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DYNAMIC TEXTURE RECOGNITION ALGORITHM
Pyataeva A.V., Raevich K.V,

Recognizing dynamic patterns based on visual processing is sig-
nificant for many applications such as remote monitoring for the pre-
vention of natural disasters, e.g. forest fires, various types of surveil-
lance, e.g. traffic monitoring, background subtraction in challenging
environments, e.g. outdoor scenes with vegetation, homeland security
applications and scientific studies of animal behavior. In the context of
surveillance, recognizing dynamic patterns is of significance to isolate
activities of interest (e.g. fire) from distracting background (e.g. wind-
blown vegetation and changes in scene illumination).

Methods: pattern recognition, computer vision.

Results: This paper presents video based image processing algo-
rithm with samples usually containing a cluttered background. Accord-
ing to the spatiotemporal features, four categorized groups were for-
mulated. Dynamic texture recognition algorithm refers image objects
to one of this group. Motion, color, facial, energy Laws and ELBP fea-
tures are extracted for dynamic texture categorization. Classification
based on boosted random forest.

Practical relevance: Experimental results show that the proposed
method is feasible and effective for video-based dynamic texture categori-
zation. Averaged classification accuracy on the all video images is 95.2%.

Keywords: dymanic texture recognition, motion features; facial fea-
tures, boosted random forests.

AJITOPUTM AHAJIN3A JUHAMUYECKUX TEKCTYP
ITamaesa A.B., Paesuu K.B.

Ilocmanoeka npoonemur: ObHapysiceHue OUHAMUYLECKUX MEKCMYP
Ha 8UOeOU300PAdICEHUAX 8 HACMOsIWee 8peMsl Haxooum éce bonee wii-
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POKOE npUMeHeHue 8 CUCMeMAx KoMNnblomepHoz2o spenus. Hanpumep,
OOHapydHCceHue ObiMA U NIAMEHU 8 CUCIEMAX IKOJLOUYECKO20 MOHUMO-
puHed, aHanu3 aemomMooOUIbHO20 Mpagurka npu MOHUMOPUHEe 3azpy-
JrceHnocmu 0opoe, u 8 opyeux cucmemax. Ilouck obvexma unmepeca
Ha OuHAMUYeckom one yacmo Ovleaem 3ampyOHeH 3a CUem NOXOHCUX
TMEKCMYPHBIX NPUSHAKO8 UNU NPUSHAKOS OBUMICEHUS Y (DOHA U UCKOMO-
20 obvekma. B cea3u ¢ 3mum 803HUKAEn He0OX00UMOCb paspabomKu
AneOpUMMA KAACCUPUKAYUU OUHAMUYLECKUX MEKCMYP 051 6bI0ENeHUs
00beKmMos uHmepeca Ha OUHAMUYECKOM (DOHe.

Memoowvi: pacnosznasarue 06paz08, KOMNLIOMEPHOE 3PEHUE.

Pesynomamul: B 0annou pabome paccmampusaemcst 0opabomxa eu-
0eou300padicenull cooeparcaux 00beKmbl ¢ OUHAMUYECKUM NOBEOEeHUEM
Ha OuHaMu4eckom omne, maxue Kax 600d, MyMaH, NaAaMs, MeKCmuib Ha
sempy u Op. Pazpaboman aneopumm ommuecenust 00beKkmos 8uoeou3o-
opadicenuss K 00HOU U3 Yemvlpex npediazaemvix kamezopuil. H3zerexa-
FOMCA NPUSHAKU OBUICEHUSL, YBEMOBbLE 0CODEHHOCMU, PPAKMATLHOCTIU,
anepeemuyeckue npusHaku Jlaca, cmpoamcs ELBP-eucmozpavmol. B
Kauecmee Kiaccupukamopa ucnoib308an 0yCmuHe06blil CIy4aliHblil ec.

Ilpakmuueckas 3nauumocmy: Paspaboman memoo, no3eonsouuil
pazoenums OUHAMUYECKUE MEKCMYP HA KAme20pulL: no Muny 08UNCeHUs
(nepuoduneckoe u xaomuynoe) u muny oObeKmos unmepeca (Npupoo-
Hble U UCKYCCBEeHHble). DKChepUMEHMAbHbLe UCCLe008aANUS NOOMEED-
21c0arom 3hghexmusHoCms NPEONIONCEHHO20 ANCOPUMMA OJIst OMHECEHUs.
00beKkmos uz0bpasicenust Kk mou unu unou kameeopuu. Cpeousisi mou-
Hocmb Knaccugpuxayuu cocmasuna 95.2%.

Knrouesvie cnosa: ananuz OuHamuyeckux mekcmyp, npusHaKu 08u-
JHcenust; (hpakmanvrvie NPUHAKU, 0YCMUH208bIIL CLYYALIHbLL JeC.

Introduction

Nowadays dynamic textures recognition is particularly importance
in difference computer vision community tasks in a variety of fields.
The Dynamic textures (DTs) are caused by a variety of physical pro-
cesses that leads to different visualization of such objects: small/large
particles, transparent/opaque visibility, rigid/non-rigid structure, 2D/3D
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motion. The goal of the DTs recognition can be different. In reconstruc-
tion tasks, the recognition of the DT means a creation of its 2D or 3D
statistical model. DT is an extension of texture to the temporal domain.
Recognizing dynamic patterns based on visual processing is significant
for many applications such as remote monitoring for the prevention of
natural disasters, e.g. forest fires, various types of surveillance, e.g. traf-
fic monitoring, background subtraction in challenging environments, e.g.
outdoor scenes with vegetation, homeland security applications and sci-
entific studies of animal behavior. In the context of surveillance, recog-
nizing dynamic patterns is of significance to isolate activities of interest
from distracting background.

The recognition of the DTs remains a challenging problem because of
multiple impacts appearing in the dynamic scenes that include the view-
point changes, camera motion, illumination changes, etc. In past decades,
a variety of different approaches have been proposed for recognition of the
DTs, such as the Linear Dynamic System (LDS) methods [1], GIST method
[2], the Local Binary Pattern (LBP) methods [3], wavelet methods [4; 5],
morphological methods [6], deep multilayer networks [7], among others.

Dynamic texture features estimation
Dynamic textures can be divided into four categories on the spatio-
temporal criteria [8]:

» Category I. Natural particles with periodic movement like wa-
ter in the lake, river, waterfall, ocean, pond, canal, and fountain,
leaves and grass under a wind in large scales;

» Category II. Natural translucency/transparent non-rigid blobs
with randomly changed movement like the smoke, clouds, flame,
haze, fog, and other phenomena;

» Category III. Man-made opaque rigid objects with periodic
movement like flags and textile under a wind, leaves and grass
under a wind in small scales;

» Category IV. Man-made opaque rigid objects with stationary or
chaotic movement like car traffic, birds and fishes in swarms,
moving escalator, and crowd;
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According to DT categories proposed dynamic texture classification
features such as moving parameters, chromatic components, geometrical
(flickering) features, shape entropy measure, energy Laws characteristics.

1. Motion features

In first dynamic recognition algorithm step motion features are ex-
tracted. Moving areas estimating with SAD (Sum of Absolute Differ-
ences) criteria of Block matching algorithm by Eq. 1:

SAD =Y ¢ pix|l (D=1, _ (), (1)

where Pix — number of block pixels, /(#) and /_(#) — intensity value of
the pixel in two neighbored frames #(x, y). We used block size in 30x30
pixels for moving areas detection.

Also the optical flow provides the information about the local and
global motion vectors.

2. Color features

In the zones where movement is identified, the colour mask is
placed to detect candidate-blocks to Category I and II Egs. 2-3. Na-
tural translucency/transparent non-rigid blobs with randomly changed
movement block like smoke, clouds, flame, haze, fog can be detected
by using experiential color threshold 7'in RGB- color space:

|R-G|<T
|G-B|<T ()
|R-B|<T
The flame-colour regions detection a combination of RGB and HSV
colour spaces is used:

R>G>B (3)
R>RT (4)
S>(255-R)xST/RT (5)

In Expressions (4) to (5), RT indicates the threshold value of R; S'is
the value of the pixel saturation, and S7 corresponds to the saturation
when R value matches the knowledge of RT parameter for the same
pixel. Rules (3) and (4) show that the value of the R channel is greater
than of the other objects. Colour features of natural particles with peri-
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odic movement in Category II estimated similarly. Objects in Category
III and Category VI demonstrate various color features.

3. Fractal features

Dynamic fractal analysis is built on the concept of the fractal di-
mension, which measures the statistical self-similarity of a point set in
a multi-scale fashion. Four measures which are suitable for the shape,
motion, and fractal evaluation of the DTs[9]: pixel intensity p, by Eq.
6, temporal brightness gradient p, by Eq. 7, normal flow p by Eq. 8
and the Laplacian p, by Eq. 9.

The pixel intensity measure w(p,, ¢, 7, ) is calculated by equation 3:

K, (povto’ rt) JL I(p,t)dpdt (6)

o))
where /(p, £)= an intensity value of plxel p in time instant ¢, r, = a spa-
tial radius, , = a temporal radius, @ (r,.,)=2a 3D cube centrmg at

point (p,, Z,). The temporal brlghtness gradlent Wy(Pgs Ly 7» 1) 18 @ SUM-
mation of temporal intensity changes of the DT in a 3D cube Q(-) This
parameter is defined by a derivative of second order:

by (Postoorior; )= IL i)y, @)

)(V %) Ot
The Laplacian p (p,, ¢, 7, 1) rneans the information of the local

co-variance of pixel 1ntens1ty at point (p, 7)) in the spatial-temporal
domain (equation 5):

ML (pO’ 0> s’ t) J:L )(r r)A[(p’t)dpdt (8)

The normal flow w.(p, 4, 7, ) i 1s often used in motion estimation of
the DTs. It measures a motion of pixels along the direction perpendicular
to the brightness gradient, e.g., edge motion as an appropriate measure for
chaotic motion of the DTs. This measure can be calculated by equation 9:

ol (p.t)/ot
Hp (po’toarx’rr): J.J-Q o ap )

| =l i)
The spatial texture layering as well as the type and shape of texels

are also important descriptors for preliminary categorization. They can
be estimated using the gradient information of the successive frames.
Measures represented by Eqs. 6-9 characterize the DT as the stochas-
tic dynamic systems with self-similarity in spatio-temporal domain.
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4. Laws energy features

Laws energy approach [10] for dynamic textures classification is
an successful methodology for image segmentation using texture analy-
sis. Laws identified the following properties as playing an important role in
describing texture: uniformity, density, coarseness, roughness, regularity,
linearity, directionality, direction, frequency and phase. Laws energy filter
applied for pre processed gray-scale moving blocks. For illumination in-
fluence removal fix size scanning window were used. The pixel intensity
P[i, j]is calculated in a surrounding relatively a central pixel with intensity
1[i, j] by Eq. 10 where I=(R+B+G)/3, P — input image, w — window size.

c+(w=-1)/2 r+w-1)/2
» 3 i, /1
c—(w—l)/21=r2—(w—1)/2 (10)
w

For natural scenes scanning window size is 15x15 [11], otherwise
5x5 pixels. Laws’ texture features determine texture properties by as-
sessing Average Gray Level, Edges, Spots, Ripples and Waves in tex-
ture. The approach uses basic convolution kernels for image filtering.
The following set is a number of one dimensional kernels of a length
of fiveby Eq. 11:

P[r,c]z[[r,c]—j:

LS5=[1 4 6 4 1],
ES=[-1-2 0 2 1]
S5 =[-1 0 2 0-1] (11)
ws=[-1 2 0-2 1]
R5 =[-1-4 6-4 1]
So, L5E5™mask estimated by Eg. 12:

1 1 4 6 -4 1
4 4 -16 24 -16 4
LSES"=|6|-[1-4 6-4 1]=|6 —24 36 -24 6| (12)
4 4 -16 24 -16 4
1] 1 -4 6 —4 1
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The 16 filtered images estimated by applying Laws filters. Energy
Laws map ETr, c] is calculated by Eg. 13 where F [i, j] — Laws mask
with index x, [, j] — filtering pixel:

c+7 7

E(r,e)=>" > |FG ) (13)

Jj=c=T i=r-17

Fig. 1 demonstrate applymg Laws energy mask S5S55.

Fig. 1. (a)or1g1nal image; (b) filtered images

Symmetrical pairs of maps (like E5L5 and L5ES) are replaced by

an average map according to the formula:
E, (1 c)=(E(r o)FE (1, )2 (14)

For example, mask E5LS5 is describing horizontal edges, L5ES
mask — vertical edges. Average ESL5 and L5SES determine all image
edges.

5. ELBP features

The Local Binary Pattern - LBP was introduced by Ojala et al. [12]
as a binary operator robust to lighting variations with low computation-
al cost and ability of simple coding of neighboring pixels around the
central pixel as a binary string or decimal value. The operator LBP(N,
R) is calculated in a surrounding relatively a central pixel with inten-
sity /_by Eq. 15, where N is a number of pixels in the neighborhood,
Ris aradius. If (/, — 1) >0, then s({ — 1) = 1, otherwise s(/ — 1) = 0.
Variables / and I, — pixel intensity in current and central point as Y
coordinate from YUYV color space [13—16].In our work spatio-temporal
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local binary pattern was used. The STLBP gathers information from
adjacent frames relative the central pixel by Eq. 16. For description of
the DTs, it is necessary to introduce 3D cuboid of information, thus the
application of the STLBP is reasonable. The STLBP becomes volumi-
nous and poorly representative against to generic LBP.

P-1
LBP(P)=Y s(I,—1,)-2" (15)

n=0
STLBP,,(P)=LBF, _(P)+ LB, (P)+ LBF,,(P)  (16)
Extended local binary pattern (ELBP) based on the uniform pat-
terns [17] represent local texture structures. The operator ELBP(N, R)
is calculated like LBP(N, R) operator. A LBP is called uniform if there
are no more than three 0/1 or 1/0 bitwise transitions in its binary code,
being considered as a circular code. It is reported in [ 18] that, the con-
tribution of uniform pattern to is about 87.2% and 70.7% respectively.
That is to say, the uniform patterns take a majority percentage of all
patterns. Uniform patterns can be presented as line end, corner and edge
patterns. As a result, each uniform pattern is given a unique label and
all other minorities are given a mutual label in histogram calculation.

Dynamic texture recognition algorithm

The generalized algorithm is as follows:

» Step 1. Motion features estimation. Detecting moving blocks and
direction vectors.

» Step 2. Color features estimation.

 Step 3. Estimate fractal measurespixel intensity p, temporal
brightness gradient p, normal flow p, and the Laplacian p, .

» Step 4. Convert the input image into a grayscale image. Apply
Laws energy approach for energy maps estimation.

» Step 5. Build a set of ELBP local descriptors for the analyzed
region.

» Step 6. Apply a histogram approach for classification and store
the results.

* Step 7. Combining regions with similar features.
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* Step 8. Clustering using Boosted Random Forests

» Step 8. Repeat Steps 3-8 in a cycle for categorization all moving

blocks.

First step of proposed algorithm is motion estimation based on
Block-matching SAD criteria and the optical flow for the information
about the local and global motion vectors. Block-matching algorithm
evolves 2 to 5 frames of video sequences according to experiments
for objects in different Categories show various motion speed. Smoke
and clouds demonstrating similar EBLP texture features, but motion
features for this natural transparency objects are difference. Moving
smoke direction usually is from bottom to top of video frame, while
smoke colored object like clouds moving across the frame. Moving fea-
tures of flame is to change the boundaries of flame region from frame
to frame randomly. Moreover, as itshown in [19] it is reasonable to
define scene depth permits to separate images in two groups: the close
scenes (till 500 m approximately) and the remote scenes (more 500 m),
where “close” and “far” moving objects like smoke and other can be
watched, respectively.

The next algorithm step is color, facial, entropy features estimation.
Fourth step is Laws energy approach for edges, spots, ripples and wave
texture features detection. The next step is ELBP descriptors comput-
ing. Then histogram approach was applied.

Chi-square distance, histogram intersection distance, Kullback-Leibler
divergence, and G-statistic are usually used during classification stage.
In this research, the histogram intersection and chi-square distance were
chosen for histogram comparison as it is often recommended in litera-
ture by Egs. 17-18.

Hist(f,g)=1—2min(fm,gm) (17)
2 (f g

, o 18

2V (f.2)= Z e (18)

Regions clustering based on boosted random forests [20]. Boosted
random forests — BRFs include a boosting algorithm during random for-
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est learning in order to produce the high-performance and smaller in size
decision trees [21]. The BRFs include a bootstrapping similar to the Ad-
aboost algorithm in the learning stage and involves estimation of class
label of the training data with the trained decision trees, calculation the
error of decision tree, and computation of weight of the decision tree.

During a clustering stage, an unknown sample is entered to all de-
cision trees, and the class probabilities are stored in leaf nodes of each
tree. Then all outputs of decision trees P(c|a,) are weighted and aver-
aged, using Eq. 19.

P(c|a)— ZOL (c | a (19)

In Eq.19 K —number of decmon trees, ¢ —class, at — current sample.
The class that has the highest probability is the clustering result. Cat-
egorization rate and the errors estimated in BRFs clustering results.

Experimental results

For experimental results Dyntex [22], V-MOTE [23], and Wild-
FilmsIndia [24], Billkent university [25] datasets were used. The test
video images have different resolution with minimum values 320 x 240
pixels and maximum values 1280 x 720 pixels and depict a great va-
riety of objects, including natural objects, man-made objects, humans,
animals, etc., under the outdoor shooting. Some examples of the used
images are described shortly in Table 1.

Table 1.
Description of some used videos

Description
of test video

Description

Sample frame of test video

Sample frame

File name: File name:

XVID _0011.avi XVID 0002.avi
Resolution: @l Resolution:
720x576 pix 720x576 pix
Number of Number of frames:

frames: 3 100
Alias: videol

1 800
Alias: video2
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End of a table 1.
File name: File name:
Flamingos.mp4 Pondicherry
Resolution: Beach — the brief of
1280%720 pix the ocean.avi
Number of Resolution:
frames: 2 350 1280%720 pix
Alias: video3 Number of frames:
1320
Alias: video4
File name: File name:
Fish Hide From | Republic Day
Predators.mp4 Parade.mp4
Resolution: Resolution:
1280x%720 pix 720x576 pix
Number of Number of frames:
frames: 3 696 22510
Alias: video5 Alias: video6
File name: File name:
648aal0.avi 645¢510.avi,
Resolution: Resolution:
720x576 pix 720x576 pix
Number of Number of frames:
frames: 950 7 200
Alias: video7 Alias: video8
File name: File name:
646a510.avi 54pe210.avi
Resolution: Resolution:
720%576 pix 720%576 pix
Number of Number of frames:
frames: 350 250
Alias: video9 Alias: video10
File name: File name:
649a810.avi, 645e010.avi
Resolution: Resolution:
720%576 pix 720%576 pix
Number of Number of frames:
frames: 4 950 6 000
Alias: videoll Alias: video12
File name: File name:
controlledl.avi || BackYardFile.avi
Resolution: Resolution:
400x256 pix 320x240 pix
Number of || Number of frames:
frames: 275 1251

Alias: video13

Alias: video14
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Experimental results of DT categorization shown at the Table 2. The
average detection accuracy was carried out in experimental studies on
video sequence for DT algorithm categorization efficiency evaluating.
The same one video consists of various DT category objects. The per-
formance of the DT classification algorithm was evaluated using the
CR — classification rate, FRR — false rate rejection and FAR — false alert
rejection. The CR indicator is calculated as a ratio of regions with right
class label to the all regions number. The FAR false operation indicates
the ratio of regions with false positive operation to the total number of
regions on the video image.

Table 2.
Experimental results
Video | Number histogram intersection chi-square distan;; -
b

alias | of frames | CR, % | FAR, % | FRR,% | CR, % | FAR, % %
(1]

videol 3100 | 97,20 | 1,78 280 | 9842 | 1,52 1,58
video2 1800 | 9821 | 085 1,79 | 99,00 | 0,78 1,00
video3 2350 | 9525 | 2,13 475 | 96,12 | 1,52 3,88
videod 1320 | 9831 | 1,02 1,89 | 98,89 | 099 111
videoS 3696 | 88,15 | 9,00 11,85 | 89,12 | 875 | 10,88
video6 | 22510 | 91,85 | 9,12 8,15 | 92,00 | 845 8,00

video7 950 98,25 0,28 1,75 99,0 0,11 1,00
video8 7200 96,85 3,00 3,15 97,21 3,00 2,79
video9 350 100,0 0,00 0,00 100,0 0,00 0,00

video10 250 100,0 | 0,00 0,00 100,0 | 0,00 0,00
videoll | 4950 | 8921 | 8,74 10,79 | 90,00 | 521 | 10,00
videol2 | 6000 | 90,01 | 8,77 9,99 | 9127 | 8,00 8,73
video13 275 93,12 | 7,14 6,88 | 94,74 | 6,98 5,26
videold | 1251 | 9527 | 645 473 | 96,52 | 5,89 3,48

The experiments conducted on the sequences from represented da-
tabase show the best recognition results for the Categories VI and 111
with the averaged recognition rate 96%. Averaged classification accu-
racy on the all video images is 95.2%

Experimental shows that particular difficulty in DT recog-
nition algorithm is to classify video images containing of dif-



52 International Journal of Advanced Studies, Vol. 8, No 2, 2018

ferent categories regions, one superimposed on the other. As an
example of such images is video 11 and video 12 in table 1. At
the moving features extraction DT recognition algorithm step in
candidate block can by placed two-class objects and moreover.
In this case FAR and FRR are observed because this block belongs
to the class with higher probability. The histogram intersection and
chi-square distance is adapted for measuring distances between his-
tograms in order to analyze the probability of occurrence of code
numbers for compared textures.

For the DTs based on man-made opaque rigid objects with sta-
tionary or chaotic movement, the errors of temporal features are
high for the short-term series that influence on the final result. Also
the samples of these categories usually contain a cluttered back-
ground. This means that a special attention ought to be paid for the
temporal analysis in the further investigations. Experimental results
show that the proposed method is feasible and effective for video
based DT classification.

Conclusion

In this research, a classification of dynamic textures is solved us-
ing motion, color, fractal, Laws energy and ELBP features. Chi-square
distance, histogram intersection distance, Kullback-Leibler divergence,
and G-statistic are usually used during classification stage. Regions
clustering based on boosted random forests. Averaged classification ac-
curacy on the all video images is 95.2%. Results show that the proposed
method is feasible and effective for video based DT classification.
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