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§1- Introduction

Convex coalitional games were introduced in Shapley (1971). They include in
particular any convex function of a measure, and occur in many applications. For
example, Sorenson, Tschirhart and Whinston (1978) showed that the coalitional game
modeling a producer and a set of potential consumers under decreasing costs is convex.
The airport game (see Section XI.4 in Owen (1982)) and the bankruptcy game (see
Aumann and Maschler (1985)) are also convex. Demange (1987) gave several examples
of convex games which arise from public good models. The core of a convex game with
a finite set of players was studied in Shapley (1971) and other solution concepts were
investigated in Maschler, Peleg and Shapley (1972). Where different approaches lead to
the same solution, this reinforces the appeal of the solution. In this work we study the
equivalence between the core, von Neumann-Morgenstern stable sets, and the Mas-
Colell bargaining set in convex coalitional games over a measurable space of players.

Stable sets for cooperative games were introduced by von Neumann and
Morgenstern in their seminal book (see von Neumann and Morgenstern (1944)).
Shapley (1971) showed that the core of a finite convex game is a von Neumann-
Moregenstern stable set. The result was extended to cooperative games without side
payments in Peleg (1986). Stable sets for coalitional games with a finite set of players
have been studied intensively (for a comprehensive survey see Lucas (1992)). There are
a few works concerning stable sets of games with an infinite set of players. Davis
(1962) showed that for symmetric simple games with a continuum of players, results
analogous to those of Bott (1953) can be obtained. Hart (1974) dealt with stable sets of
market games with a continuum of players. Einy et al. (1995) analyzed stable sets of
some non-atomic games, and showed that the core of a non-atomic glove market game
which is defined as the minimum of a finite number of non-atomic probability measures

is a stable set. Such a game is usually not convex. The stability of the core in games




with a countable set of players was studied in Einy and Shitovitz (1995). The core of
games with an infinite set of players was investigated in many Works (fora
comprehensive survey see Kannai (1992)). In this work we show that the core of a
continuous convex game with a measurable space of players is its unique von Neumann-
Morgenstern stable set.

The first definition of a bargaining set for cooperative games was given by Aumann
and Maschler (1964). Recently, several new concepts of bargaining sets have been
introduced (see Mas-Colell (1989), Dutta et al. (1989), Greenberg (1990, 1992); for a
comprehensive survey see Maschler (1992)). All these sets contain the core of the game.
However, there are important cases in which some of these sets coincide with the core.
It is known that for convex coalitional games with a finite set of players these sets
coincide with the core (see Maschler, Peleg and Shapley (1972) for the Aumann-
Maschler bargaining set, Dutta et al. (1989) for the Mas-Colell and the consistent
baJ'gainirig sets and Greenberg (1992) for the stable bargaining set). Einy and Wettstein
(1995) studied the equivalence between bargaining sets and the core in simple games.
The Mas-Colell bargaining set was introduced in Mas-Colell (1989), where it was
proved that in an atornless pure exchange economy it coincides with the set of
competitive equilibria (and hence, by Aumann's equivalence theorem (Aumann (1964)),
it also coincides with the core). Shitovitz (1989) showed that for a large class of both
finite and mixed market games the Mas-Colell bargaining set coincides with the core. In
this work we extend the definition of the Mas-Colell bargaining set to coalitional games
with transferable utility which have a measurable space of players, and prove that for
continuous convex games the core coincides with the set of countably additive measures
in the bargaining set. We give an example which shows that the continuity assumption
is essential. We also give an example which shows that the bargaining set of an infinite

continuous convex game may contain non-countably additive measures, and thus strictly




include the core.

The class of games to which our results apply is very general and includes, in
particular, games with a finite set of players, games with countably many players, non-
atomic games, and mixed games. The known proofs of the corresponding results for
finite games do not seem to admit an extension to games with a measurable space of
players. Our approach is different, and thus in particular provides new proofs in the
finite case. Our proofs employ Delbaen's (1974) characterization of convex games,
Schmeidler's (1986) characterization of convex games in terms of the Choquet integral,
and a general minmax theorem due to Sion (1958).

The paper is organized as follows. In section 2 we define the basic notions which
are relevant to our work. In section 3 we state and prove a lemma which constitutes the
main part of the proofs of our main results. In section 4 we show that the core of a
continuous convex game on a measurable space of players is its unique von Neumann-
Morgenstern stable set. In section 5 we extend the definition of the Mas-Colell
bargaining set to games with a measurable space of players, and prove that for
continuous convex games the core coincides with the set of countably additive measures

in the bargaining set.

§2 - Preliminaries

Let (7,X) be a measurable space, i.e., T is a set and X is a o-field of subsets of 7.
We refer to the members of T as players and to those of X as coalitions. A coalitional
game, or simply a game on (T,%), is a function v : X' — 9, with v(J)=0. A coalition
Cisacarrierof vif v(S)=vwSNC)forall Se XZ. AcoalitionSis nullinvif \Sisa
carrier of v. A game v on (7,2} is continuous at S € X if for all non-decreasing
sequences { S”}‘:’= ; of coalitions such that i;] S, =S, and all non-increasing sequences
[S, }:’:1 of coalitioné such that ; S, = S,”\_Ne have v(§,) = v(§). The game v is

n=1
continyous if it is continuous at each S in X,




A payoff measure in a game v is a bounded finitely additive measure £: ¥ — R
(not necessarily nonnegative) which satisfies £(T) <v(T). The core of a game v,
denoted by Core(v), is the set of all payoff measures & such that &(S) =v(S) for all
SeX.

As observed by Schmeidler (see the first part of the proof of Theorem 3.2 in
Schmeidler (1972)), if v is continuous at T, then every member of Core(v) is countably
additive.

A game v is convex if for every A,B € X~ we have
VAU B)+v(ANB)2v(A)+ v(B).

It is well known that the core of a convex game is non-empty (see Shapley (1971) for
finite games and Schmeidler (1972) for games with a measurable space of players). We
note that Proposition 3.15 in Schmeidler (1972) implies that a convex game which is
continuous at the grand coalition is continuous at every coalition.

We denote by ba = ba(T,X) the Banach space of all bounded finitely additive
measures on (T,%) with the variation norm. If u is a countably additive measure on
(T,X) we denote by ba(u) = ba(T,2,1t) the subspace of ba which consists of all bounded
finitely additive measures on (7,%) which vanish on the y-measure zero sets in 2. The
subspace of ba which consists of all bounded countably additive measures on (7,2} is
denoted by ca = ca(T,X). If u is a measure in ca then ca( ) = ca(T, X, i) denotes the
set of all members of ca which are absolutely continuous with respect to . Finally, if A
is a subset of an ordered vector space we denote by A, the set of all nonnegative
members of A.

The following fact is a consequence of Theorem 3.10 in Schmeidler (1972), and is

recorded here for later use.




Proposition 2.1

Let v be a continuous convex game on (7,2). Then there exists a measure u € ca,

such that a coalition § € X. is null in v iff u(S) = 0. Moreover, Core(v)C ca, (i) .

§3 - The Main Lemma
In this section we state and prove a lemma concerning continuous convex games

which constitutes the main part of the proofs of our equivalence theorems.

Lemma 3.1

Let v be a continuous convex game on (7,X). Assume that & € ca satisfies &(S) < v(S)

for some S e X. Then there exist Ae 2 and 1 € Core(v) such that:

(3.1) v(A)-&(A)=max{v(C)-&(C)ICe X}.
(3.2) n(A)=v(A)>&(A)and n(B)=2&(B) forall Be X with Bc A.

Proof

We need the following notation: If £ € ca and fis a &-integrable function then the
integral f r fd& will be denoted by &(f).

Let ¢ € ca, beameasure as guaranteed in Proposition 2.1. Let B be the unit ball
of L()=L.(T, X, ). The proof proceeds in several steps.

Step 1: We extend v to a function ¥ defined on B, .

Foreach f e B, let ¥(f)=min{{( f)1{ € Core(v)} (the minimum exists because Core(v)
is a weak*-compact non-empty subset of ba(ut), which is the norm-dual of L, (u)). Since v is
convex, by Proposition 3 in Schmeidler (1986) (see also Theorem 2.2 in Gilboa and Schmeidler

(1995)), for each f e B, we have

R(f)= [ov(teT (1) 2 b

where the integral is a Riemann integral and is known as the Choquet integral of f with




v. In particular for each S € X we have v( x;)=v(S).

In Steps 2-5 we treat the special case when & € ca, ().

Step 2: We prove that ¥ —¢£ attains its maximum on B,.

As Core(v) c ca,(u), by the Radon-Nikodym theorem for each { € Core(v) the
function {(f) = /T fd{ is continuous on B, with respect to the weak*-topology which
is induced by L. (1) on B,. Therefore ¥ is weak*-upper semicontinuous on B,, as it
is the minimum of weak*-continuous functionson B, . As Eeca,(u), v-& isa
weak*- upper semicontinuous function on B,. Now by Alaoglu's theorem B, is
compact in the weak*- topology. Therefore ¥ —¢ attains its maximum on B,.

Step 3: We prove that the maximum in Step 2 is attained at a coalition A .

Let M =max(v —E)(f). Let f*e B, besuchthat M = (v —-E)(f*). For
each0<x <1 fli:?ﬂ. ={teT|f*(t)=x}. Then M = f(j (v—E)NT, )dx and thus
/{j [M~—(v—=EXT,)]Jdx=0. As M 2(v—E)T,) for each 0 <x <1, there is 0 Sx, <1
such that M = (v—E)T, ). Let A= T, . Then v(A) - EA) 27(f) = &(f) for all
feB, .

It is clear that the coalition A found in Step 3 satisfies (3.1). Moreover, since
v(S)>&(S), we have v(A) > &E(A). Ttremains to find 11 € Core(v) which satisfies (3.2).

Step 4: We prove that for each f € B, with f < y, there exists 1 € Core(v) with
n(A)=v(A) such that n(f)=2&(f).

Let f € B, be suchthat f < y,. Denote g =y, — f,and foreach 0 <x </ let
A, ={teAlg(t)2x}. Itisclearthatif x,ye [0,]] andx <y then Ay O A,. Thus
{A, Jo<v<isachainin X Asvis convex, by Corollary 3 in Delbaen (1974), there
exists 17 € Core(v) such that h( A, )=v(A,)foreach0 <x<1. AsA, = A, we have

n(A)=v(A). Now foreach x >0 wehave {reTlg(t)>x}=A,, and so

ng)= [ A dx =) (A, ) =(g).




Thus n(A)~&(A) =v(A)-E§(A)2¥(g)-&(g) =1n(g)—&(g), and therefore
n(A)-n(g)2&(A)-&(g). Since g =y, - f, wehave n(f)2&(f).

Step 5: We prove that the order of the quantifiers in Step 4 can be reversed, that is,
there exists 1) € Core(v) with 1({A)=v(A) that works for all f € B, with f < x4.

Denote B,(A)={fe B, 1f < x4} and C(A)={ne Core(v)In(A)=v(A)}. Then
the sets B, (A) and C(A) are weak*-compact and convex in L (u) and ba(u)
respectively.

Define a real-valued function H on C(A) x B,(A) by H(n,f)=n(f)-&(f).
Then H is affine and continuous in each of its variables separately. Thus the sets C(A),
B, (A) and the function H satisfy the assumptions of Sion’s minmax theorem (see Sion

(1958)), and therefore

(3.3) min  max H(N, f)= max min H(n, f).
feB,(A) neC(A) neC(A) feB,(A)

Now by Step 4, mfin max H(n, ) 2 0 and thus by (3.3), max m;'n H(n, f)=0.
Therefore there exists 1] € CT(7A ) such that H(n,f)=0 forall f 2 B,(A). Itis clear that
n satisfies (3.2).

Step 6: We now show that if £ is in ca, but is not absolutely continuous with
respect to K, then there exist A and 17 such that (3.1) and (3.2) are satisfied.

By the Lebesgue decomposition theorem, there exist two measures, &, and &, in
ca, such thaté =&, + &, where €, is absolutely continuous with respect to 4 and the
measures &, and u are mutually singular. As &(S) < v(S), £,(S) < v(S). As
&, € ca,(u), by what we have already shown, there exist A, € X and 17 € Core(v) such
that v(4,) = &,(A, ) = max{v(C)~E,(C)IC € Z}, N(A,) = v(A) > E,(A,), and
n(B) 2&£,(B) forall Be X with Bc A, . Let C, be a carrier of u such that

E(C,)=0,andlet A=A, NC,. Since C, is a carrier of v, for each C € X we have

v(A) - é(A) =v(A)- éa(A) = V(Ao) - éa(A) 2 V(Ao) - éa(Ao) 2 V(C) - éa(c) 2 V(C) - é(C)
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Hence v(A)—&(A) = max{v(C)-E&(C)IC e X}. So (3.1) is satisfied by A.
Also, n(A)<n(A,)=v(A,)=v(A), andas 1€ Core(v), we have 1(A) =v(A). Finally, if
Be X and Bc A then n(B)=&,(B)=&(B). Thus (3.2) is satisfied by A and 7.

Step 7: We now assume that £ € ca is a signed measure, and show that there exist A
and 77 such that (3.1) and (3.2) are satisfied.

By the Jordan decomposition theorem & =&, +&_, where &, and &_ are the positive
and the negative parts of £ respectively. Let w=v—&_. Then w is convex, continuous
and &,(S) < w(S). Therefore we can apply what we have already shown for the game w
and the measure £, , and this yields the existence of A € X and 1 € Core(v) such that (3.1)

and (3.2) are satisfied. Q.E.D.

§4 - Stability of the Core of Convex Games

The main purpose of this section is to prove that the core of a continuous convex
game on a measurable space of players is a von Neumann-Morgenstern stable set. This
generalizes the result of Shapley (1971) who showed that the core of a convex game
with a finite set of players is a von Neumann-Morgenstern stable set.

A game v on (T,2) is superadditive if v(AU B) 2 v(A)+v(B) whenever A and B
are disjoint coalitions in X. When dealing with von Neumann-Morgenstern stable sets, it
is natural to restrict attention to superadditive games, and we shall do so in this section.
Clearly, a convex game is superadditive.

For a superadditive game v on (7,X) and any coalition S € X, we define

u(S) = inf Sv(S;)
i=]

where the infimum is taken over all countable partitions S;,S;,... of S such that §; € X
for all i. It is easy to verify, using superadditivity, that o, € ca, . Clearly,

0,.(S)<v(S) forall Se X. Intuitively, ,(S) is the amount that the members of S are




11

guaranteed to obtain in v without cooperation. This permits to extend the notion of
individual rationality from finite games. We say that a member & of ba is individually

rational with respect to the game v if £(S) > 0,(S) foreach S € X. The set of all

individually rational payoff measures in a superadditive game v on (T,Z) is denoted by

I(v), ie.,
I(v)={E& e ba, | £ is individually rational and (T ) < v(T )}.

Let v be a game on (T,X). A coalition A in X is a dummy coalition in v if
0,(A) =v(A) and for each coalition B such that A" B = we have
V(AU B)=v(A)+v(B). Observe that a null coalition is also a dummy coalition, but not
vice versa.

We now define a dominance relation on /(v). Let £,n€ I(v)and A € X be a non-
dummy coalition. Then 1) dominates & via A, denoted by >4 £, if n(A) < v(A) and
n(B) > &B) for each Be X such that B c A and B is non-dummy. We say that i)
dominates &, denoted by 1 > &, if there exists a non-dummy coalition A € X such that
n>aé

We note that if v is a superadditive game on (7,%X), and there is a measure 4 on
(T,2) such that y(S) > 0 for each coalition § in 2 which is non-dummy in v (by
Proposition 2.1, for a continuous convex game v such a it always exists), then Core(v)
consists of those & € I(v) for which there isno n e I(v) such that n > & .

We come now to the definition of a von Neumann-Morgenstern stable set:

Let v be a superadditive game on (7,2) . Aset V c I(v) is a von Neumann-

Morgenstern stable set (or simply a stable set) of the game v if:

(4.1) V is internally stable, ic., if £ €V thenthereisno ne V such that n > &

(4.2) V is externally stable, i.e., if £ e I(v)\Vthen thereisn e V such that n > &.
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The main result of this section is:
Theorem A

Let v be a continuous convex game on (T,X) . Then the core of v is its unique

von Neumann-Morgenstern stable set.

Proof

It is sufficient to show that Core(v) is externally stable. Let i € ca, be a measure
as guaranteed in Proposition 2.1. Let & € I(v)\ Core(v). Let S € X be such that &(S) <
v(S).

We first assume that £ € ca,. Let € > 0 be such that &) + €(S) < v(S). Then
by Lemma 3.1 applied to £+ eu € ca, there exist A€ X and1n € Core(v) such that
N(A) = v(A) > E(A) +eu (A) and n(B) 2 &(B) +&eu (B) for all Be X with B C A.
Since 0,(A) < E(A)<v(A), Aisnotadummy inv. Now if BC A is a non-dummy
coalition in v then y (B) > 0, and therefore 7(B) > &(B). Hence, 1 =4 & .

We now assume that & is in ba, but is not countably additive. By Theorem 1.23 in
Yosida and Hewitt (1952), & can be decomposed uniquely into a sum of a nonnegative
countably additive measure £¢ and a nonnegative purely finitely additive measure £7 . As
U € ca,, by Theorem 1.22 in Yosida and Hewitt (1952), there exists an increasing sequence
of sets C,y &  such that €°(C,)= 0 forall n,and lim w(T\C,)=0. Let C= ”C_'}IC,,.
Then u(T\ C)=0. Therefore C is a cairier of v. Foreachnlet §,=5SNC,. Asvis
continuous, [in; (S, )=v(SNC)=v(S). Since &S) < v(S), there exists a natural number &
such that é(.;k7< v(S,). Let D=S,andXp ={Ae X1 Ac D} . Let vp be the restriction
of vito Xp. Itisclearthat v, isa continuous convex game on (D, Xp). As &”vanishes on
X, & coincides with Eon X, Let &f be the restriction of £t Xp . Then
&p eca,(D,Xp) and E(D)=E(D)< v(D). Now we can apply what we have already

shown to the game v b and the measure £, in order to obtain the existence of a non-dummy

coalition A € X1y and a measure { € Core(vp) such that {(A)=v(A) and {(B)> &(B) for all
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Be X with Bc A and u(B)>0. Since v is convex and { € Core(vp ), by Proposition 3.8
in Einy and Shitovitz (1995), { can be extended to a measure 7 on(T,X) such that
ne Core(v). Then 1 >4 & in v and the proof is completed. Q.E.D.

Einy and Shitovitz (1995) showed that the core of a continuous convex game with a
countable set of players on a field of coalitions which contains all the finite sets (not
necessarily a ¢-field) is a von Neumann-Morgenstern stable set. Their result is not
implied by Theorem A, but it also does not imply Theorem A in the case of a countable
set of players.

Let T be the set of natural numbers and X be the set of all subsets of 7. As it was

done in Example 3.5 of Einy and Shitovitz (1995), one can show that the convex game

(s) 1 if T\Sis finite
v(S)= i
0 otherwise
does not have a von Neumann-Morgenstern stable set. Therefore the continuity

assumption in Theorem A is essential.

§5 - Equivalence of th re and the Mas-Colell Bargainin in Convex Games
In this section we extend the definition of the bargaining set in Mas-Colell (1989)

to coalitional games on a measurable space of players and prove that for continuous
convex games the core coincides with the set of all countably additive payoff measures in
the bargaining set. We also give an example which shows that the continuity assumption
is essential, and an example which shows that the bargaining set may strictly include the
core even in a continuous convex game.

Let v be a game on (T,X) and € € ba be a payoff measure in v. An objection to § is
a pair (A,n) such that A€ X and n € ba satisfies n(A) < v(A), n(A)>&(A)and n(B) = &(B)
forall Be X with B.c A. A counter objection to the objection (A,n) is a pair (C,{) such

that:
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(5.1) CeZX Lebaand {(C)<v(C).

(5.2) If Be X satisfies Bc AnCthen {(B)=n(B), and if D € X satisfiesD c C\ A
then {(D) 2 &(D),

(5.3) L(C)>n(ANC)+ EC\A) .

An objection to a payoff measure is called justified if there is no counter objection
to it. The Mas- Colell bargaining set of a game v, denoted by MB(v), is the set of all
payoff measures in v which have no justified objection.

It is known that for finite convex games the bargaining set coincides with the core
(see Proposition 3.3 in Dutta et al. (1989)).

The following example shows that for infinite games the bargaining set may strictly

include the core even when the game is continuous and convex.

Example 5.1

Let T be the set of natural numbers and 2 be the set of all subsets of 7. Define a
game v on (T,2) by v(S)= .2 2 foreach S € X. Itis clear that v is continuous and
convex. Infact,visa countlaebsly additive measure, and hence Core(v)={v}. Let
F={SeXI|T\Sis finite}. Then F is a filter in 2. Let F, be a maximal filter which
contains F. Define a measure £ on Xby &(S)=1if S e F, and &(S) = 0 otherwise.
We show that £ € MB(v). Let(A,n) be an objectionto & Then A=T. Let ieT\ A.
Since &({i})=0 and v({i})> 0, ({i},v) is a counter objection to (A,7), and thus

& e MB(v).
We come now to the main result of this section.

Theorem B

Let v be a continuous convex game on (T,X%). Then
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Core(v) = MB(v)Nca.
The following corollary is an immediate consequence of Theorem B.

Corollary B

Let T be finite, and let v be a convex game on (T,X). Then
Core(v) =MB(v) .

Note that if T is finite and X is the set of all subsets of T then Corollary B follows from

Proposition 3.3 in Dutta et al. (1989).

Proof of Theorem B

From the definition of MB(v) it is clear that Core(v) < MB(v). As v is continuous
Core(v) c ca (see Section 2). Therefore Core(v) c MB(v) N ca. We will show that
MB(v) nca < Core(v). Assume, on the contrary, that there is £ € MB(v) N ca such that
Ea Core(v). As &T) <v(T), there is S € X such that &S) < v(S). Therefore by Lemma
3.1, there exist A€ X and 1 e Core(v) such that (3.1) and (3.2) are satisfied. Clearly,
(A,m) is an objection to & in the game v. We show that (A,n) is a justified objection and
this will contradict the fact that £ € MB(v) . Let C be any coalition in X. Then by the

convexity of v we have
WC)=E(C)SVAUC)-E(AUC)+V(ANC)-EANC)—v(A)+E(A).

By (3.1), v(AUC)=E(AUC) < v(A)—&(A). Therefore v(C)—-E(C)Sv(ANC)-EANC).
As 1€ Core(v), we have v(ANC)<nN(ANC),and thus v(C)S n(ANC)+&EC\A) .
Hence there is no counter objection of C to (A,7n) , and as C was arbitrary, (A,1) is a justified
objectionto & . \ Q.E.D.

We now give an example which shows that the continuity assumption in Theorem B is
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essential.

Example 5.2
Let T be the set of natural numbers and X the set of all subsets of 7. Define a game v on
(T,Z) by

S 1 if T\ S is finite
v(5)= 0 otherwise

Foreach Se X let §(S) = 527", Then Eecaand &g Core(v). We will show that
ies

& e MB(v). Let(A,n) be any objection to & Then T\A is finite. Let i € A. Then

n({i}) > 0. Now it is easy to construct a counter objection of the form (A\{i},{) to (A,n),

and thus & € MB(v).
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