1,670 research outputs found

    Decompositions of complete graphs into bipartite 2-regular subgraphs

    Get PDF
    It is shown that if G is any bipartite 2-regular graph of order at most n/2 or at least n – 2, then the obvious necessary conditions are sufficient for the existence of a decomposition of the complete graph of order n into a perfect matching and edge-disjoint copies of G

    Hamilton decompositions of regular tournaments

    Full text link
    We show that every sufficiently large regular tournament can almost completely be decomposed into edge-disjoint Hamilton cycles. More precisely, for each \eta>0 every regular tournament G of sufficiently large order n contains at least (1/2-\eta)n edge-disjoint Hamilton cycles. This gives an approximate solution to a conjecture of Kelly from 1968. Our result also extends to almost regular tournaments.Comment: 38 pages, 2 figures. Added section sketching how we can extend our main result. To appear in the Proceedings of the LM

    Decomposing Cubic Graphs into Connected Subgraphs of Size Three

    Get PDF
    Let S={K1,3,K3,P4}S=\{K_{1,3},K_3,P_4\} be the set of connected graphs of size 3. We study the problem of partitioning the edge set of a graph GG into graphs taken from any non-empty SSS'\subseteq S. The problem is known to be NP-complete for any possible choice of SS' in general graphs. In this paper, we assume that the input graph is cubic, and study the computational complexity of the problem of partitioning its edge set for any choice of SS'. We identify all polynomial and NP-complete problems in that setting, and give graph-theoretic characterisations of SS'-decomposable cubic graphs in some cases.Comment: to appear in the proceedings of COCOON 201

    Rainbow Hamilton cycles in random regular graphs

    Full text link
    A rainbow subgraph of an edge-coloured graph has all edges of distinct colours. A random d-regular graph with d even, and having edges coloured randomly with d/2 of each of n colours, has a rainbow Hamilton cycle with probability tending to 1 as n tends to infinity, provided d is at least 8.Comment: 16 page

    Decompositions into subgraphs of small diameter

    Full text link
    We investigate decompositions of a graph into a small number of low diameter subgraphs. Let P(n,\epsilon,d) be the smallest k such that every graph G=(V,E) on n vertices has an edge partition E=E_0 \cup E_1 \cup ... \cup E_k such that |E_0| \leq \epsilon n^2 and for all 1 \leq i \leq k the diameter of the subgraph spanned by E_i is at most d. Using Szemer\'edi's regularity lemma, Polcyn and Ruci\'nski showed that P(n,\epsilon,4) is bounded above by a constant depending only \epsilon. This shows that every dense graph can be partitioned into a small number of ``small worlds'' provided that few edges can be ignored. Improving on their result, we determine P(n,\epsilon,d) within an absolute constant factor, showing that P(n,\epsilon,2) = \Theta(n) is unbounded for \epsilon n^{-1/2} and P(n,\epsilon,4) = \Theta(1/\epsilon) for \epsilon > n^{-1}. We also prove that if G has large minimum degree, all the edges of G can be covered by a small number of low diameter subgraphs. Finally, we extend some of these results to hypergraphs, improving earlier work of Polcyn, R\"odl, Ruci\'nski, and Szemer\'edi.Comment: 18 page

    On the decomposition threshold of a given graph

    Get PDF
    We study the FF-decomposition threshold δF\delta_F for a given graph FF. Here an FF-decomposition of a graph GG is a collection of edge-disjoint copies of FF in GG which together cover every edge of GG. (Such an FF-decomposition can only exist if GG is FF-divisible, i.e. if e(F)e(G)e(F)\mid e(G) and each vertex degree of GG can be expressed as a linear combination of the vertex degrees of FF.) The FF-decomposition threshold δF\delta_F is the smallest value ensuring that an FF-divisible graph GG on nn vertices with δ(G)(δF+o(1))n\delta(G)\ge(\delta_F+o(1))n has an FF-decomposition. Our main results imply the following for a given graph FF, where δF\delta_F^\ast is the fractional version of δF\delta_F and χ:=χ(F)\chi:=\chi(F): (i) δFmax{δF,11/(χ+1)}\delta_F\le \max\{\delta_F^\ast,1-1/(\chi+1)\}; (ii) if χ5\chi\ge 5, then δF{δF,11/χ,11/(χ+1)}\delta_F\in\{\delta_F^{\ast},1-1/\chi,1-1/(\chi+1)\}; (iii) we determine δF\delta_F if FF is bipartite. In particular, (i) implies that δKr=δKr\delta_{K_r}=\delta^\ast_{K_r}. Our proof involves further developments of the recent `iterative' absorbing approach.Comment: Final version, to appear in the Journal of Combinatorial Theory, Series
    corecore