset [46]. The results showed superior performance with respect to other imputation
models in terms of statistical inference and computational speed.

Despite the outstanding results of GAIN and its various adaptations, they are not directly appli-
cable to time-series EHRs. To fill this gap, the authors of Reference [116] proposed a GAN-based
model that is implemented with a modified Gate Recurrent Unit (GRU) [35] to model the tem-
poral irregularity of the incomplete time-series data, which they refer to as GRU for data Im-

putation (GRUI) cell. The use of GRUI, instead of LSTM and other RNN variants is motivated
by its compatibility with the irregular time lags and variations between two consecutive observa-
tions including those seen in data such as ICU EHRs [116]. GAN with GRUI model performs the
imputation in a two-stage approach. First, it trains a GAN model to generate complete time series,
and then it tries for each sample to find the “noise” vector that is most similar to the original sam-
ple [116]. Despite reporting state-of-the-art results for imputing time-series EHR data, the work
of Reference [116] has a major drawback in terms of training efficiency. Motivated by improving
the efficiency of GAN for time-series imputation, Reference [117] proposed an end-to-end GAN-
based imputation model, referred to as E2GAN. The proposed model performed imputations with
reduced training time, with higher quality by adopting a compressing and reconstructing strategy
to circumvent the noise optimization stage in the GAN with GRUI [116]. Recently, Reference [74]
presented a novel GANs architecture Bi-GAN to perform both imputations of missing values and
prediction of future values in time-series EHR data. Both the generator and discriminator were
bi-directional recurrent neural networks Bi-RNNs, which are suitable for time-series applications.
In their work, the GAN-based model learns from all the observed samples to impute missing val-
ues and then learns to predict future values by treating them as missing values [74]. This problem
setup does not require a definition of prediction windows at training time, which motivates flexible
predictive models that they refer to as “any-time prediction tool” [74].

4.4 Treatment Effect Estimation

Estimating treatment effects is a complicated causal inference task with many data challenges,
where the aim is to estimate the patient’s response to a specific treatment. The major challenges
in this field arise from missing counterfactual data, the unobserved outcomes of untaken treat-
ments [83]. In Randomized Control Trial (RCT) settings, patients in the treatment group are
matched to those in the control group to compensate for missing counterfactuals. However, despite
being the golden standard for various clinical applications, RCT-based treatment effect estimation
suffers from multiple issues concerning their high cost [150], relatively small size [77], ethical is-
sues [66], and short duration of followups that might miss out long-term effects of medications [17].
A low-cost alternative to RCT data is the regularly collected EHR data. Specifically, longitudinal
EHRs, which include diverse patient cohorts, long-term outcomes with no strict exclusion crite-
ria, making EHRs more representative of the patient population [17, 135]. However, in EHR data,
treatments are not assigned at random, and there is no clearly defined control group. Thus, esti-
mating treatment effects from EHRs requires measures to control confounding effects and perform
covariate adjustment [126, 144] to avoid selection bias.
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The generative capabilities of GANs are a valuable option for various treatment effect estimation
applications. In Reference [194], the authors made use of GANs’ generative properties to generate
counterfactual outcomes. In their novel design, GANs for inference of Individualized Treat-

ment Effects (GANITE), they considered counterfactual outcomes to be missing labels, similarly
to their earlier work in Reference [192]. GANITE utilized a pair of GANs: one for counterfactual
imputation and another for treatment effect estimation. In the first GAN, the generator’s task is
adjusted to generate missing counterfactual outcomes, while the discriminator’s task is to tell the
factual from the counterfactual outcomes. In the presence of counterfactual outcomes, a treatment
effect estimation function can be predicted using traditional machine learning models. However, in
GANITE, the authors utilize another GAN to model treatment effect estimation by taking the out-
put of the counterfactual GAN as input and generating a potential outcome vector with confidence
intervals [194]. While GANITE focused on binary treatment, Reference [40] focused on generating
time-series post-treatment outcomes. The authors’ work was motivated by the scarcity of paired
pre- and post-treatment patient time-series data in settings such as ICU ventilation and vasopres-
sors assignment. Their proposed model, Cycle Wasserstein Regression GAN (CWR-GAN), is
a hybrid of several architectures: original GAN [69], Wasserstein GAN [5], and cycle-consistent
GAN [205]. The authors of CWR-GAN tested their model in regression-based tasks and provided
an alternative to the traditional uni-directional regression approaches, where unpaired data would
be ignored during training [40].

To extend GAN-based treatment estimations from binary to various kinds of treatment variables
including categorical and continuous, Reference [63] applied modifications to GANITE, which they
named MGANITE. Estimating continuous treatment is of high importance in applications involving
dosage adjustment especially in oncology [127]. One of the main modifications was a mathematical
adjustment to the loss function that takes a treatment assignment vector in both the counterfactual
and ITE estimation blocks to allow for simultaneous treatment effect estimation [63]. When using
observational data where treatments are not randomly assigned, controlling the confounding fac-
tors, such as using propensity scores is essential [45]. In Reference [114], the authors propose a
GAN-based model that generates a “calibration” distribution, one that eliminates associations be-
tween covariates and treatment assignment by a random perturbation process of the treatment
variable. The generative capabilities of GANs are used to learn a weight vector that is used to ad-
just the distribution of observed data and construct the calibration data. The authors refer to their
model as Generative Adversarial De-confounding (GAD) [114].

Statistical approaches such as propensity score matching (PSM) are commonly used by clas-
sical treatment effect estimation works to balance the population’s characteristics assigned either
to an intervention or a control group [21]. However, despite their popularity, PSM approaches can
lead to high reductions in sample sizes due to unmatched control samples [21]. Lately, a GAN-based
propensity score synthetic augmentation matching model, PSSAM-GAN, was proposed to miti-
gate the problem of sample size reduction using PSM approaches [65]. First, the authors matched
their samples based on calculated propensity scores. Then, to be able to use unmatched samples,
the authors used a GAN-based model to generate treatment matches for the unmatched control
samples [65]. Finally, the original EHR data were augmented with the newly generated matched
samples to be used for downstream treatment estimation tasks [65].

4.5 Privacy Preservation

Privacy is a central theme in GAN development, as it is a principal motivator for using generative
models in healthcare applications. Even though GANs do not explicitly expose patient data, some
works demonstrated the importance of improving the privacy preservation of GANs, especially
when dealing with sensitive information such as patient EHRs [133]. In the field of privacy, there
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Fig. 3. GAN training with differential privacy guarantees. Real datasets D1 and D2 only differ in a single

sample X. M is the differentially private GAN model that outputs M(D1), and M(D2), which at most have a

difference of eϵ .

has been a wave of frameworks that apply theoretical guarantees to ensure the privacy of the
data [166]. Notably, differential privacy is a theoretical guarantee that allows learning nothing
about an individual while learning useful information about a population [55]. Differential privacy
is concerned with the impact of the presence or absence of a single record on the outcome of the
computational tasks. Differential privacy is defined as follows.

A randomized algorithm M is ϵ-differentially private if for any two datasets D1 and D2 that
differ in a single point and for any subset of outputs S ,

P (M (D1) ∈ S ) ≤ eϵP (M (D2) ∈ S ),

where P is taken with respect to the randomness, M (D1) and M (D2) are the outputs of the M
for databases D1 and D2, respectively [55]. Based on this definition, there are many differentially
private algorithms, any of which may be used to complete the same computational task under
differential privacy guarantees [55]. Differential privacy can be applied to GAN training, where M
refers to the differntially private GANs as seen in Figure 3.

Motivated by improving privacy through providing theoretical guarantees for medical data, sev-
eral works developed and evaluated differentially private GANs for EHRs generation applications.
Namely, DPGAN [178] proposed GANs with differentially private guarantees by adding noise to
the discriminator’s gradients, which was inspired by moment accountant techniques [1]. Simi-
larly, Reference [99] proposed a modification to the GAN training of the discriminator by using
an adaptation of the differentially private framework Private Aggregation of Teacher Ensem-

bles (PATE) [138]. In PATE, multiple teacher models are independently trained on subsets of
the data for a classification task. The final classification output is an aggregate of each of the
teacher model’s prediction [138]. Another differentially private GANs for EHRs development was
Reference [11], where the authors limited the effect of a single participant on the training by clip-
ping the norm of the discriminator’s gradient combined with the addition of Gaussian noise. In a
similar spirit, the authors of Reference [173] proposed a data augmentation framework with differ-
ential private guarantees and model optimizations to improve the data utility without compromis-
ing the quality. The proposed framework, privacy-preserving Augmentation and Releasing
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scheme for time-series data via GAN (PART-GAN), uses weight pruning and grouping, gener-
ator selecting, and denoising mechanisms for improving the quality in time-series data [173]. Some
works combined both theoretical and empirical evaluations to prove the privacy preservation of
the GAN model [92]. To avoid compromising the synthetic data fidelity, the authors applied par-
tial differential privacy to the Quasi Identifier features; these features are then recombined with
the other sensitive attributes. The authors then trained a GAN that relies on Cramér distance [12]
between the joint distribution of the generated observation and real differentially private patient
data using the combined feature set. The model was then tested for various adversarial attacks to
support their theoretical guarantees [12].

Despite the strong privacy guarantees of differential privacy, it has various technical limitations
such as compromised data fidelity and utility. This motivated works to look for strong privacy-
preserving alternatives. For example, Reference [190] developed a Wasserstein GAN with a Gra-
dient Penalty-based [72] model that they refer to as anonymization through data synthesis

using generative adversarial networks (ADS-GAN). In their work, the authors created a mathe-
matical definition for “identifiability,” which was based on the probability of re-identification given
the combination of all data on any individual patient [190]. In ADS-GAN, the authors tested for
the data quality, while maintaining the identifiability constraints. In a similar notion, the authors
of HealthGAN [182] worked on an end-to-end privacy-preserving GAN based on WGAN-PB and
proposed a quantitative privacy metric, privacyloss that is based on the balanced accuracy of the
adversarial nearest-neighbors model. The work of HealthGAN was later extended and evaluated
in various settings [48, 181].

5 EVALUATION OF GANS FOR EHRS

Despite the substantial attention given to theoretical and application-oriented GAN development
gained over the past years, there is still no consensus on evaluation metrics or methodologies [163].
Evaluating the strengths and shortcomings of the model and synthetic data is vital for fair bench-
marking and future research directions. For example, evaluating whether the GAN model is
simply memorizing training examples or is missing important information and characteristics re-
lating to data distribution is essential prior to using the synthetic data for downstream tasks. The
evaluation of GAN models can take various directions all of which have different aims such as
close approximation of data distribution, maintaining privacy, the utility for downstream machine
learning tasks, and model performance. Evaluation methods described in the literature, including
those seen in the papers presented in Table 1, can be grouped into two groups: (1) qualitative and
(2) quantitative evaluation methods. Previous work by Hernandes et al. [80] grouped evaluation
metrics into three categories: resemblance evaluation, utility evaluation, and privacy evaluation.
El Emam et al. [56] focused on utility metrics exclusively. In this work, we review the various
utility and privacy evaluation metrics; however, we choose to expand on the various types of re-
semblance/similarity metrics. For this purpose, we categorize the quantitative similarity metrics
into four main categories, namely dimension-wise, joint-distribution, inter-dimensional, and latent
space similarity, respectively. Dimension-wise similarity refers to the metrics used to measure the
similarity between each dimension/feature in the synthetic and real datasets. Joint-distribution
similarity, however, measures the distribution similarity across all features and samples. Inter-
dimensional distribution similarity focuses on preserving the inter-dimensional relationships in
the synthetic dataset. Last, latent space similarity compares the synthetic and real datasets via
latent space representation. Other presented quantitative metrics in this work are related to the
data utility and privacy preservation of the generated synthetic data. In Table 2, we present a list
of the different quantitative evaluation metrics and tests used in the reviewed papers along with
the data types each metric was used to evaluate and the corresponding reference of each metric
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Table 2. Quantitative Metrics and Tests Used for Evaluating GANs for

EHR Models

Reference Evaluation metric
Data Type

Tabular Time Series

Dimension-wise Distribution Similarity

[37] Dimension-wise Probability � �
[10] Dimension-wise Average � NA

[123] Kolmogorov–Smirnov (K-S) test � NA

[67] Support Coverage � NA

[13] Kullback–Leibler Divergence (KLD) � NA

Joint Distribution Similarity

[13] Kullback–Leibler Divergence (KLD) � NA

[119] Jensen–Shannon Divergence (JSD) � NA

[146, 167] Wasserstein Distance � NA

[70] Maximum Mean Discrepancies (MMD) NA �
[148] Inception Score (IS) NA �
[183] Cross-type Conditional Distribution � NA

[204] First-Order Proximity � NA

[191, 202] Discriminative Score NA �
Inter-dimensional Relationship Similarity

[37] Dimension-wise Prediction � NA

[14] Pairwise Pearson Correlation � �
[198] Association Rule Mining (ARM) � NA

[183] Frequent Association Rules (FAR) � NA

Latent Distribution Similarity

[204] Latent Space Representation � NA

[203] Weighted Latent Difference NA �
[176] Log-cluster � NA

Data Utility

[57] Train on Synthetic, Test on Real (TSTR) � �
[57] Train on Real, Test on Synthetic (TRTS) � �
[111, 203] Predictive Modeling, Forecast Analysis NA �
[98, 99] Synthetic Ranking Agreement (SRA) � NA

[172] Data Augmentation Test NA �
Privacy Preservation

[55] Differential Privacy Guarantees � �
[156] Member Inference Attack � �
[124] Attribute Disclosure Attack � �
[62] Model Inversion Attack NA �
[190] Identifiability � NA

[182] Privacyloss � NA

[174] Exact-matches Test � NA

1 The works referenced in the first column of Table 2 refer to the papers that explain

the respective evaluation metrics. 2 The �symbol refers to metrics that were utilized

to evaluate synthetic data for the corresponding data type, while NA refers to those

with no available validation in the literature.

5.1 Quantitative Evaluation

5.1.1 Dimension-wise Distribution Similarity. A major objective of generative models is gener-
ating data whose distribution highly resembles that of the real dataset. Many evaluation metrics
have been proposed to quantitatively evaluate the distribution resemblance per feature or “dimen-
sion.” For instance, dimension-wise probability is a test that compares the probability distribution
of each of the features in real and synthetic datasets. The comparison method varies depending
on the structure and type of data. For example, the Bernoulli success probability or Pearson Chi-
square test were used for binary features [37, 178, 183, 190, 204], while in other works the Student
t-test was used continuous variables [190]. A similar evaluation test, Dimension-wise Average,
was introduced to account for discrete count variables such as disease or procedure codes. The
test simply calculates the dimension-wise average and compares that of the real to the synthetic
dataset [10]. Another commonly used test is the Kolmogorov–Smirnov K-S test, which simply tests
that two samples came from the same distribution [123]. The test is based on a well-known statis-
tical metric, which is calculated by finding the maximum absolute value of the differences in the
cumulative distribution functions of the two compared samples as seen in Reference [10]. Other
works took less rigorous evaluation approaches by reporting the distributions and statistical val-
ues as mean and standard deviation of both the synthetic and real datasets [11, 173]. To measure
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the extent of variable distribution coverage in the synthetic data, Reference [67] used support cov-
erage metric. In this metric, the ratio of the cardinalities of a variable’s support is calculated in the
real and synthetic data. The final result aggregates the results of the over all variables to measure
the joint support coverage. While more commonly used to measure overall data divergence, some
papers used divergence metrics such as the Kullback–Leibler Divergence (KLD), which is also
known as the relative entropy on the feature level, as seen in Reference [67]. KLD is used for many
applications to calculate a score or distance that quantifies the divergence of one probability distri-
bution from another [13]. KLD is seen for many applications including Gaussian Mixture Models
and t-distributed stochastic neighbor embedding. By definition, KLD is defined to be

KLD (P,Q) =

∫
X
P (x ) log

P (x )

Q (x )
dx

for distributions P and Q [13].

5.1.2 Joint Distribution Similarity. Preserving the real data distribution is a major aspect of
evaluating the GAN quality. Aside from evaluating the distribution at the individual feature level,
synthetic data needs to be evaluated in terms of preserving the joint distribution of the real data.
Joint distribution is usually evaluated by calculating one of the distance metrics such as KLD [13] as
seen in Reference [63]. However, one of the major drawbacks of KLD is that it is not symmetrical,
where KLD(P,Q) � KLD(Q,P ). To overcome this, GAN-based models can be more accurately
evaluated using Jensen–Shannon Divergence (JSD) [119]. The definition of JSD builds on KLD,
which is defined as follows:

JSD (P,Q) =
1

2
KLD (P,M) +

1

2
KLD (Q,M),

whereM is the average distribution with density 1/2 ∗ (P + Q), for distributions P and Q [136].
Results using JSD are symmetrized and smooth, which explains its usage in training critic of

many GAN applications including the original GAN architecture [69] as well as in the evaluation
of some of the GANs for EHR applications [190]. Another KLD-based metric is the inception

score (IS), which was introduced in Reference [148], and is commonly used in many imaging
applications. Despite capturing the quality and diversity of the data, IS is highly sensitive to noise,
and thus it is rarely used in evaluating GANs for EHRs models [173].

Another joint distribution metric used is based on the Wasserstein distance (WD), also re-
ferred to as Earth Mover’s Distance, which informally measures the minimum mass displacement
to transform one distribution into the other [167]. Even though this is a metric used for evaluating
the joint-distribution similarity in the synthetic data, it is more often used in training loss func-
tion as seen in the well-known Wasserstein GAN, which was introduced to overcome overfitting
and mode collapse issues in GAN training [4, 5]. The WD for P and Q distributions over X is
defined as

WD (P ,Q ) = inf
γ ∈Γ

∫
X×X
‖x − y‖2dγ (x ,y),

where Γ is the set of all possible joints on X × X that have marginals P and Q [167].
The usage of WD as a training critic has been particularly seen in many GANs for EHRs works

reviewed in this article [10, 174, 190, 204], while fewer works used it as an evaluation metric for
joint similarity [190]. One major drawback of the WD is that it tends to be intractable in high dimen-
sions, as well as its high computational complexity and biased sample gradients [7, 12, 100]. An-
other commonly used quantitative evaluation metric is Maximum Mean Discrepancies (MMD),
which was first introduced in 2012 as a kernel two-sample test [70]. MMD measures the dissim-
ilarity between two probability distributions and uses samples drawn independently from each
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distribution [70]. MMD relies on the idea of representing distances between the compared distri-
butions as differences of feature embeddings, mapped using Reproducing Kernel Hilbert Space

(RKHS) [15, 70]. More formally, MMD between two distributions P and Q over X in in the the
RKHS KernelHk is

MMD2
k (P ,Q ) := Ex,x ′

[
k (x ,x ′)

]
+ Ey,y′

[
k (y,y ′)

] − 2Ex,y[k (x ,y)],

where x ,x ′
iid∼ P and y,y ′

iid∼ Q [70].
Some works proposed novel joint distribution similarity tests that focus on the overall preserva-

tion of conditional distribution. For example, the Cross-type Conditional Distribution [183] metric
evaluates if the synthetic data maintain the distribution of one data type conditioned on another.
The conditional distribution is quantified in terms of the mean and standard deviation and then
compared between synthetic and real datasets. Fist-Order Proximity (FOP) is another metric
introduced in Reference [204] measures the similarity of the structural associations between the
real and generated datasets. To do so, an undirected graph is generated in which the weight of
an edge between categorical features, such as diagnosis codes, corresponds to their co-occurrence
frequency in the population. The difference in FOP between the synthetic data and real data is
calculated and used as a metric of preserving the associations. Other researchers evaluated joint
distribution similarity using unsupervised clustering-based evaluations can be employed as seen
in Reference [180]. Similarly, an unsupervised-based evaluation was introduced in Reference [182],
where the adversarial accuracy of a clustering model is used to capture resemblance loss of the
GAN model, which the authors refer to as Train and Test resemblance losses.

Other than the aforementioned unsupervised-based evaluation, some authors leveraged an ad-
ditional supervised task to quantify GANs’ performance. A binary classifier (a post hoc discrim-
inator) is trained to discriminate between the synthetic samples and the held-out real samples.
The performance of the model, the discriminative score, is used to quantify the synthetic data’s
resemblance to the real data without calculating statistical distances [111, 112].

5.1.3 Inter-dimensional Relationship Similarity. Other than evaluating for the dimension-wise
and joint similarities, it is important to also assess the synthetic data’s preservation of inter-
dimensional relationships and correlation between features. Several works used the Dimension-
wise Prediction test introduced in Reference [37]. This test iteratively chooses a feature and
assigns it as a label and treats the rest of the features as inputs. Two classifiers are trained, where
one is trained on real data and the other is trained on the synthetic data to predict the selected
label [37, 165]. The performance for each of the trained classifiers per feature is then compared,
and the assumption is that the closer the performance of pairs, the better the quality and inter-
dimensional relationship similarity of the synthetic dataset [10, 37, 165, 178, 183, 204]. The trained
classifiers are usually logistic regression models [37, 165], but at other times different classifiers
such as support vector machine (SVM) and random forest were used [10]. Other works con-
ducted inter-dimensional correlation evaluations such as Pearson Coefficient Correlation matrices
comparisons for both real and synthetic data [11, 67, 172, 190]. The resulting mean vector and co-
variance matrices are compared to evaluate the resulting dataset for preserving inter-dimensional
correlations and relationships.

Association Rule Mining (ARM) is commonly used in clinical data-mining applications. ARM
models are used to identify meaningful patterns rules among clinical concepts [155, 179]. The
GANs’ ability to preserve the rules identified in the real set was evaluated by using a machine
learning ARM model to identify association rules and compare those derived from the real to
those of the synthetic [10]. Other authors introduced Frequent Association rules (FAR) [183],
which utilizes the theoretical bases of ARM. FAR checks for both support and confidence, where
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supports represent how frequently the condition set appears in the dataset, whereas confidence is
an indication of how often a condition rule is true [179]. After applying ARM, the proportion of
the association rules that appear in both the real synthetic data are compared and then reported
in terms of classification performance metrics such as precision and recall [179].

5.1.4 Latent Distribution Similarity. Building on the intuition that a good GAN model gener-
ates synthetic data that captures lower-level relationships even in the latent space, several works
evaluated the latent distribution similarity between the real and synthetic datasets. For example,
References [183, 204] used a Latent Space Representation test, where real and synthetic samples
are projected into the latent space by utilizing a β variational autoencoder [82]. After obtaining
the projection in latent space, the dimensional mean of the distribution variance of each of the
latent features is calculated in the synthetic data and compared to that of the real counterpart.
A smaller distance or difference corresponds to a higher resemblance. This metric becomes of
higher relevance when considering applications where interpretability is an integral component.
Latent space evaluation metrics were also used in Reference [203], where the authors calculated
a weighted K-S average across all latent features. The latent space presentation and weights were
arrived at by applying Singular Value Decomposition [106], which yielded singular vectors and the
corresponding singular values (weights) for each of the features. The calculated weighted averages
for the synthetic and real data were compared to test for similarity in the latent space representa-
tion. Another way to measure the similarity in the latent space is by using unsupervised learning
approaches such as the log-cluster metric [176] as seen in Reference [67]. To measure the simi-
larity of the underlying latent structure of the real and synthetic data, both datasets are merged
and clustered using k-means clustering. Disparities of cluster membership of real samples versus
synthetic samples are indicative of latent representation divergence [67].

5.1.5 Data Utility. High-quality synthetic data are a valuable asset for various research pur-
poses, as seen in Section 2. Evaluating the synthetic data in terms of its utility is a practice that
has been adopted by many of the works included in Table 1. One of the earlier machine learning
utility testing frameworks was proposed in Reference [57], which is Train on Synthetic Test on

Real (TSTR). As the name implies, a machine learning model is trained on synthetic data and
then tested on held-out real data. Similarly, Train on Real, Test on Synthetic (TRTS) was also
proposed in Reference [57], as a reverse case of TSTR. When evaluating TSTR, the results show
the utility of synthetic data when used for model buildings and conducting analysis; however, the
model is applied to real data. However, TRTS could potentially supplement the performance of a
model that is trained and tested on real data, with results on a synthetic dataset based on a dataset
from a different source, where access to the second dataset might not be feasible. The framework is
flexible and can be used on any task-based machine learning application such as supervised classi-
fication [57] where classification metrics such as F1 score, accuracy, and precision can be reported
on both the synthetic and real datasets [88]. Other works assessed TSTR for supervised regres-
sion [30, 34, 203], where metrics such as Area Under Receiving Operator Curve (AUROC) and
Area Under Precision-Recall Curve [88] were reported. Semi-supervised learning works focusing
on mitigating data imbalance issues evaluated the utility of synthetic data for machine learning
tasks for the same purpose [30, 113]. Time-series-specific supervised learning evaluations were be
applied to generative tasks to evaluate the preservation of temporal dynamics [111, 203]. The same
temporal-related supervised task on both the real and synthetic datasets, such as predicting the
top-N ICD codes in patient’s next visit [111], or forecasting patient’s future diagnosis [203], which
were referred to as predictive modeling performance or forecast analysis, respectively. A similar
performance of the models on both the synthetic and real dataset is indicative of the GANs’ ability
to preserve characteristics and utility of the real data.
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Despite their wide use, TSTR, TRTS and other data utility evaluations are sensitive to the model
chosen for evaluation. For example, it may be the case that a logistic regression model performs
similarly on both synthetic and real data, but that might not be the case when other models are
used, such as SVMs or neural networks. To mitigate this issue, the authors of Reference [99] pro-
pose Synthetic Ranking Agreement (SRA), a framework that evaluates a selection of models
trained on the synthetic and tested on the synthetic. The performances of the same models are
compared to those trained and tested on real data [98, 99]. The authors then define a metric that
performs ranking agreement and comparison to evaluate the power of the synthetic data for ma-
chine learning downstream tasks. Although this metric can suffer from the same limitation of
TSTR and TRTS frameworks, it evaluates a broader range of machine learning classifiers that is a
step closer to the ideal machine learning utility assessment.

SRA
(
{Ai }Li=1 , {Ci }Li=1

)
=

1

L(L − 1)

L∑
j=1

∑
k�j

I

((
Aj −Ak

)
×
(
Cj −Ck

)
> 0
)
,

where L is a set of predictive models f1, f2, . . . , f
2

L .Ai ∈ R stands for the performance of the models
when trained and tested on the real data, while Ci ∈ R stands for the performance of the models
trained and tested on the synthetic data [99]. To scale the valuation of the utility of synthetic data
for machine learning applications, Reference [182] studied the educational utility by hosting an
online challenge for students to evaluate the quality of the data.

It is important to note that some works applied one of the frameworks mentioned here, for ex-
ample, TSTR, however, they did not explicitly mention the framework’s name. In many machine
learning applications, synthetic data can be used to augment real data. To evaluate how much
synthetic data are needed to achieve the desired performance, Reference [172] presented a Data
Augmentation Test, where the authors evaluated the synthetic data’s utility for machine learn-
ing applications. Similarly, in the performance of models was evaluated using augmented dataset,
while varying the percentages of synthetic data used in each variation [112, 185].

Data utility metrics and tests were also employed in non-machine learning tasks to evaluate the
synthetic data for its intended utilization. This was specifically seen in GANs for missing data im-
putation tasks where the GAN-imputed data were evaluated in terms of Root Mean Square Error

(RMSE) [27] and Mean Absolute Error [27] as shown in Reference [24, 74, 192]. GANs for imputa-
tion tasks were also evaluated post-imputation prediction performance in terms of AUROC, FI, and
accuracy and benchmarked against other state-of-the-art data imputation techniques as seen in
References [74, 188, 192, 200]. Similarly, GANs for estimating treatment effects work were eval-
uated in terms of Precision in Estimation of Heterogeneous Effect, average treatment effect [83],
the average treatment effect on the treated [153], and RMSE for controlling the confounding eval-
uation [114].

5.1.6 Privacy Preservation. Evaluating the quality and fidelity of the synthetic data is essen-
tial. However, to ensure safe usage of the resulting synthetic data, there is also a need to make
sure that patients’ privacy is not compromised. As there is no universally accepted standard def-
inition for privacy [109], the works included in this article dealt with privacy evaluation in a
wide range of ways. Theoretical privacy guarantees such as differential privacy have been used
in many of the GANs for EHRs works, as seen in References [11, 34, 57, 99, 173, 178]. With the
strict differential privacy’s guarantees that neatly confirm privacy preservation, such works gener-
ally did not undertake further information leakage evaluation. While such approaches might seem
ideal, differential privacy might lead to compromised data and utility preservation [53] as seen in
References [34, 57]. An alternative to theoretical guarantees is the empirical evaluation of the
robustness to well-studied attacks. The attacks evaluated in the reviewed papers include (a)
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membership inference attacks, (b) attribute disclosure attacks, and (c) model inversion attacks.
First, membership inference (MI) attacks assumed that the attacker has access to the records of
a set of real patient records and attempts to determine if anyone from the real patients is in the train-
ing set of the GAN model [156]. To test for MI scenarios, a distance metric is calculated between
each record in both the real and synthetic datasets. A threshold is then chosen as a cutoff, such
that any record from the synthetic data with a distance less than the threshold is considered from
the training set. Some works calculated this distance using hamming distance [37, 67, 183, 204],
while others used cosine similarity [165, 174] and MMD [142]. The performance is then reported
in terms of precision and recall to quantify the GANs’ robustness to MI attacks. In other instances,
a model is used to estimate the likelihood for a given record referred to as perplexity and then
metrics such as R2 and KLD are used to estimate the extent of distribution similarity as a proxy
log likelihood [203]. An overview of a sample MI attack is shown in Figure 4(a).

The second type of adversarial scenarios is attribute disclosure attacks that occurs when an
attacker can infer additional attributes about a patient by knowing a subset of other attributes
about the same patient [124]. To simulate this scenario, a random percentage of the real train-
ing set is sampled as well as a random set of features to be those disclosed to the attacker [37].
A voting-based k-nearest neighbor clustering classification is utilized to estimate the values of
the known features and then performance metrics in terms of precision and recall are reported
as seen in References [37, 67, 183, 204]. Some works extended this simulation by assuming the
worst-case scenario where the attacker also has prior statistical knowledge about the undisclosed
features [203]. An example attribute disclosure attack is shown in Figure 4(b). The other type of
attacks, namely model inversion refers to the scenario where an attacker aims to reconstruct the
training data by their ability to constantly query the model [62], as shown in Figure 4(c). This kind
of attack was not frequently used in GANs for EHRs evaluation [92], due to its replication com-
plexity. The aforementioned attacks can be implemented under two different scenarios against the
generative models, either black-box or white-box setting [76]. In a white-box setting, the attacker
has full access to the target model, including the architecture and weights of a trained network.
While in a black-box setting, the attacker is only able to make queries to the target model and has
no knowledge of its internal parameters as implemented in Reference [112].

Some papers also developed a mathematical definition of privacy, such as identifiability,
which refers to the probability to re-identify samples included in the training [190]. Similarly,
Reference [182] proposed an unsupervised adversarial privacy-based privacy-loss metric to quan-
tify the extent of privacy preservation. Last, simple evaluations such as Exact-Matches test were
applied to check for the presence of exact duplicates of the training data in the synthetic data [174].

5.2 Qualitative Evaluation

Qualitative evaluation approaches are commonly utilized in GAN papers to support the quantita-
tive results with reasonable simplistic measures. For example, several papers reported visualization
of data distributions and embeddings, such as comparing generated feature distribution plots [182],
and correlation heat-maps [30]. While others qualitatively compared patient trajectories by visu-
ally comparing the synthetic time-series signals [11, 57, 172]. An example of a qualitative privacy
evaluation is the interpolation test proposed Reference [57], where a pair of training are back-
projected into the latent space and linearly interpolating them produces smooth variation in the
sample space, and then the GAN model is then used to produce samples at each point. The vari-
ation in the outputs is used as a proof of the GANs’ ability to capture the distribution without
memorizing the training samples [57]. Another example of a qualitative method was used by the
authors of GCGAN [185], where the authors evaluated the generated data by showcasing examples
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Fig. 4. The major types of adversarial attacks used for empirical evaluations of GAN models. (a) Membership

Inference Attack. (b) Attribute Disclosure Attack. (c) Model Inversion Attack.

where the model was able to distinguish the various disease-specific drugs from adjuvant drugs,
which are based on predefined knowledge.

Researchers in machine learning often conduct ablation studies, where different components
of the model are removed to evaluate the effect of the ablated component on the synthetic data.
This kind of evaluation was also seen in Reference [74] to understand the role of the time-series
classification layer and in Reference [113] to measure the effect of semi-supervised learning branch
on the performance. In Reference [112], experiments for ablation studies are designed to evaluate
the validity of network components for latent mapping and sequence generation. It is worth noting
that several papers ablated various components in their model, without mentioning the “ablation
studies” as seen in References [183, 183, 194].

Clinical validity and trust of the synthetic data is a major concern and a bottleneck in using
synthetic data for clinical research. To address this, some papers conducted clinician evaluations,
where a group of medical professionals are shown the data and asked to evaluate it based on its
realism [11, 38, 111, 174]. The exact evaluation performed by clinicians can vary. For example, in
References [11, 38], the clinical evaluation team was asked to give a numerical rating (from 1 to
10) of the realism of the data. Other authors asked the clinical evaluation team to classify data
encounters as either real or generated and used more qualitative rating scales such as “Highly
Plausible, Plausible, Implausible” [174]. The results of the clinical evaluations were then compared
and reported using statistical metrics used for classification and statistical significance tasks. To
measure the GAN model’s ability to obey clinical constraints among variables, Constraint Viola-
tion Test was introduced where the authors calculated the differences between (max-median) and
(median-min) for vital sign measurements in a tabular EHR setting [183]. The difference values on
the record level were calculated, where the signs and magnitude of the difference are indicative of
the constraint violations [183]. It is important to point out that the results from such qualitative
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techniques can be useful but are not sufficient to provide conclusive measures on the performance
and quality of the GAN-based models.

6 OPEN-ACCESS DATA SOURCES

To demonstrate their usefulness for EHR-related applications, the developed GAN-based models
were trained on various EHR datasets, as shown in Table 1. The datasets vary in size, openness
of access, included features, and recording settings. One of the most commonly used datasets for
GANs for EHRs development is Medical Information Mart for Intensive Care (MIMIC) III
[97], which was collected from critical-care settings from Beth Israel Deaconess Medical Center in
the United States [97]. Some of the included features were categorical and discrete such as demo-
graphics and patient outcomes. Others were continuous time-stamped vital-signs measurements,
as well as clinical and imaging notes, and interventions. Its free access, extensive documentation,
and online support community make it a suitable candidate for tabular and time-series GANs for
EHRs applications. Other freely available data are Philips eICU [139], which is a multi-center data-
base for critical care data. Philips eICU was collected from more than 208 hospitals throughout the
United States between 2014 and 2015, making it a good choice for validating models across multi-
centers. Both MIMIC and eICU datasets can be freely downloaded from PhysioNet, a resource that
provides access to extensive collections of physiological and clinical data and related open source
software [132]. Most PhysioNet datasets are accessible to the public users following the registra-
tion and signing of a data use agreement, with some datasets requiring additional credentialing. A
recently introduced ICU dataset that was also made available on PhysioNet is HiRID, a high time-
resolution ICU dataset collected from an ICU in Switzerland [89]. Similarly, other European ICU
data are the Amsterdam University Medical Centers Database (AmsterdamUMCdb), which was re-
leased in 2021 [164]. HiRID and AmsterdamUMCdb are suitable datasets for critical care research
for works interested in validating their models on populations outside the United States.

Another openly available data source is the University of California Irvine (UCI) Machine
Learning Repository, which maintains 588 datasets that can be used for a wide range of applica-
tions since 2007 [8]. The repository now includes several small medical datasets. Some examples
of the UCI medical datasets include the UCI breast Cancer and UCI Heart Disease datasets [8].
When using UCI datasets for benchmarking, one should be mindful of the datasets’ similar names.
For example, six distinct datasets include the word “breast” in their names, each with a different
number of features and type of variables [8]. There is also a lack of standardization in the doc-
umentation of each of the datasets, since some have the patient identifiers and target variables
included as features, while others do not. Careful and detailed documentation and reporting of the
used dataset are essential to allow for accurate benchmarking and reproducibility. The develop-
ment of data science competitions, such as the ones hosted on Kaggle and PhysioNet, resulted in
open-access healthcare datasets that were used in GAN-based works such as the Kaggle Cervical
Cancer and The PhysioNet Challenge 2012, as seen in Reference [99] and References [116, 117],
respectively. We include the details and the links for accessing the aforementioned open-access
datasets in Table 3.

A number of the surveyed works used RCT data, some of which are not directly accessible upon
request and signing a user agreement. Notably, RCT datasets that have been used for several clin-
ical research publications include Systolic Blood Pressure Intervention Trial (SPRINT) [71],
and Meta-Analysis Global Group in Chronic (MAGGIC) [175], which includes data from 30
RCTs for patients with heart failure. When evaluating GANs for treatment effects, the benchmark-
ing datasets used were the ones commonly used for causal inference applications in general. No-
tably, the TWINs [3] dataset collected for births from 1989 to 1991 in the United States was used for
binary treatment research, where twins data mimic the factual and counterfactual observations for
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Table 3. Summary of Open-access Datasets Commonly Used for

Training Generative Models

Dataset Patients Encounters Country of Origin Multi-Center Dataset Link

MIMIC III 38,597 49,785 United States ✗ mimic.physionet.org

Philips eICU 139,367 200,859 United States � eicu-crd.mit.edu/about/eicu/

HiRID NA >33,000 Switzerland ✗ hirid.intensivecare.ai/

AmsterdamUMCdb 20,109 23,106 Netherlands ✗ amsterdammedicaldatascience.nl/amsterdamumcdb/

UCI Heart Disease 303 NA United States, Hungary, & Switzerland � archive.ics.uci.edu/dataset/45/heart+disease

Kaggle Cervical Cancer 3,000,000 NA United States ✗ kaggle.com/competitions/cervical-cancer-screening/overview

PhysioNet/CinC Challenge 2012 NA 12,000 NA NA physionet.org/content/challenge-2012/1.0.0/

1 NA refers to datasets with no details on the respective details evaluated in the table.

a certain outcome such as mortality within the first year of birth. Several covariates are recorded,
such as race, pregnancy period, and quality of care during pregnancy. Another commonly used
dataset for treatment effects is the Infant Health and Development Program (IHDP) data,
first introduced in Reference [83], which belongs to an RCT that began in 1985 focusing on pre-
mature infants and the efficacy of educational and family support services on the infants over a
3-year period of their life [18].

Other data sources, such as Surveillance, Epidemiology and End Results (SEER) of the Na-
tional Cancer Institute [95], Nemours Pediatrics longitudinal pediatric encounter-base data [75],
and the United Network for Organ Transplantation (UNOS) [25], can be obtained upon re-
quest from their dedicated websites. There are several other referenced datasets in the literature;
however, those were private and not accessible for open-access GANs for EHRs development.

7 FUTURE OUTLOOK

The recent developments of GANs for EHRs are promising first steps for potential research and
decision support systems applications. The works we have surveyed in this article reveal many
opportunities for developments in theory, algorithms, and applications. However, we believe that
there are some challenges and gaps that need to be addressed and taken into consideration.

7.1 Evaluation of Synthetic Data

The lack of a universal evaluation methodology is a bottleneck in developing reliable GANs for
EHRs works. As shown in Table 1, there is no standardization in the evaluation components or
the metrics. Currently, researchers tend to (1) use commonly used metrics for GAN applications
in other fields such as imaging and non-medical time series, (2) use metrics utilized by benchmark
models, or (3) introduce their own new metrics. In addition, we noticed that the same evaluation
test is referred to using different names in some cases, which adds to the confusion regarding GAN
evaluation [111, 203]. When evaluating the machine learning utility, we believe that it is essential
to report the results on both the synthetic and real datasets to understand the model’s baseline
performance and accurately determine the utility of the synthetic data for downstream tasks. We
note that different metrics can lead to various limitations and tradeoffs. Therefore, currently, it is
hard to determine the state-of-the-art GANs for EHRs models. While we believe that providing
qualitative evaluations and analysis adds value to the studies, it is insufficient without supporting
rigorous quantitative evaluations. In this work, we categorized the metrics based on the data aspect
they are evaluating and whether they can be applied to each type of EHRs data. We hope that our
work inspires future investigations of the newly introduced evaluation tests’ strengths, limitations,
and tradeoffs to standardize a guideline for selecting the metrics and their weights and matching
them to the synthetic data utility.

Furthermore, in the current literature on GANs for EHRs there is no clear path to how the
generated data are disseminated beyond the scope of research hypothesis testing setups. To this
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end, GAN training is computationally expensive and can lack stability; therefore, we recommend
that future works evaluate computational complexity to allow for lightweight GAN development
and dissemination.

7.2 Privacy–Similarity Tradeoff

The principles of GANs’ architecture rely on the competing goals of the generator and discrimina-
tor, which overall optimize for the synthetic distribution similarity. The synthetic nature of GANs
outputs implicitly preserves privacy, since there is no direct mapping between a single synthetic
output and a real input. However, unintentional information leakage can ensue when dealing with
sensitive information such as EHRs, as shown in the previously discussed adversarial attack mech-
anisms. The privacy–similarity tradeoff was a recurring theme in various works. We believe that to
address the similarity–privacy tradeoff dilemma, authors should test for both factors irrespective
of the chosen level of privacy guarantees. We observe that some of the early works did not consider
testing for information leakage risks. Similarly, some of the works focusing on privacy improving
privacy preservation of the GAN models did not adequately evaluate the data for preserving the
distribution similarity. Conservative privacy guarantees such as differential privacy are helpful
but can have a high cost on the fidelity and utility aspects. Considering that such strict differential
privacy guarantees are not required by GDPR nor HIPPA for medical applications, we advise for at
least considering one of the more relaxed privacy-preservation evaluation techniques. We believe
that future directions of research should work with regulatory bodies to establish a clear guide-
line on the privacy risks to allow for private data owners to share synthetic data with confidence,
which will open the doors for a wave of new research applications.

7.3 Generation of EHRs from Multimodal Data and Multi-Centers

The diversity resulting from the collection of various clinical information opens the doors for
various research data-driven models. For example, as shown in Section 4.1, various GAN models
were developed to generate different EHR data types such as tabular snapshot during patient’s en-
counter (such as diagnosis and procedure ICD codes), as well as clinical time series collected over
time (such as vital signs and laboratory measurements). However, very few works investigated
generating data that captures the correlations between heterogeneous types of data, i.e., simulta-
neously generating EHR data with different types while modeling their underlying relationships
[112]. Furthermore, even though we limited the scope of this survey to structured EHRs, in real-
world applications, medical data come in other modalities, such as unstructured clinical notes and
medical imaging and sensors data documented in EHR systems, which have related areas in natural
language processing [145], computer vision [58], and signal processing [87] research. Leveraging
information existing in EHRs with mixed modalities can help GANs generate patient records with
higher fidelity. For example, the MIMIC-III Waveform database has matched physiological data
that contain respiration, PPG, and ECG signals [131]. Other examples include government-based
EHRs that are now integrating signals such as the NetCare EHR in Alberta, Canada. Overall, gen-
erating EHR data from a holistic perspective can also contribute to the realization of the concept
of “digital twins” and personalised medicine in the future [64, 64].

Training deep neural networks requires large amounts of data that are representative of the tar-
get patient population, which usually entails training on data from multiple institutions. Despite
using multiple datasets, the majority of the papers included in this work train on one dataset at
a time. We believe that researchers first must overcome the challenges of feature mismatch and
distribution mismatch [193] to reach the optimal application of a GAN model in different institu-
tions. The literature is still nascent with respect to applications of GANs for EHRs for implemen-
tation in different institutions. One of the few works that explored the use of GANs for domain
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translation to facilitate the use of EHR data from multi-centers was RadialGAN [193]. Recently,
the first GAN-based federated learning framework for tabular EHRs was proposed [174]. How-
ever, the authors only used a single dataset and split it into separate data silos in an experiment
to simulate multi-centers. Separate GAN models were trained on each of the silos and then were
later combined in a central GAN model [174]. We expect future works to investigate the feasibility
and introduce new ways to implement GAN models on datasets from different institutions and
explore new applications such as federated and continual learning [6] .

7.4 Reporting and Open Access Resources

Transparent reporting of training and validation datasets, preprocessing steps, hyper-parameter
space, and training methodology in GAN-based applications are paramount for achieving safe use
of the GAN model and for benchmarking and reproducibility of results. As noted in Reference [23],
feature encoding techniques and entire hyper-parameter space are often not described despite
having a substantial impact on the results for missing value imputation tasks. Without transparent
and comprehensive reporting, it becomes difficult to understand the GAN model’s assumptions
and limitations that then impedes their safe deployment and usage.

However, we observe a positive trend of open-access work, where most of the surveyed papers
published their code online. Nevertheless, some papers mentioned providing open-access code
while lacking or referencing non-functional links. The open-access datasets mentioned in Section 6
allow for a wide range of GANs for EHRs applications. However, we also acknowledge that despite
the usefulness of critical care and small-sized datsets in many healthcare applications, their utility
is limited in some tasks. For example, generating synthetic longitudinal data is important to study
prescription activities, long-term treatments effects, and other population-wide research questions.
Without open-access datasets of different kinds, it will be challenging to expand GANs for EHRs
research to include longitudinal data.

7.5 Integration in Clinical Applications

Using simulated data in medical practice is not new; senior academic medics compile hand-
engineered simulated data to train medical students and residents as a part of their education [41].
However, using machine learning-based generated synthetic data for research and clinical support
system raises concerns and questions of trust, reliability, and realism from the clinical research
community. Currently, most quantitative evaluation tests and metrics are hard to interpret by
medical professionals [31], which results in a gap between synthetic data and GAN development
and their usage in clinical applications. To mitigate this gap, there is a need to develop evaluation
tests that confirm the preservation of unique characteristics of clinical datasets that clinicians eas-
ily understand. We believe that using such metrics in conjunction with rigorous mathematical and
statistical similarity evaluation will support the acceptance of the use of synthetic data. Further-
more, co-designing algorithms with clinicians generally enhances the field of machine learning to
develop new architectures for various applications in healthcare.

With the increased number of works introducing new methodologies, evaluation metrics, and
applications of GANs for EHRs, we believe that many of these models need to be validated on real-
world large-scale EHR databases. By validating the included works on real-world EHR databases,
we get a better understanding of the true scalability and reproducibility of data fidelity, utility, and
privacy results. Furthermore, such validation is needed to test for the GANs’ ability to capture
variations of complex dependency relationships between variables stored in EHR databases from
diverse clinical settings.

We believe that synthetic data have the potential to inspire a wide range of clinical research
as seen in non-GAN based synthetic datasets [49, 50, 171]. With reduced time for data access and
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ethics approvals, as seen in Reference [73], research can be expedited, supporting the advancement
of machine learning for healthcare. Overall, GANs for EHRs is a relatively new field and still has
lots of capacity for improvement, especially in addressing EHR data complexity aspects such as
heterogeneity, missingness, and sparsity.
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