5,706 research outputs found

    Decomposition of Dynamic Textures Using Morphological Component Analysis: A New Adaptative Strategy

    Full text link

    Characterization and Recognition of Dynamic Textures based on 2D+T Curvelet Transform

    No full text
    International audienceThe research context of this article is the recognition and description of dynamic textures. In image processing, the wavelet transform has been successfully used for characterizing static textures. To our best knowledge, only two works are using spatio-temporal multiscale decomposition based on tensor product for dynamic texture recognition. One contribution of this article is to analyse and compare the ability of the 2D+T curvelet transform, a geometric multiscale decomposition, for characterizing dynamic textures in image sequences. Two approaches using the 2D+T curvelet transform are presented and compared using three new large databases. A second contribution is the construction of these three publicly available benchmarks of increasing complexity. Existing benchmarks are either too small, not available or not always constructed using a reference database.\\ Feature vectors used for recognition are described as well as their relevance, and performances of the different methods are discussed. Finally, future prospects are exposed

    Classification of ordered texture images using regression modelling and granulometric features

    Get PDF
    Structural information available from the granulometry of an image has been used widely in image texture analysis and classification. In this paper we present a method for classifying texture images which follow an intrinsic ordering of textures, using polynomial regression to express granulometric moments as a function of class label. Separate models are built for each individual moment and combined for back-prediction of the class label of a new image. The methodology was developed on synthetic images of evolving textures and tested using real images of 8 different grades of cut-tear-curl black tea leaves. For comparison, grey level co-occurrence (GLCM) based features were also computed, and both feature types were used in a range of classifiers including the regression approach. Experimental results demonstrate the superiority of the granulometric moments over GLCM-based features for classifying these tea images

    Modeling of evolving textures using granulometries

    Get PDF
    This chapter describes a statistical approach to classification of dynamic texture images, called parallel evolution functions (PEFs). Traditional classification methods predict texture class membership using comparisons with a finite set of predefined texture classes and identify the closest class. However, where texture images arise from a dynamic texture evolving over time, estimation of a time state in a continuous evolutionary process is required instead. The PEF approach does this using regression modeling techniques to predict time state. It is a flexible approach which may be based on any suitable image features. Many textures are well suited to a morphological analysis and the PEF approach uses image texture features derived from a granulometric analysis of the image. The method is illustrated using both simulated images of Boolean processes and real images of corrosion. The PEF approach has particular advantages for training sets containing limited numbers of observations, which is the case in many real world industrial inspection scenarios and for which other methods can fail or perform badly. [41] G.W. Horgan, Mathematical morphology for analysing soil structure from images, European Journal of Soil Science, vol. 49, pp. 161ā€“173, 1998. [42] G.W. Horgan, C.A. Reid and C.A. Glasbey, Biological image processing and enhancement, Image Processing and Analysis, A Practical Approach, R. Baldock and J. Graham, eds., Oxford University Press, Oxford, UK, pp. 37ā€“67, 2000. [43] B.B. Hubbard, The World According to Wavelets: The Story of a Mathematical Technique in the Making, A.K. Peters Ltd., Wellesley, MA, 1995. [44] H. Iversen and T. Lonnestad. An evaluation of stochastic models for analysis and synthesis of gray-scale texture, Pattern Recognition Letters, vol. 15, pp. 575ā€“585, 1994. [45] A.K. Jain and F. Farrokhnia, Unsupervised texture segmentation using Gabor filters, Pattern Recognition, vol. 24(12), pp. 1167ā€“1186, 1991. [46] T. Jossang and F. Feder, The fractal characterization of rough surfaces, Physica Scripta, vol. T44, pp. 9ā€“14, 1992. [47] A.K. Katsaggelos and T. Chun-Jen, Iterative image restoration, Handbook of Image and Video Processing, A. Bovik, ed., Academic Press, London, pp. 208ā€“209, 2000. [48] M. KĀØoppen, C.H. Nowack and G. RĀØosel, Pareto-morphology for color image processing, Proceedings of SCIA99, 11th Scandinavian Conference on Image Analysis 1, Kangerlussuaq, Greenland, pp. 195ā€“202, 1999. [49] S. Krishnamachari and R. Chellappa, Multiresolution Gauss-Markov random field models for texture segmentation, IEEE Transactions on Image Processing, vol. 6(2), pp. 251ā€“267, 1997. [50] T. Kurita and N. Otsu, Texture classification by higher order local autocorrelation features, Proceedings of ACCV93, Asian Conference on Computer Vision, Osaka, pp. 175ā€“178, 1993. [51] S.T. Kyvelidis, L. Lykouropoulos and N. Kouloumbi, Digital system for detecting, classifying, and fast retrieving corrosion generated defects, Journal of Coatings Technology, vol. 73(915), pp. 67ā€“73, 2001. [52] Y. Liu, T. Zhao and J. Zhang, Learning multispectral texture features for cervical cancer detection, Proceedings of 2002 IEEE International Symposium on Biomedical Imaging: Macro to Nano, pp. 169ā€“172, 2002. [53] G. McGunnigle and M.J. Chantler, Modeling deposition of surface texture, Electronics Letters, vol. 37(12), pp. 749ā€“750, 2001. [54] J. McKenzie, S. Marshall, A.J. Gray and E.R. Dougherty, Morphological texture analysis using the texture evolution function, International Journal of Pattern Recognition and Artificial Intelligence, vol. 17(2), pp. 167ā€“185, 2003. [55] J. McKenzie, Classification of dynamically evolving textures using evolution functions, Ph.D. Thesis, University of Strathclyde, UK, 2004. [56] S.G. Mallat, Multiresolution approximations and wavelet orthonormal bases of L2(R), Transactions of the American Mathematical Society, vol. 315, pp. 69ā€“87, 1989. [57] S.G. Mallat, A theory for multiresolution signal decomposition: the wavelet representation, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 11, pp. 674ā€“693, 1989. [58] B.S. Manjunath and W.Y. Ma, Texture features for browsing and retrieval of image data, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 18, pp. 837ā€“842, 1996. [59] B.S. Manjunath, G.M. Haley and W.Y. Ma, Multiband techniques for texture classification and segmentation, Handbook of Image and Video Processing, A. Bovik, ed., Academic Press, London, pp. 367ā€“381, 2000. [60] G. Matheron, Random Sets and Integral Geometry, Wiley Series in Probability and Mathematical Statistics, John Wiley and Sons, New York, 1975

    Textural Difference Enhancement based on Image Component Analysis

    Get PDF
    In this thesis, we propose a novel image enhancement method to magnify the textural differences in the images with respect to human visual characteristics. The method is intended to be a preprocessing step to improve the performance of the texture-based image segmentation algorithms. We propose to calculate the six Tamura's texture features (coarseness, contrast, directionality, line-likeness, regularity and roughness) in novel measurements. Each feature follows its original understanding of the certain texture characteristic, but is measured by some local low-level features, e.g., direction of the local edges, dynamic range of the local pixel intensities, kurtosis and skewness of the local image histogram. A discriminant texture feature selection method based on principal component analysis (PCA) is then proposed to find the most representative characteristics in describing textual differences in the image. We decompose the image into pairwise components representing the texture characteristics strongly and weakly, respectively. A set of wavelet-based soft thresholding methods are proposed as the dictionaries of morphological component analysis (MCA) to sparsely highlight the characteristics strongly and weakly from the image. The wavelet-based thresholding methods are proposed in pair, therefore each of the resulted pairwise components can exhibit one certain characteristic either strongly or weakly. We propose various wavelet-based manipulation methods to enhance the components separately. For each component representing a certain texture characteristic, a non-linear function is proposed to manipulate the wavelet coefficients of the component so that the component is enhanced with the corresponding characteristic accentuated independently while having little effect on other characteristics. Furthermore, the above three methods are combined into a uniform framework of image enhancement. Firstly, the texture characteristics differentiating different textures in the image are found. Secondly, the image is decomposed into components exhibiting these texture characteristics respectively. Thirdly, each component is manipulated to accentuate the corresponding texture characteristics exhibited there. After re-combining these manipulated components, the image is enhanced with the textural differences magnified with respect to the selected texture characteristics. The proposed textural differences enhancement method is used prior to both grayscale and colour image segmentation algorithms. The convincing results of improving the performance of different segmentation algorithms prove the potential of the proposed textural difference enhancement method

    Textural Difference Enhancement based on Image Component Analysis

    Get PDF
    In this thesis, we propose a novel image enhancement method to magnify the textural differences in the images with respect to human visual characteristics. The method is intended to be a preprocessing step to improve the performance of the texture-based image segmentation algorithms. We propose to calculate the six Tamura's texture features (coarseness, contrast, directionality, line-likeness, regularity and roughness) in novel measurements. Each feature follows its original understanding of the certain texture characteristic, but is measured by some local low-level features, e.g., direction of the local edges, dynamic range of the local pixel intensities, kurtosis and skewness of the local image histogram. A discriminant texture feature selection method based on principal component analysis (PCA) is then proposed to find the most representative characteristics in describing textual differences in the image. We decompose the image into pairwise components representing the texture characteristics strongly and weakly, respectively. A set of wavelet-based soft thresholding methods are proposed as the dictionaries of morphological component analysis (MCA) to sparsely highlight the characteristics strongly and weakly from the image. The wavelet-based thresholding methods are proposed in pair, therefore each of the resulted pairwise components can exhibit one certain characteristic either strongly or weakly. We propose various wavelet-based manipulation methods to enhance the components separately. For each component representing a certain texture characteristic, a non-linear function is proposed to manipulate the wavelet coefficients of the component so that the component is enhanced with the corresponding characteristic accentuated independently while having little effect on other characteristics. Furthermore, the above three methods are combined into a uniform framework of image enhancement. Firstly, the texture characteristics differentiating different textures in the image are found. Secondly, the image is decomposed into components exhibiting these texture characteristics respectively. Thirdly, each component is manipulated to accentuate the corresponding texture characteristics exhibited there. After re-combining these manipulated components, the image is enhanced with the textural differences magnified with respect to the selected texture characteristics. The proposed textural differences enhancement method is used prior to both grayscale and colour image segmentation algorithms. The convincing results of improving the performance of different segmentation algorithms prove the potential of the proposed textural difference enhancement method

    Hyperspectral colon tissue cell classification

    Get PDF
    A novel algorithm to discriminate between normal and malignant tissue cells of the human colon is presented. The microscopic level images of human colon tissue cells were acquired using hyperspectral imaging technology at contiguous wavelength intervals of visible light. While hyperspectral imagery data provides a wealth of information, its large size normally means high computational processing complexity. Several methods exist to avoid the so-called curse of dimensionality and hence reduce the computational complexity. In this study, we experimented with Principal Component Analysis (PCA) and two modifications of Independent Component Analysis (ICA). In the first stage of the algorithm, the extracted components are used to separate four constituent parts of the colon tissue: nuclei, cytoplasm, lamina propria, and lumen. The segmentation is performed in an unsupervised fashion using the nearest centroid clustering algorithm. The segmented image is further used, in the second stage of the classification algorithm, to exploit the spatial relationship between the labeled constituent parts. Experimental results using supervised Support Vector Machines (SVM) classification based on multiscale morphological features reveal the discrimination between normal and malignant tissue cells with a reasonable degree of accuracy
    • ā€¦
    corecore