52,622 research outputs found

    Neural Responding Machine for Short-Text Conversation

    Full text link
    We propose Neural Responding Machine (NRM), a neural network-based response generator for Short-Text Conversation. NRM takes the general encoder-decoder framework: it formalizes the generation of response as a decoding process based on the latent representation of the input text, while both encoding and decoding are realized with recurrent neural networks (RNN). The NRM is trained with a large amount of one-round conversation data collected from a microblogging service. Empirical study shows that NRM can generate grammatically correct and content-wise appropriate responses to over 75% of the input text, outperforming state-of-the-arts in the same setting, including retrieval-based and SMT-based models.Comment: accepted as a full paper at ACL 201

    A Compression-Based Toolkit for Modelling and Processing Natural Language Text

    Get PDF
    A novel compression-based toolkit for modelling and processing natural language text is described. The design of the toolkit adopts an encoding perspective—applications are considered to be problems in searching for the best encoding of different transformations of the source text into the target text. This paper describes a two phase ‘noiseless channel model’ architecture that underpins the toolkit which models the text processing as a lossless communication down a noise-free channel. The transformation and encoding that is performed in the first phase must be both lossless and reversible. The role of the verification and decoding second phase is to verify the correctness of the communication of the target text that is produced by the application. This paper argues that this encoding approach has several advantages over the decoding approach of the standard noisy channel model. The concepts abstracted by the toolkit’s design are explained together with details of the library calls. The pseudo-code for a number of algorithms is also described for the applications that the toolkit implements including encoding, decoding, classification, training (model building), parallel sentence alignment, word segmentation and language segmentation. Some experimental results, implementation details, memory usage and execution speeds are also discussed for these applications

    MEANING IN TRANSLATION

    Get PDF
    Translation is a kind of process. It is not regarded as the product. The process of translation is decoding the source language text to find the meaning. After that, encoding the meaning in the target language text. The process of decoding and encoding meaning in the translation process is not a simple activity. there are many considerations that have to be taken into account. Meaning equivalence has to be maintained well. Because of that, decoding and encoding the meaning must be done properly. In finding the meaning of the source language text, it is not enough to pay attention merely on the referential meaning. the connotative meaning plays important role in gaining the right meaning. After getting the meaning of the source language text, maintaining meaning equivalence in target language can be difficult. There are problems that might rise the difficulty in finding the meaning equivalence. The problems are the difference of language system, the difference of culture, the various meanings embedded by a word, and the lack of generic-spesific word relationship

    Long-distance quantum communication over noisy networks without long-time quantum memory

    Full text link
    The problem of sharing entanglement over large distances is crucial for implementations of quantum cryptography. A possible scheme for long-distance entanglement sharing and quantum communication exploits networks whose nodes share Einstein-Podolsky-Rosen (EPR) pairs. In Perseguers et al. [Phys. Rev. A 78, 062324 (2008)] the authors put forward an important isomorphism between storing quantum information in a dimension DD and transmission of quantum information in a D+1D+1-dimensional network. We show that it is possible to obtain long-distance entanglement in a noisy two-dimensional (2D) network, even when taking into account that encoding and decoding of a state is exposed to an error. For 3D networks we propose a simple encoding and decoding scheme based solely on syndrome measurements on 2D Kitaev topological quantum memory. Our procedure constitutes an alternative scheme of state injection that can be used for universal quantum computation on 2D Kitaev code. It is shown that the encoding scheme is equivalent to teleporting the state, from a specific node into a whole two-dimensional network, through some virtual EPR pair existing within the rest of network qubits. We present an analytic lower bound on fidelity of the encoding and decoding procedure, using as our main tool a modified metric on space-time lattice, deviating from a taxicab metric at the first and the last time slices.Comment: 15 pages, 10 figures; title modified; appendix included in main text; section IV extended; minor mistakes remove
    corecore