78,608 research outputs found

    Continuous cooling transformation diagrams of HSLA steel for seamless tubes production

    Get PDF
    The CCT and two DCCT diagrams were constructed for the HSLA steel containing Cr, V, Nb, and N microadditions, taking into account industrial processing parameters of this material in a seamless tubes rolling mill. The typical finish hot rolling temperature of 1173 K was used for the construction of the standard CCT diagram and the effect of previous austenite deformation at this temperature was evaluated in the DCCT diagram. Another DCCT diagram was developed after heating at 1553 K, followed by plastic deformation at 1173 K. The prior austenite grain size in the hot rolled material after heating at 1173 K was approx. 10 mu m, the heating of the as-cast material at 1553 K resulted in the prior austenite grain size over 200 mu m. The effect of the previous austenite deformation after low-temperature heating on the CCT diagram was negligible. The high-temperature heating showed a great influence on the austenite decomposition processes. The Ferrite-start temperature was significantly reduced at high cooling rates and the preferred decomposition of coarse grained austenite to acicular ferrite suppressed the bainite transformation at medium cooling rates. The developed DCCT diagrams can be used for the prediction of austenite decomposition products during the cooling of the seamless tubes from the finish rolling temperature. The CCT diagram can be utilized for the quality heat treatment of tubes.Web of Science55342641

    Tensor Analysis and Fusion of Multimodal Brain Images

    Get PDF
    Current high-throughput data acquisition technologies probe dynamical systems with different imaging modalities, generating massive data sets at different spatial and temporal resolutions posing challenging problems in multimodal data fusion. A case in point is the attempt to parse out the brain structures and networks that underpin human cognitive processes by analysis of different neuroimaging modalities (functional MRI, EEG, NIRS etc.). We emphasize that the multimodal, multi-scale nature of neuroimaging data is well reflected by a multi-way (tensor) structure where the underlying processes can be summarized by a relatively small number of components or "atoms". We introduce Markov-Penrose diagrams - an integration of Bayesian DAG and tensor network notation in order to analyze these models. These diagrams not only clarify matrix and tensor EEG and fMRI time/frequency analysis and inverse problems, but also help understand multimodal fusion via Multiway Partial Least Squares and Coupled Matrix-Tensor Factorization. We show here, for the first time, that Granger causal analysis of brain networks is a tensor regression problem, thus allowing the atomic decomposition of brain networks. Analysis of EEG and fMRI recordings shows the potential of the methods and suggests their use in other scientific domains.Comment: 23 pages, 15 figures, submitted to Proceedings of the IEE

    Phase separation processes in polymer solutions in relation to membrane formation

    Get PDF
    This review covers new experimental and theoretical physical research related to the formation of polymeric membranes by phase separation of a polymer solution, and to the morphology of these membranes. Two main phase separation processes for polymeric membrane formation are discussed: thermally induced phase separation and immersion precipitation. Special attention is paid to phase transitions like liquid-liquid demixing, crystallization, gelation, and vitrification, and their relation to membrane morphology. In addition, the mass transfer processes involved in immersion precipitation, and their influence on membrane morphology are discussed

    Observed strategies in the freehand drawing of complex hierarchical diagrams

    Get PDF
    Chunk decomposition and assembly strategies have been found in the drawing of complex hierarchical diagrams (spe- cifically AVOW diagrams). Analysis of 40 diagrams pro- duced by five participants provided evidence for the strategies based on the duration of pauses between drawn elements. The strategies were initially discovered using a new visualiza- tion technique developed to allow the detailed examination of the sequential order of diagram drawing in conjunction with information about the durations of pauses associated with drawn elements
    • …
    corecore