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§1- Introduction 

Convex coalitional games were introduced in Shapley (1971). They include in 

palticular any convex function of a measure, and occur in many applications. For 

example, Sorenson, Tschirhart and Whinston (1978) showed that the coalitional game 

modeling a producer and a set of potential consumers under decreasing costs is convexo 

The airport game (see Section XI.4 in Owen (1982» and the bankruptcy game (see 

Aumann and Maschler (1985» are also convexo Demange (1987) gave several examples 

of convex games which alise from public good models. The core of a convex game with 

a finite set of players was studied in Shapley (1971) and other solution concepts were 

investigated in Maschler, Peleg and Shapley (1972). Where different approaches lead to 

the same solution, this reinforces the appeal of the solution. In this work we study the 

equivalence between the core, von Neumann-Morgenstern stable sets, and the Mas

Colell bal'gaining set in convex coalitional games ayer a measurabIe space of players. 

Stable sets for cooperative games were introduced by von Neumann and 

Morgenstem in their seminal book (see von Neumann and Morgenstern (1944». 

Shapley (1971) showed that the core of a finite convex game is a von Neumann

Moregenstern stable seto The result was extended to cooperative games without side 

payments in Peleg (1986). Stable sets for coalitional games with a finite set of players 

have been studied intensively (for a comprehensive sUlvey see Lucas (1992». There are 

a few works conceming stable sets of games with an infinite set of players. Davis 

(1962) showed that for symmetric simple games with a continuum of players, results 

analogous to those of Bott (1953) can be obtained. Han (1974) dealt with stable sets of 

market games with a continuum of players. Einy et al. (1995) analyzed stable sets of 

sorne non-atomic games, and showed that the core of a non-atomic glove mal'ket game 

which is defined as the minimum of a finite number of non-atomic probability measures 

is a stable seto Such a game is usually not convexo The stability of the core in games 
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with a countable set of players was studied in Einy and Shitovitz (1995). The core of 

games with an infinite set of players was investigated in many works (for a 

comprehensive survey see Kannai (1992)). In this work we show that the core of a 

continuous convex game with a measurable space of players is its unique von Neumann

Morgenstem stable seto 

The first definition of a bargaining set for cooperative games was given by Aumann 

and Maschler (1964). Recently, several new concepts of bargaining sets have been 

introduced (see Mas-Colell (1989), Dutta et al. (1989), Greenberg (1990, 1992); for a 

comprehensive sLUvey see Maschler (1992)). All these sets contain the core of the game. 

However, there are important cases in which sorne of these sets coincide with the coreo 

It is known that for convex coalitional games with a finite set of players these sets 

coincide with the core (see Maschler, Peleg and Shapley (1972) for the Aumann

Maschler bargaining set, Dutta et al. (1989) for the Mas-Colell and the consistent 

bargaining sets and Greenberg (1992) for the stable bargaining set). Einy and Wettstein 

(1995) studied the equivalence between bargaining sets and the core in simple games. 

The Mas-Colell bargaining set was inu'oduced in Mas-Colell (1989), where it was 

proved that in an atomless pure exchange economy it coincides with the set of 

competitive equilibria (and hence, by Aumann's equivalence theorem (Aumann (1964)), 

it also coincides with the core). Shitovitz (1989) showed that for a large class of both 

finite and rnixed market games the Mas-Colell bargaining set coincides with the coreo In 

this work we extend the definition of the Mas-Colell bargaining set to coalitional games 

with u'ansferable utility which have a measurable space of players, and prove that for 

continuous convex games the core coincides with the set of countably additive measures 

in the bargaining seto We give an example which shows that the continuity assumption 

is essential. We also .give an example which shows that the bargaining set of an infinite 

continuous convex game may contain non-countably additive measures, and tlms strictly 

: : 
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include the coreo 

The class of games te which our results apply is very general and includes, in 

particular, games with a finite set of players, games with countably many players, non

atomic games, and mixed games. The known proofs of the corresponding results for 

finite games do not seem to admit an extension to games with a measurable space of 

players. Our approach is different, and thus in particular provides new proofs in the 

finite case. Our proofs employ Delbaen's (1974) characterization of convex games, 

Schmeidler's (1986) characterization of convex games in telms of the Choquet integral, 

and a general minmax theorem due to Sion (1958). 

The papel' is organized as fol1ows. In section 2 we define the basic notions which 

are relevant to our work. In section 3 we state and prove a lemma which constitlltes the 

main part of the proofs of our main results. In section 4 we show that the core of a 

continllous convex game on a measurable space of players is its unique von Nellmann-

Morgenstem stable set. In section 5 we extend the definition of the Mas-Colel1 

bargaining set te games with a measurable space of players, and prove that for 

continuous convex games the core coincides with the set of countably additive measllres 

in the bargaining set. 

§2 - Preliminmies 

Let (T,L) be a measurable space, i.e., T is a set and Lis a (j-field of subsets 01' T. 

We refer to the members of T as players and to those of L as coalitiofls. A coalitional 

game. 01' simply a game on (T,L), is a function v: L -) 91+ with v(0) = O. A coalition 

e is a carrÍe,. of v if v(S) = v(S n e) for all S EL. A coalition S is 1I111/ in v if T\S is a 

cmTÍer of v. A game v on (T,L) is cOfltiflllOllS at S E L if for al1 non-decreasing 
~ ~ 

seqllences {S,.}11=1 of coalitions such that u Sil =S, and al1 non-increasing sequences 
~ . ~ 11=1 

{ S" }11 = 1 of coalitions such that n Sil =S, we have v(Sil) -) v(5). The game v is 
11=1 

COfltÍflllOllS if it is continuous at each S in L. 

-..-----------~------------___,_-------------___r--------------
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A payoffmeasure in a game v is a bounded finitely additive measure ; : L -7 9\ 

(not necessarily nonnegative) which satisfies ;(T) ~v(T). The eore of a game v, 

denoted by Core(v), is the set of aH payoff measures; such that ;(S) ~ v(S) for aH 

SEL. 

As observed by Schmeidler (see the first part of the proof of Theorem 3.2 in 

Schmeidler (1972», if v is continuous at T, then every member of Core(v) is countably 

additive. 

A game v is eOflvex if for evel'Y A, B E L we have 

v(A u B) + v(A n B) ~ v(A) + v(B). 

It is weH known that the col'e of a convex game is non-empty (see Shapley (1971) fol' 

finite games and Schmeidlel' (1972) fol' games with a measul'able space of playel's). We 

note that Proposition 3.15 in Schmeidlel' (1972) implies that a convex game which is 

continuous at the grand coalition is continuous at evel'Y coalition. 

We denote by ba =ba(T,L:) the Banach space of aH bounded finitely additive 

measul'es on (T,L) with the variation nOlm. If J1 is a countably additive measul'e on 

(T,L) we denote by ba(J1) = ba(T,L,p) the subspace of ba which consists of aH bounded 

finitely additive measul'es on (T,L) which vanish on the p-measure zero sets in L. The 

subspace of ba which consists of aH bounded countably additive measul'es on (T,L) is 

denoted by ea =ca(T,L). If J1 is a measure in ea then ea(p) =ca(T, L,p) denotes the 

set of all members of ea which are absolutely continuous with respect to p. Finally, if A 

is a subset of an ol'del'ed vector space we denote by A+ the set of aH nonnegative 

membel's of A. 

The foHowing fact is a consequence of Theol'em 3.10 in Schmeidlel' (1972), and is 

recol'ded hel'e fol' latel' use. 
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Proposition 2.1 

Let v be a continuous convex game on (T,X). Then there exists a measure jJ E ca+ 

such that a coalition S E X. is null in v iff jJ(S) =O. Moreover, Corc(v) e ca+ (J1) . 

§3 - The Main Lernma 

In this section we state and prove a lernma conceming conúnuous convex games 

which constitutes the main pan of the proofs of our equivalence theorems. 

Lemma 3.1 

Let v be a continuous convex game on (T,X). Assume that ~ E ca satisfies ~(S) < v(S) 

for sorne S EL. Then there exist A E L and 17 E Corc(v) such that: 

(3.1) v(A) - ~(A) =max{v(C) -~(C) ICE X}. 

(3.2) 17(A) =v( A) > ~(A) and 17(B) ~ ~(B) for aH B E X with Be A. 

Proof 

We need the following notation: If ~ E ca andfis a ~-integrable function then the 

integral fTfd~ will be denoted by ~(j). 

Let J1 E ca+ be a measure as guaranteed in Proposition 2.1. Let B be the unit ball 

of Loo (J1) = Loo(T, X,J1). The proof proceeds in several steps. 

Step 1: We extend v to a function v defined on B+. 

For each fE B+ let v( f) = m¡'l{~( f) I~ E Core(v)} (the minimum exists because Corc(v) 

is a weak*-compact non-empty subset of ba(jJ), which is the norm-dual of Loo (J1»). Since vis 

convex, by Proposition 3 in Schmeidler (1986) (see also Theorem 2.2 in Gilboa and Schmeidler 

(1995)), for each f E B+ we have 

'f(f) =J~ v({t ~ T I f(t) ~ x})dx , 

where the integral is a Riemann integral and is known as the Choquet integral offwith 
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v.� In particular for each S E L we have V(Xs) = v(S). 

In Steps 2-5 we treat the special case when ~ E ca+( /1). 

Step 2: We prove that v- ~ attains its maximum on B+. 

As Core(v) e ca+ (/1), by the Radon-Nikodym theorem for each ~ E Core(v) the 

function ~ (f) =Jr fd~ is continuous on B+ with respect to the weak*-topology which 

is induced by Loo (/1) on B+. Therefore vis weak*-upper semicontinuous on B+, as it 

is the minimum of weak*-continuous functions on B+ . As ~ E ca+(/1), V- ~ is a 

weak*- upper semicontinuous function on B+. Now by Alaoglu's theorem B+ is 

compact in the weak*- topology. Therefore v- ~ attains its maximum on B+. 

~: We prove that the maximum in Step 2 is attained at a coalition A . 

Let M = max( v-~)( f). Let f* E B+ be such that M = (v -~)( f*). For 
fEB+ 1 

each O.:5"x .:5" 1 let Tx = {t E T I f *(t) ¿ x}. Then M = Jo (v - ~)(1'.,:Jdx and thus

J: [M - (v - ~)(T.,:JJdx = O. As M ¿ (v - ~)(T.1:) for each O.:5"x .:5" 1, there is O.:5".1:0 .:5" 1 

such that M =(v - ~)(Txo)' Let A = 1'.'1: ' Then v(A) - ~(A) ¿ v(f) - ~(f) for aU 
0 

fE B+ . 

It is clear that the coalition A found in Step 3 satisfies (3.1). Moreover, since 

v(S) > ~( S), we have v(A) > ~(A). It remains to find r¡ E Core(v) which satisfies (3.2). 

Step 4: We prove that fol' each fE B+ with f .:5" XA there cxists r¡ E Core(v) with 

TJ(A)=v(A) such that r¡(f)¿~(f). 

Let fE B+ be such that f.:5" XA' Denote g =XA - f, and for each O.:5"x.:5" 1 let 

A = (t E A Ig(t) ¿ x} . It is clear that if X,y E [0,1] and x.:5"y then Ax => Ay. Thusx 

( Ax }O~X~ 1 is a chain in L. As v is convex, by CoroUary 3 in Delbaen (1974), there 

exists '1 E Core(v) such that TJ( Ax ) =v(Ax ) for each O .:5" x .:5" 1. As Ao = A, we have 

TJ( A) =v( A). Now for each x> O we have (t E T Ig(t) ¿ x} = A... and so 

1 • 
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Thus 1](A) - ~(A) = v(A) - ~(A);:: v(g) - ~(g) = 1](g) - ~(g), and therefore 

1](A)-1](g)~~(A)-~(g). Since g=XA -f,wehave 1](f);::~(f). 

Step 5: We prove that the order of the quantifiers in Step 4 can be reversed, that is, 

there exists 1] E Core(v) with 1](A) =v(A) that works for allf E B+ with f S XA' 

Denote B+(A) = {f E B+ If s XA} and C(A) ={1] E Core(v) 11](A) =v(A)}. Then 

the sets B+(A) and C(A) are weak*-compact and convex in Loo ( j.1) and ba(j.1) 

respectively. 

Define a real-valued function H on C(A) x B+(A) by H(1],f) =1](f) - ~(f). 

Then H is affine and continuous in each of its variables separately. Thus the sets C(A), 

B+(A) and the function H satisfy the assumptions of Sion's minmax theorem (see Sion 

(1958», and therefore 

(3.3)� mili max H(1], f) = max milz H(1], f). 
fEB+(A) 1]EC(A) 1]EC(A)jEB+(A) 

Now by Step 4, mili max H (1], f) ;:: O and thus by (3.3), max mili H (1], f) ;:: O. 
f 1] 1] f 

Therefore there exists 1] E C(A) such that H(1],f);:: O for all fE B+(A). It is clear that 

1] satisfies (3.2). 

Step 6: We now show that if ~ is in ca+ but is not absolutely continuous with 

respect to j.1, then there exist A and 1] such that (3.1) and (3.2) are satisfied. 

By the Lebesgue decomposition theorem, there exist two measures, ~a and ~s, in 

co+ such that~ = ~a + ~s' where ~a is absolutely continuous with respect to j.1 and the 

measures ~s and j.1 are mutually singular. As ~(S) < veS), ~a (S) < veS). As 

~a E ca+( j.1), by what we have already shown, there exist Ao E}; andl] E Core(v) such 

that 1'( Ao) - ~ar Ao ) = mox{v(C) - ~a(C) ICE};}, 1](Ao) = v( Ao) > ~a( Ao)' and 

1](B) ;::~a(B) forall BE}; with Be Ao ' Let Co beacalTierofj.1 such that 

~s(Co) =O, and let A =Ao n Co' Since Co is a carrier of v, for each CE}; we have 

•� 
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Hence 1'(A) - ~(A) = max{1'(C) - ~(C) ICE I:J, SO (3.1) is satisfied by A. 

Also, lJ( A) ~ lJ( Ao ) =v(Ao ) =v( A), and as lJ E Core(v) , we have lJ(A) =v(A). Finally, if 

B E E and B e A then lJ(B) ~ ~a(B) =~(B). Thus (3.2) is satisfied by A and lJ. 

Step 7: We now assume that ~ E ca is a signed measure, and show that thel'e exist A 

and lJ such that (3.1) and (3.2) are satisfied. 

By the lordan decomposition theorem ~ = ~+ +~_, where ~+ and ~_ are the positive 

and the negative parts of ~ respectively. Let w =v - ~_. Then w is convex, continuous 

and ~+ (S) < w(S). Thel'efore we can apply what we have already shown fol' the game lV 

and the measlU'e~+, and this yields the existence of A E I: and lJ E Core(v) such that (3.1) 

and (3.2) are satisfied, Q.E.D. 

§4 - Stability of the Core of Convex Games 

The main purpose of this section is to prove that the core of a continuous convex 

game on a measurable space of players is a von Neumann-Morgenstern stable seto This 

generalizes the result of Shapley (1971) who showed that the core of a convex game 

with a finite set of players is a von Neumann-Morgenstern stable seto 

A game v on (T,E) is superadditive if v( A u B) ~ v(A) + v(B) whenever A and B 

are disjoint coalitions in L When dealing with von Neumann-Mol'genstem stable sets, it 

is natural to l'esuict attention to supel'additive games, and we shall do so in this section. 

Clearly, a convex game is superadditive. 

For a superadditive game v on (T,E) and any coalition S E E, we define 

a\.(S)=illj .Lv(Sj) 
j=1 

whel'e the infimum is taken ayer aH countable paJ.litions S1,S2,'" of S such that Si E I: 

fol' all i. It is easy to .vel'ify, using supel'additivity, that al' E co+ . CleaJ.·ly, 

a\,(S)::; 1'(S) for aH S E E. Intuitively, av(S) is the amount that the members of S aJ.'e 

'" """'------------------,----------------------------
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guaranteed to obtain in v without cooperation. This pelmits to extend the notion of 

individual rationality from finite games. We say that a member ~ of ba is individually 

ratiollal with respect lO the game v if ~(5) ~ a'v(5) for each 5 EL. The set of all 

individually rational payoff measures in a superadditive game v on (T,L) is denoted by 

I(v), Le., 

I (v) =(~ E ba+ I~ is individually rational and ~(T) ~ v(T)}. 

Let v be a game on (T,L). A coalition A in L is a dummy coalirioll in v if 

a'v( A) =v( A) and for each coalition B such that A (J B =0 we have 

v( A U B) = v( A) + v(B). Observe that a null coalition is also a dummy coalition, but not 

vice versa. 

We now define a dominance relation on I(v). Let ~,r¡ E I(v) and A E L be a non

dummy coalition. Then r¡ dominates ~ via A, denoted by r¡>-A ~,if 17(A) sv(A) and 

17(B) > ~(B) for each B E L such that B e A and B is non-dummy. We say that 17 

dominates ~, denoted by 17 >-~, if there exists a non-dummy coalition A E L such that 

17 >- A ~. 

We note that if v is a superadditive game on (T,L), and there is a measure J1 on 

(T,L) such that j1(5) > Ofor each coalition 5 in Lwhich is non-dummy in v (by 

Proposition 2.1, fol' a continuous convex game v such a j1 always exists), then Core(v) 

consists of those ~ E I(v) for which there is no 17 E I(v) such that 17 >-~ . 

We come now to the definition of a von Neumann-Morgenstem stable set: 

Let v be a superadditive game on (T,L). A set Ve I(v) is a VOII Neumallfl-

Morgellstern stable set (01' simply a stable set) of the game v if: 

(4.1) V is internally stab/e, i.e., if ~ E V then there is no 17 E V such that 17 >- ~. 

(4.2) Vis exte1'l1ally stab/e, Le., if ~ E I(v)\ Vthen thereis17 E V such that 17 >- ~. 

-----------------------r---;-------------,----------
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The main result of this section is: 

Theorem A 

Let v be a eOl/til/uous eOl/vex game 01/ (T,L). Thel/ the eore olv is its ul/ique 

VOl/ Neumal/lI-Morgenstem stable seto 

It is sufficient to show that Core(v) is externally stable. Let J.1 E ea+ be a measure 

as guaranteed in Proposition 2.1. Let ~ E I(v)\Core(v). Let S E ¿ be such that ~(S) < 

veS). 

We first assume that ~ E ea+. Let c > Obe such that ~(S) + cJ.1(S) < veS). Then 

by Lernrna 3.1 applied to ~ + cJ.1 E ca, there exist A E ¿ andlJ E Core(v) such that 

1J(A) = veA) > ~(A) +cJ.1 (A) and lJ(B) :2 ~(B) +cJ.1 (B) for all BE L with Be A. 

Since (Jv( A) s ~(A) < v( A), A is not a dummy in v. Now if B e A is a non-dummy 

coalition in v then J.1 (B) > O, and therefore 1J(B) > ~(B). Hence, 1J >-A ~ . 

We now assume that ~ is in ba+ but is not countably additive. By Theorem 1.23 in 

Yosida and Hewitt (1952), ~ can be decomposed uniquely into a sum of a nonnegative 

countably additive measure ~c and a nonnegative purely finitely additive measure ~p • As 

J.1 E ea+, by Theorem 1.22 in Yosida and Hewitt (1952), there exists an increasing sequence 
00 

of sets Cn E.L such that ~p (Cn) =O for all 1/, and lim J.1(T \ Cn) = O. Let C = U Cn. 
n--+oo n=l 

Then J.1(T \ C) =O. Therefore C is a calTier of V. For each 11 let Sn =S n Cn. As v is 

continuous, fim v(Sn) =v(S n C) =v(S). Since ~(S) < v(S), there exists a natural number k 
n~oo 

such that ~(Sk) < v(Sk) . Let D =Sk and ¿D ={A E ¿ I A e D} . Let vD be the restriction 

of v to ¿D' It is clear that VD is a continuous convex game on (D, ¿D)' As ~p vanishes on 

.LD' ~ coincides with ~c on .LD' Let ~~ be the resu'iction of ~c to L D . Then 

~D E ea+(D,LD) and ~~( D) =~(D) < v(D). Now we can apply what we have already 

shown to the game v; and the measure ~D' in order to obtain the existence of a non-dummy 

coalition A E ¿D and a measure SE Core(vD) such that S(A) =v( A) and S(B) > ~(B) for aH 
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BE L with B e A and J.1(B) > O. Since vis convex and 'E Core(vD) , by Proposition 3.8 

in Einy and Shitovitz (1995), , can be extended to a measure r¡ on(T,L) such that 

r¡ E Core(v). Then r¡ >-A ~ in v and the proofis completed. Q.E.D. 

Einy and Shitovitz (1995) showed that the core of a continuous convex game with a 

countable set of players on a field of coalitions which contains all the finite sets (not 

necessarilya a-field) is a von Neumann-Morgenstem stable seto Their result is not 

implied by Theorem A, but it also does not imply Theorem A in the case of a countable 

set of players. 

Let T be the set of natural numbers and L be the set of all subsets of T. As it was 

done in Example 3.5 of Einy and Shitovitz (1995), one can show that the convex game 

if T \ S is finite 
v(5) = { ~ 

otherwise� 

does not have a von Neumann-Morgenstem stable seto Therefore the continuity� 

assumption in Theorem A is essential.� 

§5 - Equivalence of the Core and the Mas-Colell Bar~ainin~ set in Convex Games 

In this section we extend the definition of the bargaining set in Mas-Colell (1989) 

to coalitional games on a measurable space of players and prove that for continuous 

convex games the eore coincides with the set of all countably additive payoff measures in 

the bargaining seto We also give an example which shows that the continuity assumption 

is essential, and an example which shows that the bargaining set may strictly include the 

core even in a continuous convex game. 

Let v be a game on (T,L) and~ E ba be a payoff measure in v. An objectioll to ~ is 

a pair (A,r¡) such that A E L and r¡ E ba satisfies r¡( A) S v( A), r¡(A) > ~(A) and r¡(B) ~ ~(B) 

for all BE L with B·c A. A COl/llter objectioll to the objection (A,r¡) is a pair (C,') such 

that: 

--------------------¡--_._--_._-------¡----------
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(5.1) CEL, ~Ebaand ~(C)S'v(C). 

(5.2) If BEL satisfies BcAnCthen'(B):?l}(B), andifDELsatisfiesDcC\A 

then '(D):?~(D). 

(5.3) ~(C) > 17( A n C) + ~(C \ A) . 

An objection to a payoff measure is calledjustified if there is no counter objection 

to it. The Mas- Co/el! bargaining set of a game v, denoted by MB(v), is the set of aH 

payoff measures in v which have no justified objection. 

It is known that for finite convex games the bargaining set coincides with the core 

(see Proposition 3.3 in Dutta et al. (1989)). 

The foHowing example shows that for infinite games the bargaining set may strictly 

include the core even when the game is continuous and convexo 

Example 5.1 

Let T be the set of natural numbers and L be the set of a11 subsets of T. Define a 

game v on (T,L) by v(S) = 1;r i for each S EL. It is clear that v is continuous and 
iES 

convexo In fact, v is a countably additive measure, and hence Core(v) = {v}. Let 

F = {S E LIT \ S is finite}. Then F is a filter in L. Let Fo be a maximal filter which 

contains F. Define a measure ~ on Lby ~(S) =1 if S E Fo and ~(S) =O otherwise. 

We show that ~ E MB(v). Let(A,l}) be an objection to~. Then A ~ T. Let i E T \ A. 

Since ~({ i}) = O and v((i}) > O, ({i), v) is a counter objection to (A, 17), and thus 

~ E MB(v). 

We come now to the main result of this section. 

Theorem B 

Let " be a cOlltiilUOUS cOllvex game 01/ (T,L). Thell 

1 • 

~-'~-'-----------------r------------------'----------
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Core(v) =MB(v) n ca. 

The following corollary is an irnrnediate consequence of Theorern B. 

Corollary B 

Let T be finíte, and let v be a convex game on (T,L:). Then 

Core(v) =MB(v) . 

Note that if T is finite and L: is the set of all subsets of T then Corollary B follows frorn 

Proposition 3.3 in Dutta et al. (1989). 

Proof of Theorem B 

Frorn the definition of MB(v) it is clear that Core(v) e MB(v). As v is continuous 

Core(v) e ca (see Section 2). Therefore Core(v) e MB(v) n ca. We will show that 

MB(v) n ca e Core(v J. Assume, on the contrary, that there is ~ E MB(v) n ca such that 

~ ~ Core(v). As ~(T) ~v(T), there is 5 EL: such that ~(5) < 1'(5). Therefore by Lemrna 

3.1, there exist A EL: and1J E Core(v) such that (3.1) and (3.2) are satisfied. Clearly, 

(A,17) is an objection to ~ in the game v. We show that (A, 17) is ajustified objection and 

this will contradict the fact that ~ E MB(v) . Let e be any coalition in L:. Then by the 

convexity of v we have 

v(C)-~(C) ~ v(A uC)-~( AuC)+ v(A nC) -~(A nC) - v(A) + ~(A). 

By (3.1), v(A u C) - ~(A uC) ~ v(A)-~( A). Therefore v(C)-~(c) ~ v( A n C) - ~(A n C). 

AS1J E Core(v), we have v(A n C) ~ 17(A n C), and thus v(C) ~ 1J(A n e) +~(C \ A) . 

Hence there is no counter objection of C to (A,17), and as C was arbitrary, (A,17) is ajustified 

objection to ~ . Q.E.D. 

We now give an example which shows that the continuity assumption in Theorem B is 

~~-----------------¡----------------------------
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essential. 

Example 5.2 

Let T be the set of natural numbers and L the set of aH subsets of T. Define a game v on 

(T,L) by 

if T \ S is finite 
v(S) = { ~ 

otherwise 

For each S EL let ~(S) = L r i
• Then ~ E ca and ~ ~ Core(v). We will show that 

id 

~ E MB(v). Let (A, 17) be any objection to~. Then TIA is finite. Let i rE A. Then 

17({i} ) > O. Now it is easy to construct a counter objection of the fmm (A \ (i},~) to (A, 17), 

and thus ~ rE MB(l·). 

.. 
.........--.-------------r---------------------
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