704 research outputs found

    Decomposition and Representation of Coalitional Games

    Get PDF
    A coalitional game is a real-valued set function v defined on an algebra F of subsets of a space X such that v(0)=0. We prove the existence of a one-to-one correspondence between coalitional games bounded with respect to the composition norm and countably additive measures defined on an appropriate space.

    Coalition structure generation over graphs

    No full text
    We give the analysis of the computational complexity of coalition structure generation over graphs. Given an undirected graph G = (N,E) and a valuation function v : P(N) → R over the subsets of nodes, the problem is to find a partition of N into connected subsets, that maximises the sum of the components values. This problem is generally NP-complete; in particular, it is hard for a defined class of valuation functions which are independent of disconnected members — that is, two nodes have no effect on each others marginal contribution to their vertex separator. Nonetheless, for all such functions we provide bounds on the complexity of coalition structure generation over general and minor free graphs. Our proof is constructive and yields algorithms for solving corresponding instances of the problem. Furthermore, we derive linear time bounds for graphs of bounded treewidth. However, as we show, the problem remains NP-complete for planar graphs, and hence, for any Kk minor free graphs where k ≥ 5. Moreover, a 3-SAT problem with m clauses can be represented by a coalition structure generation problem over a planar graph with O(m2) nodes. Importantly, our hardness result holds for a particular subclass of valuation functions, termed edge sum, where the value of each subset of nodes is simply determined by the sum of given weights of the edges in the induced subgraph

    Convexity and the Shapley value in Bertrand oligopoly TU-games with Shubik's demand functions

    Get PDF
    The Bertrand Oligopoly situation with Shubik's demand functions is modelled as a cooperative TU game. For that purpose two optimization problems are solved to arrive at the description of the worth of any coalition in the so-called Bertrand Oligopoly Game. Under certain circumstances, this Bertrand oligopoly game has clear affinities with the well-known notion in statistics called variance with respect to the distinct marginal costs. This Bertrand Oligopoly Game is shown to be totally balanced, but fails to be convex unless all the firms have the same marginal costs. Under the complementary circumstances, the Bertrand Oligopoly Game is shown to be convex and in addition, its Shapley value is fully determined on the basis of linearity applied to an appealing decomposition of the Bertrand Oligopoly Game into the difference between two convex games, besides two nonessential games. One of these two essential games concerns the square of one non- essential game.Bertrand Oligopoly situation, Bertrand Oligopoly Game, Convexity, Shapley Value, Total Balancedness.

    Core equivalence theorems for infinite convex games

    Get PDF
    We show that the core of a continuous convex game on a measurable space of players is a von Neumann-Morgenstern stable set. We also extend the definition of the Mas-Colell bargaining set to games with a measurable space of players, and show that for continuous convex games the core may be strictly included in the bargaining set but it coincides with the set of all countably additive payoff measures in the bargaining set. We provide examples which show that the continuity assumption is essential to our results

    Core equivalence theorems for infinite convex games.

    Get PDF
    We show that the core of a continuous convex game on a measurable space of players is a von Neumann-Morgenstern stable set. We also extend the definition of the Mas-Colell bargaining set to games with a measurable space of players, and show that for continuous convex games the core may be strictly included in the bargaining set but it coincides with the set of all countably additive payoff measures in the bargaining set. We provide examples which show that the continuity assumption is essential to our results.

    Endogenous Network Dynamics

    Get PDF
    In all social and economic interactions, individuals or coalitions choose not only with whom to interact but how to interact, and over time both the structure (the “with whom”) and the strategy (“the how”) of interactions change. Our objectives here are to model the structure and strategy of interactions prevailing at any point in time as a directed network and to address the following open question in the theory of social and economic network formation: given the rules of network and coalition formation, the preferences of individuals over networks, the strategic behavior of coalitions in forming networks, and the trembles of nature, what network and coalitional dynamics are likely to emergence and persist. Our main contributions are (i) to formulate the problem of network and coalition formation as a dynamic, stochastic game, (ii) to show that this game possesses a stationary correlated equilibrium (in network and coalition formation strategies), (iii) to show that, together with the trembles of nature, this stationary correlated equilibrium determines an equilibrium Markov process of network and coalition formation which respects the rules of network and coalition formation and the preferences of individuals, and (iv) to show that, although uncountably many networks may form, this endogenous process of network and coalition formation possesses a nonempty finite set of ergodic measures and generates a finite, disjoint collection of nonempty subsets of networks and coalitions, each constituting a basin of attraction. Moreover, we extend to the setting of endogenous Markov dynamics the notions of pairwise stability (Jackson-Wolinsky, 1996), strong stability (Jackson-van den Nouweland, 2005), and Nash stability (Bala-Goyal, 2000), and we show that in order for any network-coalition pair to be stable (pairwise, strong, or Nash) it is necessary and sufficient that the pair reside in one of finitely many basins of attraction - and hence reside in the support of an ergodic measure. The results we obtain here for endogenous network dynamics and stochastic basins of attraction are the dynamic analogs of our earlier results on endogenous network formation and strategic basins of attraction in static, abstract games of network formation (Page and Wooders, 2008), and build on the seminal contributions of Jackson and Watts (2002), Konishi and Ray (2003), and Dutta, Ghosal, and Ray (2005).
    corecore