4 research outputs found

    Decomposition for Large-scale Optimization Problems with Overlapping Components

    Get PDF
    In this paper we use a divide-and-conquer approach to tackle large-scale optimization problems with overlapping components. Decomposition for an overlapping problem is challenging as its components depend on one another. The existing decomposition methods typically assign all the linked decision variables into one group, thus cannot reduce the original problem size. To address this issue we modify the Recursive Differential Grouping (RDG) method to decompose overlapping problems, by breaking the linkage at variables shared by multiple components. To evaluate the efficacy of our method, we extend two existing overlapping benchmark problems considering various level of overlap. Experimental results show that our method can greatly improve the search ability of an optimization algorithm via divide-and-conquer, and outperforms RDG, random decomposition as well as other state-of-the-art methods. We further evaluate our method using the CEC'2013 benchmark problems and show that our method is very competitive when equipped with a component optimizer

    A review of population-based metaheuristics for large-scale black-box global optimization: Part A

    Get PDF
    Scalability of optimization algorithms is a major challenge in coping with the ever growing size of optimization problems in a wide range of application areas from high-dimensional machine learning to complex large-scale engineering problems. The field of large-scale global optimization is concerned with improving the scalability of global optimization algorithms, particularly population-based metaheuristics. Such metaheuristics have been successfully applied to continuous, discrete, or combinatorial problems ranging from several thousand dimensions to billions of decision variables. In this two-part survey, we review recent studies in the field of large-scale black-box global optimization to help researchers and practitioners gain a bird’s-eye view of the field, learn about its major trends, and the state-of-the-art algorithms. Part of the series covers two major algorithmic approaches to large-scale global optimization: problem decomposition and memetic algorithms. Part of the series covers a range of other algorithmic approaches to large-scale global optimization, describes a wide range of problem areas, and finally touches upon the pitfalls and challenges of current research and identifies several potential areas for future research

    A review of population-based metaheuristics for large-scale black-box global optimization: Part B

    Get PDF
    This paper is the second part of a two-part survey series on large-scale global optimization. The first part covered two major algorithmic approaches to large-scale optimization, namely decomposition methods and hybridization methods such as memetic algorithms and local search. In this part we focus on sampling and variation operators, approximation and surrogate modeling, initialization methods, and parallelization. We also cover a range of problem areas in relation to large-scale global optimization, such as multi-objective optimization, constraint handling, overlapping components, the component imbalance issue, and benchmarks, and applications. The paper also includes a discussion on pitfalls and challenges of current research and identifies several potential areas of future research
    corecore