10,893 research outputs found

    Decomposing 8-regular graphs into paths of length 4

    Full text link
    A TT-decomposition of a graph GG is a set of edge-disjoint copies of TT in GG that cover the edge set of GG. Graham and H\"aggkvist (1989) conjectured that any 2â„“2\ell-regular graph GG admits a TT-decomposition if TT is a tree with â„“\ell edges. Kouider and Lonc (1999) conjectured that, in the special case where TT is the path with â„“\ell edges, GG admits a TT-decomposition D\mathcal{D} where every vertex of GG is the end-vertex of exactly two paths of D\mathcal{D}, and proved that this statement holds when GG has girth at least (â„“+3)/2(\ell+3)/2. In this paper we verify Kouider and Lonc's Conjecture for paths of length 44

    The three-state toric homogeneous Markov chain model has Markov degree two

    Full text link
    We prove that the three-state toric homogenous Markov chain model has Markov degree two. In algebraic terminology this means, that a certain class of toric ideals are generated by quadratic binomials. This was conjectured by Haws, Martin del Campo, Takemura and Yoshida, who proved that they are generated by binomials of degree six or less.Comment: Updated language and notation. 13page

    Some results on triangle partitions

    Full text link
    We show that there exist efficient algorithms for the triangle packing problem in colored permutation graphs, complete multipartite graphs, distance-hereditary graphs, k-modular permutation graphs and complements of k-partite graphs (when k is fixed). We show that there is an efficient algorithm for C_4-packing on bipartite permutation graphs and we show that C_4-packing on bipartite graphs is NP-complete. We characterize the cobipartite graphs that have a triangle partition

    On Symbolic Ultrametrics, Cotree Representations, and Cograph Edge Decompositions and Partitions

    Full text link
    Symbolic ultrametrics define edge-colored complete graphs K_n and yield a simple tree representation of K_n. We discuss, under which conditions this idea can be generalized to find a symbolic ultrametric that, in addition, distinguishes between edges and non-edges of arbitrary graphs G=(V,E) and thus, yielding a simple tree representation of G. We prove that such a symbolic ultrametric can only be defined for G if and only if G is a so-called cograph. A cograph is uniquely determined by a so-called cotree. As not all graphs are cographs, we ask, furthermore, what is the minimum number of cotrees needed to represent the topology of G. The latter problem is equivalent to find an optimal cograph edge k-decomposition {E_1,...,E_k} of E so that each subgraph (V,E_i) of G is a cograph. An upper bound for the integer k is derived and it is shown that determining whether a graph has a cograph 2-decomposition, resp., 2-partition is NP-complete

    Shortest path embeddings of graphs on surfaces

    Get PDF
    The classical theorem of F\'{a}ry states that every planar graph can be represented by an embedding in which every edge is represented by a straight line segment. We consider generalizations of F\'{a}ry's theorem to surfaces equipped with Riemannian metrics. In this setting, we require that every edge is drawn as a shortest path between its two endpoints and we call an embedding with this property a shortest path embedding. The main question addressed in this paper is whether given a closed surface S, there exists a Riemannian metric for which every topologically embeddable graph admits a shortest path embedding. This question is also motivated by various problems regarding crossing numbers on surfaces. We observe that the round metrics on the sphere and the projective plane have this property. We provide flat metrics on the torus and the Klein bottle which also have this property. Then we show that for the unit square flat metric on the Klein bottle there exists a graph without shortest path embeddings. We show, moreover, that for large g, there exist graphs G embeddable into the orientable surface of genus g, such that with large probability a random hyperbolic metric does not admit a shortest path embedding of G, where the probability measure is proportional to the Weil-Petersson volume on moduli space. Finally, we construct a hyperbolic metric on every orientable surface S of genus g, such that every graph embeddable into S can be embedded so that every edge is a concatenation of at most O(g) shortest paths.Comment: 22 pages, 11 figures: Version 3 is updated after comments of reviewer
    • …
    corecore