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Abstract: A novel compression-based toolkit for modelling and processing natural language text is
described. The design of the toolkit adopts an encoding perspective—applications are considered to
be problems in searching for the best encoding of different transformations of the source text into the
target text. This paper describes a two phase ‘noiseless channel model’ architecture that underpins
the toolkit which models the text processing as a lossless communication down a noise-free channel.
The transformation and encoding that is performed in the first phase must be both lossless and
reversible. The role of the verification and decoding second phase is to verify the correctness of the
communication of the target text that is produced by the application. This paper argues that this
encoding approach has several advantages over the decoding approach of the standard noisy channel
model. The concepts abstracted by the toolkit’s design are explained together with details of the
library calls. The pseudo-code for a number of algorithms is also described for the applications that the
toolkit implements including encoding, decoding, classification, training (model building), parallel
sentence alignment, word segmentation and language segmentation. Some experimental results,
implementation details, memory usage and execution speeds are also discussed for these applications.

Keywords: text compression; text processing; encoding; decoding

1. Introduction

This paper describes the design and implementation of a compression-based toolkit for text
processing. The toolkit can be applied to any type of text (for example, source code, terminal
session transcripts, and bibliographic references) since it involves the application of text compression
algorithms designed for general text. However, this paper will focus specifically on its application to
natural language processing (NLP) and the processing of written natural language text.

The toolkit is based on an earlier Application Programming Interface (API) designed by Cleary &
Teahan [1] for modelling sequential text using text compression models. The purpose of the toolkit
is to simplify the design of applications where textual models are needed such as text compression,
categorisation, and segmentation, by shielding the user from the details of the modelling and
probabilistic estimation process. Another purpose is to enable different implementations of models to
be replaced transparently in application programs. The design behind the toolkit is probabilistic: that
is, it supplies the probability of the next symbol in the sequence. It is general enough to deal accurately
with Markov-based models that include escapes for probabilities such as the Prediction by Partial
Mapping (PPM) text compression scheme [2,3].

During the development of the API and earlier versions of the toolkit, it became apparent that
broadening its scope to encompass a much wider range of text operations was possible. It was found
that many of the API-based programs that were devised had remarkable similarities in the underlying
source code—despite the programs being complex, only a few changes were needed to define the key
differences between the applications [4]. These observations have led to the creation of the Tawa Toolkit
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described in this paper. (Tawa is a common broadleaf tree found in New Zealand. The acronym stands
for Text Analyser from Waikato since it was first developed at Waikato University, and subsequently
improved over two decades at Lund, Robert Gordon and Bangor Universities.) The toolkit is now
available for download (https://bangoroffice365-my.sharepoint.com/:f:/g/personal/eesa0e_bangor_
ac_uk/Ej-84lAJuUNOuSVz44daZCIBt__4NQyanF_5qH8FLSJaIQ?e=rFNW3P) and is a comprehensive
extension of the original Cleary & Teahan API and an updated version of the TMT toolkit [4] that was
based on the API. The toolkit provides a powerful method for classifying, mining and transforming
text. The purpose of this paper is to describe the design and implementation behind the toolkit
including its architecture, libraries, and sample applications.

The contributions of this paper are as follows:

• The compression-based architecture which underpins the toolkit, and how it differs from the
standard architecture for NLP, the noisy channel model, is fully described for the first time.
This paper explains the encoding approach taken by the toolkit’s architecture as opposed to the
decoding approach of the noisy channel model and how it provides a wider range of processing
possibilities.

• This paper is the first to discuss in detail the toolkit’s libraries, including the methods and objects
used. The toolkit provides an extensive update of previous versions including an overhaul of the
transformation libraries that simplifies and consolidates the processes previously used.

• The algorithms behind each of the toolkit’s main applications are also described for the first time.

This paper is organised as follows. In the next section, we detail the design of the toolkit and its
underlying architecture. The toolkit’s libraries are detailed in Section 3 and sample methods discussed
in Section 3.1. The pseudo-code for nine applications built using the libraries that demonstrate how
they work are detailed in Section 4. This section also discusses sample use, implementation details,
memory usage, execution speeds and search algorithms used. These applications provide useful tools
for many NLP operations that have often produced state-of-the-art experimental results as detailed
in previous publications listed in Section 5. The paper then discusses related work and provides
a conclusion and discussion of future work in the final section.

2. The Toolkit’s Design

In this section, the overall design of the Tawa toolkit shown diagrammatically in Figure 1 is
described. The aim of the toolkit is to simplify the conceptualisation and implementation for a broad
range of text mining and NLP applications involving textual transformations. The toolkit presently
consists of eight main applications (align, classify, codelength, decode, encode, markup, segment
and train). These applications are built using three libraries—TXT for text-based operations, TLM for
language modelling operations, and TTM for transformation operations.

Underlying the design of these libraries and applications is a novel compression-based architecture
called the “Noiseless Channel Model” to distinguish it from the standard “Noisy Channel Model”.
The key insight is that each application performs a search to find the best encoding of the target
message rather than performing a decoding of the observed message. The noisy channel model is
a common architecture for many NLP applications, such as OCR, spelling correction, parts-of-speech
(POS) tagging and machine translation [5]. In this architecture, applications are formulated as a
communication process with the source text conceptualised as being sent down a communication
channel by the sender, with the receiver trying to recover the original message in the presence of noise
by correcting the observed text that is received. This process of text correction involves the search for
the most probable corrected target text which is often referred to as decoding (see Figure 2a). Note that
the correct source text is unknown—the search process for the target text makes a best guess as to what
it might be.

https://bangoroffice365-my.sharepoint.com/:f:/g/personal/eesa0e_bangor_ac_uk/Ej-84lAJuUNOuSVz44daZCIBt__4NQyanF_5qH8FLSJaIQ?e=rFNW3P
https://bangoroffice365-my.sharepoint.com/:f:/g/personal/eesa0e_bangor_ac_uk/Ej-84lAJuUNOuSVz44daZCIBt__4NQyanF_5qH8FLSJaIQ?e=rFNW3P
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Figure 1. A diagrammatic overview of the Tawa Toolkit and its design.

The noisy channel model leads to robust and effective performance for many NLP tasks despite it
being perhaps a rather arbitrary and abstract characterisation for NLP. As an alternative, we wish to
adopt language models based on well performing text compression techniques such as PPM which
have already been found to be highly effective in many NLP applications [4,6–11]. Therefore, we have
also investigated in previous research [4] an alternative design perspective with an emphasis based on
encoding rather than decoding. This has culminated in the architectural design shown in Figure 2b.
This design adheres to two main principles—the communication process must be both lossless and
reversible. A lossless encoding by definition is reversible with no loss of information, with no noise
being added to the message being transmitted. Note that any transformation that occurs prior to the
encoding in our approach also needs to be reversible. This is so that there is no loss in information
during the communication in order to ensure the message is transmitted correctly and as efficiently as
possible and this can be verified during decoding.

The Tawa toolkit based on this architecture has now gone through several design cycles
culminating in the latest version of the toolkit described in this paper. In this updated toolkit, an NLP
process is not thought of as being one of noisy communication, therefore requiring a decoding process
to recover the original message. Instead, the approach taken by the toolkit is to characterise an NLP
process as a noiseless or noise-free communication. In this setting, the sender will search for the
best encoding of the target message and this is then transmitted losslessly down the communication
channel. In this case, the decoding process is of secondary importance, mainly to verify the encoding
process—the emphasis instead is placed on how efficiently the target message can be encoded.
Also encoded is additional information on how to transform the source message into the target
message. In this case, the search process—that of finding the best transformation, plus the information
required to transform between them—occurs prior to the encoding phase rather than during the
decoding phase. (See Figure 2b).
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Figure 2. Two architectures for NLP: (a) the standard decoding-based ‘Noisy Channel Model’ versus
(b) the encoding-based ‘Noiseless Channel Model’ adopted by the Tawa Toolkit.

Following the workflow in the figure, the sender first starts from a known source text and
transforms it in some way (as shown by the dark gray box labelled ‘Transform’) into the target
text. This is the text that is the desired output for some application (such as compression, text
mining, spelling correction, machine translation and so on). In order to illustrate the variety of
possible transformations which includes but goes beyond those traditionally covered by the noisy
channel model, some example transformations are listed below. (The first two examples below are
transformations possible using a related tag insertion approach [12] that was similar to what was
implemented in an earlier version of the toolkit. However, the subsequent examples above go beyond
the tag insertion approach and are used to illustrate what is possible in the updated toolkit):

• inserting markup tags into the text (called tag insertion), such as to indicate where different
languages are in the text for language segmentation [7,13];

• inserting extra characters, such as spaces for word segmentation [9];
• changing the alphabet, such as replacing common character bigraphs or word bigrams with new

symbols to aid compression [6,14];
• transforming the text into a grammar, such as for grammar-based compression [15];
• encoding extra information such as POS tags for POS tagging and tag-based compression [6,16];
• switching between models used to encode each symbol in the text [7,17].
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The transformations are done in such a way that they are reversible (as shown by the line labelled
‘Reverse transform’ in the figure). If tags or spaces are added, for example, then these can simply be
removed to recover the original source text without any loss of information. If the alphabet is altered,
then there is a one-to-one mapping between the old and new alphabets so that the original source text
is easily recoverable. This property of reversibility ensures that information is communicated losslessly.

The target text is then encoded to produce the compressed target text (as depicted by the dark gray
box labelled ‘Encode’). A search process shown in the figure by the rightmost arrow is used to find the
most compressed text by repeatedly trying out different variations of the transformation (for example,
by inserting or not inserting spaces after each character if performing word segmentation). This search
can be thought of as the transformation & encoding phase whose purpose is to generate a suitable
target text. This search may also require extra transformations in order to ensure that the encoding
is fully reversible (for example, reversible word segmentation requires replacing any existing spaces
with another unique character so that the original text can be unambiguously recovered).

The remaining parts of the workflow shown in the figure is the verification & decoding phase.
This step is not necessarily needed depending on the application since just producing the target
text will usually be sufficient in order to complete the task(s) required. However, as argued below,
verification is of fundamental importance in ensuring the output is correct. This is done by sending the
compressed target text down a noise-free communication channel, and then checking that the decoded
target text matches the original target text.

Mahoui et al. [4] pointed out that the noiseless channel model could be viewed simply as “the noisy
channel model in another guise”. This is because the search processes (e.g., the Viterbi algorithm [18])
produce a similar result with the best target text being found in both cases. However, as Mahoui et al.
have argued, there are important differences. Firstly, when designing text compression systems, it is
well-known that the encoding and decoding processes are not necessarily equivalent (for example,
often either the encoding or decoding process can take noticeably longer as further effort is required to
maintain probability tables in the form required for coding).

Secondly, the perspective has changed from correcting ‘noise’ (which is just one approach to NLP)
to one of efficiently encoding the source text plus further information to transform the message into
the target text (which can be considered an equally plausible alternative approach to NLP).

Thirdly, as stated, the decoding process for the noiseless channel model provides a means for
physically verifying the correctness of the communication. That is, we can directly apply standard
techniques used for lossless text compression by checking that we can directly encode and decode
the target message to and from a file on disk. (That is, there is a physical measurable object that
exists in the real world). The noiseless channel model makes it clear that all information must be
transmitted. Many current approaches using the noisy channel model base the decoding on implicit
information and make the assumption that this information has little or no effect on the accuracy of the
transformation. This may be correct, or erroneous, but this first needs to be verified, which is one of the
main arguments for supporting the alternative approach in Figure 2b. All necessary information must
be encoded explicitly otherwise it would not be possible to get the decoder to work. As a consequence,
the encoding codelengths (how much it takes in bits to physically encode the information) becomes
a useful and verifiable means for measuring the effectiveness of the language models being used.

And fourthly, the changed perspective opens up further possibilities for improved language
models based on models found effective for lossless text compression, such as: alternative encoding
methods, not necessarily probabilistic, e.g., the Burrows Wheeler Transform [19] and Lempel-Ziv
methods [20,21]; methods for preprocessing the text prior to encoding [22,23]; and hybrid methods for
combining or switching between models [17,24].

It is also clear from Figure 2 that the source text for the noiseless channel model is known when it
is encoded which contrasts with the noisy channel model where the original source text is unknown.
This is a fundamental difference that must be considered when designing applications based on
these two architectures. In the noiseless case, the designer has access to all the information from the
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source text (since it is known) during the search which may be significantly more efficient as a result.
For example, one method found effective at improving compression of natural language text is to
replace common bigraphs with new single unique symbols prior to compression [15,23]. This is a very
straightforward task for an encoder working from a known source to find the most common bigraphs.
However, bigraph replacement at the decoding stage is not possible in the same way since the original
source text is not known.

3. The Toolkit’s Libraries

In this section, the libraries provided with the toolkit are described. As with the original Cleary
and Teahan API [1] whose design the libraries are based upon, the intention of the libraries is to
shield the user from details of the modelling and probability estimation process. A primary goal is
to allow the rapid prototyping of applications where the use of textual models is needed, such as
text compression, text classification, text mining, and text correction, with a minimal amount of code
needed for implementation.

Table 1 lists the objects the libraries use and their description. When compared to standard text
operations that most programming languages provide, the Symbol and Text objects have a similar
functionality to characters and strings, and the File object is closely related to its programming
language equivalent. However, the Symbol object provides a much greater range of symbol numbers
for the developer to use rather than just the 256 possibilities that 8-bit ASCII characters provide
(for example, the current toolkit implementation supports symbol numbers up to a maximum just
below 231 for PPM models). Although the Text object provides similar operations that strings do in
standard programming languages, the length of the text is not restricted and can be varied at run-time
by some operations such as appending onto the end of the text.

The toolkit defines various further complex objects such as Model and Coder that facilitate the
design of context-based modelling and compression-based applications and are used for specifying
the ‘model’ and ‘coder’ that are at the heart of these types of compression applications (and are to
be treated as ‘black box’ by developers in order to avoid the very complex details that are associated
with their implementation). Rissanen and Langdon [25] have noted the important distinction between
modelling and coding, and the toolkit uses this insight in its design. Uniquely, the toolkit also explicitly
incorporates a Context object (this is similar to that used in pseudo-code for an adaptive statistic
encoder and decoder proposed by Teahan [6] (p. 112)) as well in its design to aid in the traversal of the
model and the probability estimation process as the text is processed sequentially.

The final Trans f orm is an object whose purpose is to ease the design of applications requiring some
form of transformation on the text such as used for correction-based or ‘tag insertion’ style algorithms
(i.e., insertion of markup tags). The type of search algorithm, such as the Viterbi algorithm [18]
or the stack decoding algorithm [26], is specified when the Trans f orm object is created. Specific
transformations of the form source text → target text are then added to the object. These specify
the source text sequence that must be matched before the target sequence is generated. Multiple
transformations will generate multiple paths in the search tree. A similar convention used for regular
expressions is used here to represent (and match) the source and target text. For example: a wildcard
form can be used to match any character; ranges denoted by [. . .] denote character disjunction; and
functions can also be used to match character sequences. A method is used to start the transformation
process using a specific Model object to define what model to use for the encoding of the corrected
target sequence and this can be called multiple times for different Model objects. Another method
is then called to perform the transformation process which returns a transformed Text object upon
completion which represents the most compressed transformed target sequence found by the search.
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Table 1. A summary of the objects used by the toolkit’s libraries.

Object Description

Symbol

A symbol is a number that is being modelled. It is represented in C as an unsigned int. There is
no specific notion of what a symbol means. However, it is restricted by the alphabet size (A)
when a model is created. e.g., A = 256 is used for ASCII text; A = 0 means an unbounded
alphabet used for words. The mapping between symbols and text characters is user-defined
such as ASCII byte values or a different mapping (for example, required for UTF-8 coded text).

File A file is associated with a physical file on disk. It is used to open, read and load text files.

Text A text is used for storing a sequence of symbols. They are essentially variable length arrays
of symbols.

Model

A model provides predictions for sequences of symbols. It has an alphabet size (A) and order
(O) associated with it. A model can also be static or dynamic. They are used for specifying the
type of language model being used and the type of operations being performed (such as a
PPM [2,3] language model).

Coder A coder is used for encoding and decoding a sequence of symbols from compressed files on
disk using an arithmetic coder, for example, or a range coder.

Context
A context is used for accessing and updating a model. The coding context is updated from the
symbols that have just been encoded. (For a PPM model, the maximum length of the context is
fixed as specified when the model is created).

Transform
A ‘transform’ defines a possible transformation for altering or correcting the sequence.
These are used for defining and performing transformations on the text such as used for
correction-based or ‘tag insertion’ style algorithms (i.e., insertion of markup tags).

3.1. A Selection of Methods Provided by the Toolkit’s Libraries

Table 2 provides a selection of the main methods provided by the libraries for each of the seven
types of objects described in the previous section. Space precludes listing all the methods provided by
the toolkit which can be found by downloading the software distribution. The table lists methods for
each object type in alphabetical order. The C function name used in the libraries and its arguments are
listed in column three of the table. Note that the prefixes TLM, TXT and TTM used in the function names
are used to signify the library being used for language modelling operations, text-based operations
and transformation operations respectively. Column one lists the main type of object being operated
upon, and column two lists the type of object returned by the method. (Here Void indicates the method
returns nothing, Unsign. Int. indicates the method returns an unsigned integer, Trans f orm a transform
object, Boolean a Boolean and Char a character with the other return types being one of the toolkit’s
object types).

A brief description of these methods for each of the toolkit’s object types now follows:

• Methods for Symbol objects: TLM_decode_symbol (Model, Context, Coder) returns the symbol
decoded using the arithmetic Coder and also updates the Context for the Model so that the last
symbol in the context becomes the decoded symbol. TLM_encode_symbol (Model, Context,
Symbol, Coder) encodes the specified Symbol using the arithmetic Coder and also updates the
Context for the Model so that the last symbol in the context becomes the encoded symbol.
TXT_sentinel_symbol() returns the “sentinel symbol”. This is used where there is a break
required in the updating of the context, such as when the end of text has been reached or when
more than one model is being used to encode different parts of a text. The effect of encoding the
sentinel symbol is that the prior context is forced to the null string i.e., the subsequent context
will contain just the sentinel symbol itself. This is useful during training if there are statistics that
differ markedly at the start of some text than in the middle of it (for example, individual names,
and titles within a long list).

• File methods: TXT_close_file (File) closes the File and releases memory used by the file
object. TXT_open_file (Filename, Mode, ...) opens the file named Filename with the specified
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Mode and creates and returns a file object for the file. TXT_readline_file (File, Text) loads
the Text using the next line of input from the File. It returns the last character read or EOF.
TXT_write_file (File, String) writes out the String to the File.

• Text methods: TXT_create_text() creates and returns a text object for storing, accessing and
updating a string of symbols. TXT_is_alphanumeric (Symbol) returns True if the Symbol is an
alphanumeric character. TXT_load_text (File) creates and returns a new text object, loading it
using text from the File (assuming standard ASCII text. TXT_length_text (Text) returns the
length of the Text. TXT_release_text (Text) frees the memory used by the Text.

• Model methods: TLM_create_model (ModelType, Title, . . . ) creates and returns a new empty
dynamic model of the specified type ModelType, Title (such as TLM_PPM_Model for a PPM
model) and other parameters depending on the ModelType. TLM_load_model (File) loads
a model which has been previously saved to the File into memory and allocates it a new
model object which is returned. TLM_next_model() returns a model object for the next valid
model in the list of models that have been loaded into memory (or Nil if there are none).
TLM_release_model (Model) frees the memory used by the Model. TLM_reset_model()

resets the current model so that the next call to the method TLM_next_model will return the first
valid model in the list of models that have been loaded into memory (or Nil if there are none).
TLM_write_model (File, Model, ModelForm) writes out the Model to the File (which can then be
loaded by other applications later). The argument ModelForm must have the value TLM_Static
or TLM_Dynamic and determines whether the model is static or dynamic when it is later reloaded
using the method TLM_load_model.

• Coder methods: TLM_create_arithmetic_decoder (SourceFile, CompressedFile) creates
an arithmetic coder object used for decoding from the compressed file CompressedFile back
to the source file SourceFile. The method TLM_create_arithmetic_encoder (SourceFile,
CompressedFile) creates an arithmetic coder object used for encoding from the source file
SourceFile to the compressed file CompressedFile. TLM_release_coder (Coder) frees the
memory used by the Coder.

• Context methods: TLM_create_context (Model) creates a context object for the Model used
during operations such as encoding, decoding and update on which predictions of the upcoming
symbol are made. TLM_update_context (Model, Context, Symbol) updates the Context for the
Model using the current Symbol. TLM_release_context (Model, Context) frees the memory
used by the Context for Model.

• Trans f orm methods: TTM_add_transform (Trans f orm, Codelength, SourceFormat− String,
Trans f ormFormatString, . . . ) adds the formatted correction to the Trans f orm object.
The argument SourceFormatString is the format of the original text begin corrected;
Trans f ormFormatString is the format of the text it will be corrected to; and Codelength is
the cost in bits of making that correction when the text is being corrected or marked up.
TTM_create_transform (Trans f ormAlgorithm, . . . ) creates and returns a transform object
which can be used to transform or “mark up” text. The argument Trans f ormAlgorithm
specifies the type of search algorithm to use such as TTM_Viterbi. TTM_perform_transform
(Trans f orm, SourceText) creates and returns a text object that contains the result of the search
for the most compressible SourceText when corrected according to the transform object and
models associated with it. TTM_release_transform (Trans f orm) frees the memory used by
the Trans f orm. TTM_start_transform (Trans f orm, Type, SourceText, Model) starts a new
search process for correcting or marking up the SourceText using the specified Model by applying
the transforms specified by the Trans f orm. This routine must be called at least once before
TTM_perform_transform. Multiple calls to this procedure will cause separate transform paths
to be initiated for each of the specified models.
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Table 2. A selection of methods provided by the toolkit.

Object Returns C Function Name and Arguments

Symbol Symbol TLM_decode_symbol(Model, Context, Coder)
Void TLM_encode_symbol(Model, Context, Symbol, Coder)
Symbol TXT_sentinel_symbol()

File Void TXT_close_file(File)
File TXT_open_file(Filename, Mode, . . . )
File TXT_load_text(File)
Char TXT_readline_file(File, Text)
Void TXT_write_file(File, String)

Text Text TXT_create_text()
Boolean TXT_is_alphanumeric(Symbol)
Unsign. Int. TXT_length_text(Text)
Void TXT_release_text(Text)

Model Model TLM_create_model(ModelType, Title, . . . )
Model TLM_load_model(File)
Model TLM_next_model()
Void TLM_release_model(Model)
Void TLM_reset_model()
Void TLM_write_model(File, Model, ModelForm)

Coder Coder TLM_create_arithmetic_decoder(SourceFile,
CompressedFile)

Coder TLM_create_arithmetic_encoder(SourceFile,
CompressedFile)

Void TLM_release_coder(Coder)

Context Context TLM_create_context(Model)
Void TLM_release_context(Model, Context)
Void TLM_update_context(Model, Context, Symbol)

Transform Void TTM_add_transform(Trans f orm, Codelength,
SourceFormatString, Trans f ormFormatString, . . . )

Trans f orm TTM_create_transform(Trans f ormAlgorithm, . . . )
Text TTM_perform_transform(Trans f orm, SourceText)
Void TTM_release_transform(Trans f orm)
Void TTM_start_transform(Trans f orm, Type, SourceText, Model)

4. Sample Applications Provided by the Toolkit

This section gives sample pseudo-code for the following nine applications:

1. a method that encodes symbols using the PPM compression scheme (Algorithm 1);
2. a context-based encoding method (Algorithm 2);
3. a context-based decoding method (Algorithm 3);
4. a context-based method for computing compression codelength without coding (Algorithm 4);
5. a context-based method for building (“training”) models (Algorithm 5);
6. a compression-based method for text classification (Algorithm 6);
7. a compression-based method for verifying sentence alignment in a parallel corpus (Algorithm 7);
8. a compression-based method for performing word segmentation on a text file (Algorithm 8);
9. a compression-based method for performing language segmentation on a text file (Algorithm 9).

These examples are used to illustrate the use of methods from the toolkit’s libraries. Also, a further
purpose of the examples is to illustrate the brevity of the solutions especially the algorithms for word
segmentation and language segmentation considering the complexity of each of these applications
which is hidden to the most extent from the developer.
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In addition, these algorithms adopt the key insight of separation of encoding into modelling and
coding processes as proposed by Rissanen and Langdon [25] which was an important and seminal
contribution for the field. There are a number of papers that have improved on this simple design in
often subtle ways that at first glance seem trivial (see, for example, [6,27]). These subtle variations are
also very important contributions to the field. We argue that the algorithms included in this paper also
provide similar subtle variations that can be considered contributions in the same vein.

4.1. A PPM Encoder

The method PPMEncodeFile as detailed in Algorithm 1 encodes symbols (such as bytes or
characters) in an input file using the PPM compression scheme. The input file is passed to the method
as the argument SourceFile with the compressed output file specified by the argument CompressedFile.

Algorithm 1: A method for order 5 PPMD encoding

1 method PPMEncodeFile (SourceFile, CompressedFile)
2 Model = TLM_create_model (TLM_PPM_Model,“Title”, 256, 5,“D”, True, True);
3 Coder = TLM_create_arithmetic_encoder (SourceFile, CompressedFile);
4 EncodeFile (SourceFile, Model, Coder);
5 TLM_release_model(Model);
6 TLM_release_coder(Coder);
7 end

The variable Model specifies the model number of the PPM compression language model—this
number is returned by the call to TLM_create_model for creating a new dynamic PPM model (line 2).
The arguments to the call specify the model’s title, that the alphabet size is 256, that the order of
the model is 5, that escape method D is being used (that is, the model is PPMD), and that both full
exclusions and update exclusions are being used. As an alternative, TLM_load_model can be used
to load an existing static or dynamic model directly from disk rather than have it created as this
method does.

The variable Coder is set to the coder number of the arithmetic coder created for the method that is
returned by the TLM_create_arithmetic_encoder method (line 3). The coder is used to perform
the arithmetic encoding and decoding used for encoding and decoding a stream of bits that represent
the PPM model’s predictions to a compressed file on disk.

Algorithm 1 calls the EncodeFile method (line 4) which is defined in Algorithm 2 and described
in the next subsection. The method finishes by releasing the memory allocated to the Model and
Coder that were created (lines 5 and 6). These release methods are necessary for implementations in
programming languages that do not automatically free memory on exit of the method. Many of the
objects used by the toolkit (such as the Context, Model, Coder and Trans f orm objects) require complex
multiple data structures for implementation and can take up considerable resources when many
objects are created during Viterbi-style search operations, for example. Freeing up these resources
is non-trivial and dedicated methods for performing these operations are required and therefore
explicitly defined by the toolkit.

4.2. Context-Based Encoding and Decoding

Algorithms 2 and 3 provides pseudo-code for context-based encoding and decoding of a file
respectively. They assume that a Model has already been created or loaded and a Coder has been
created prior to these methods being called with these being passed as arguments. The encoder
requires the input file (SourceFile) as an argument, and the decoder requires the compressed file
(CompressedFile) as an argument.
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Algorithm 2: A context-based method for encoding

1 method EncodeFile (SourceFile, Model, Coder)
2 Context← TLM_create_context (Model);
3 for each Symbol in SourceFile do
4 TLM_encode_symbol (Model, Context, Symbol, Coder)
5 end
6 TLM_encode_symbol (Model, Context, Coder, TXT_sentinel_symbol());
7 TLM_release_context (Context);
8 end

Algorithm 3: A context-based method for decoding

1 method DecodeFile (CompressedFile, Model, Coder)
2 Context← TLM_create_context (Model);
3 while Symbol ← TLM_decode_symbol (Model, Context, Coder) != TXT_sentinel_symbol() do
4 Output Symbol
5 end
6 TLM_release_context (Context);
7 end

Both methods require that a Context variable be created first using the TLM_create_context
method (lines 2). Then each symbol is processed sequentially, either encoded using the
TLM_encode_symbol method (line 4, Algorithm 2) or decoded using the TLM_decode_symbol

method (line 3, Algorithm 3). (These methods also update the Context at the same time for the current
symbol. The Context is released just before the end of both methods).

Both methods process symbols sequentially which are specified using the variable Symbol.
The way a file is preprocessed (during encoding) and postprocessed (during decoding) is user-defined.
Symbols for English text are usually mapped directly to the ASCII byte values of the characters in the
file. For Unicode (e.g., UTF-8) encoded files, on the other hand, a different mapping is required. Further
preprocessing/postprocessing of the symbol stream may also be performed such as replacement of
common bigraphs [6,14,15] (also see Section 5 below) as this can often lead to improved compression.
However, these steps are not detailed in Algorithms 2 and 3.

The special sentinel symbol (returned by TXT_sentinel_symbol) has been used to signify the
end of the encoding stream and is encoded once all the other symbols in the file have been encoded
(line 6, Algorithm 2). It is a unique character which effectively expands a model’s alphabet by one
that is encoded at the end of an encoding stream and forces the model to back off to the default
order -1 context. The decoder simply decodes symbols until the sentinel symbol is decoded (line 3,
Algorithm 3). An alternative way of encoding the end of the stream which the toolkit implements is to
encode the length of the stream at the beginning using (for example) a start-stop-step encoder [28].
However, this requires a first pass through the stream being encoded to find its length, and using
a unique extra symbol such as TXT_sentinel_symbol does not incur much overhead except for the
cost of the escapes down to the order −1 context and the cost of encoding this symbol in the lowest
order context which is ameliorated by PPM’s full exclusions mechanism.

4.3. Calculating Compression Codelengths without Coding

The method CodelengthText in Algorithm 4 calculates the compression codelength for a text
object without performing any coding operation. It is similar to the encoding and decoding methods
above, except that it uses the routine TLM_update_context to update the model (line 5) instead
of either TLM_encode_symbol or TLM_decode_symbol as above. The argument Model specifies



Information 2018, 9, 294 12 of 29

the language model being used. The text SourceText passed as an argument would usually have the
sentinel symbol marking the end of the text so therefore this does not need to be explicitly processed
at the end of the stream (as was the case with Algorithm 2). The variable Codelength (line 2) is used
to accumulate the totals of the compression codelengths as each symbol in the text is processed. It is
returned by the method at the end (line 9). The codelength values that are the cost of encoding
each symbol are obtained by accessing the variable TLM_codelength (see line 6) and reflect the
theoretically optimum encoding of each symbol for which the actual (physical) encoding to disk
using an arithmetic coder is a very close approximation [27,29]. This method can be used to speed
up processing as it does not perform any physical coding and has wide applications. A variant
of the algorithm has been used to perform the automatic cryptanalysis of transposition ciphers,
for example [30].

Algorithm 4: A context-based method for computing compression codelength without coding

1 method CodelengthText (SourceText, Model)
2 Codelength← 0.0;
3 Context← TLM_create_context (Model);
4 for each Symbol in SourceText do
5 TLM_update_context (Model, Context, Symbol);
6 Codelength += TLM_Codelength;
7 end
8 TLM_release_context (Context);
9 return Codelength;

10 end

4.4. Building Models

The method TrainFile in Algorithm 5 builds (or ‘trains’) a model from the text in the file
SourceFile passed as an argument. The way the algorithm works is similar to Algorithm 5 above as it
uses TLM_update_context (line 4) to process each symbol sequentially (line 3) without performing
any coding. However, no codelength calculations need to be performed in this case since all we are
doing is building a model.

Algorithm 5: A context-based method for building models

1 method TrainFile (SourceFile, Model, ModelType, ModelFilename)
2 Context← TLM_create_context (Model);
3 for each Symbol in SourceFile do
4 TLM_update_context (Model, Context, Symbol)
5 end
6 TLM_update_context (Model, Context, TXT_sentinel_symbol());
7 TLM_release_context (Context);
8 TLM_write_model (ModelFilename, Model, ModelType);
9 end

The method can be used to build a dynamic model (which keeps on being updated when further
files are processed at a later time) or a static model (which does not subsequently change and therefore
will always give the same probability estimates). This explains the need for the argument Model to
specify an already existing model which may be dynamic. (It will have been initially created using a call
to TLM_create_model similar to that on line 2 in Algorithm 1). The argument ModelType specifies
whether the model is dynamic or static. The model is written out to the file named ModelFilename
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(using the call to TLM_write_model on line 8) and can be latter loaded directly using a call to
TLM_load_model without the need for symbol processing. (Note that the size of a model, such as
a PPM model, will usually be significantly smaller than the size of the text used to train it, even for
higher order models).

Once a dynamic model is written out as a static model, it cannot be subsequently updated.
The use of static models can lead to better performance in some tasks (such as text classification) and
optimisation of model memory allocation and data structures can be performed once it is known that
the model will not be updated in the future.

Usually the symbols in the text will be processed directly from the source training file
(from SourceFile) rather than from an intermediate text (from SourceText). For example, in the
following text classification application, compression codelength calculations for multiple models
need to be performed on the same source file, and therefore it is more efficient to load the source file
once into a text object and have it available for subsequent processing without the need for further I/O
operations being performed on the same file.

4.5. Text Classification

The method ClassifyFile in Algorithm 6 performs text classification on a text file. It classifies
the file SourceFile by finding which model compresses the text in the file best. This symbol-based
method of text classification has been found to be competitive in many classification tasks compared
to standard feature-based (word) classification schemes often with state-of-the-art results [31]. It has
been used to accurately identify the natural language in which the source text is written [32], and to
identify the most likely author of the text [17], for example. Recent results have shown that it can
classify gender [33], recognise emotions [34] and even identify whether the text has been written by
a person who is dyslexic or not [35].

Algorithm 6: A compression-based method for text classification

1 method ClassifyFile (SourceFile)
2 BestCodelength← 0.0;
3 BestModelTitle← NULL;
4 SourceText← TXT_load_text (SourceFile);
5 TLM_reset_model ();
6 while Model ← TLM_next_model () do
7 Codelength← CodelengthText (SourceText,Model);
8 if (BestCodelength = 0.0) or (Codelength < BestCodelength) then
9 BestCodelength← Codelength;

10 BestModelTitle← TLM_get_title (Model);
11 end
12 TXT_release_text (SourceText);
13 return BestModelTitle;
14 end

The method calls TLM_reset_model and TLM_next_model to cycle through all the models that
have previously been loaded into memory (lines 5 and 6). The compression codelength is calculated
on line 7 by calling the CodelengthText method that was defined in Algorithm 4. TXT_load_text
is used to load the source file once into the text object SourceText (line 4). Note that the routine
TXT_load_text appends the sentinel symbol onto the end of the text.

The method works by cycling through all the models to compute their compression codelengths
on the source text, and returns the title (obtained using the call to TLM_get_title on line 10) of the
best performing model.
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4.6. Verifying Sentence Alignment of a Parallel Corpus

The method VerifyParallelFiles in Algorithm 7 checks the quality of sentence alignment
between two files (File1 and File2) in a parallel corpus. It assumes that the corpus has already
been aligned and the purpose of this method is to verify its quality prior to being used to build
language models for statistical machine translation. The method also assumes that the sentences
in the two different languages are on corresponding separate lines in the two files. Therefore,
the TXT_readline_file (line 5) is being used to read each line of the two files simultaneously
into two text objects Text1 and Text2.

The method CodelengthText from Algorithm 4 is used to calculate the compression
codelengths of the two sentences in Text1 and Text2 according to the models Model1 and Model2
respectively. In order for this method to be effective, it requires the two models to be separately trained
on a large amount of text that is representative of the respective languages. Recent research [36,37] has
shown that comparing compression codelength in this manner is an effective way for verifying that
corresponding sentences are aligned, as well as measuring the quality of translation.

The method specifically computes the codelength ratio (CR) measure on lines 9 to 12 which is
the maximum of the two ratios Codelength1/Codelength2 and Codelength2/Codelength1. This ensures
that CR is always greater than or equal to 1.0. A value of 1.0 indicates that the two codelengths
are the same value and values close to or equal to 1.0 provide strong evidence that the sentences
are probably aligned. This is based on the assumption that the information (from an information
theoretical sense) between corresponding sentences that are co-translations should be the same or
similar, and compression codelength provides an excellent means for measuring the information [37].

Algorithm 7: A compression-based method for verifying parallel sentence alignment

1 method VerifyParallelFiles (File1,File2, Model1, Model2, CRThreshold)
2 Text1← TXT_create_text ();
3 Text2← TXT_create_text ();
4 LineNo ← 0;
5 while TXT_readline_file (File1, Text1) and TXT_readline_text (File2, Text2) do
6 LineNo ← LineNo + 1;
7 Codelength1← CodelengthText (Text1,Model1);
8 Codelength2← CodelengthText (Text2,Model2);
9 if Codelength1 > Codelength1 then

10 CR← Codelength1/Codelength2
11 else
12 CR← Codelength2/Codelength1
13 if CR > CRThreshold then
14 Output “Check alignment for Line ” LineNo
15 end
16 TXT_release_text (Text1);
17 TXT_release_text (Text2);
18 end

The method on line 13 compares CR to a threshold CRThreshold which is passed as an argument.
If CR exceeds this threshold, then a message is output with the line number of the suspicious sentence
(line 14). Values of 1.8 and above for CRThreshold have been found effective at locating unsatisfactory
translations in experiments with Chinese/English [37] and Arabic/English [36] parallel corpora.
These experiments also show that codelength-based measurements are more effective than sentence
length-based measurements for verifying sentence alignment.
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4.7. Word Segmentation

The method WordSegmentlFile in Algorithm 8 performs word segmentation on the file
SourceFile. Specifically, it will insert spaces into the file which usually contains no spaces to indicate
where the words are. Word segmentation is an important NLP application for languages that are
not naturally word segmented such as Chinese. The method shown in Algorithm 8 is based on the
PPM-based word segmentation method [9] that has been used as a baseline model for an international
evaluation on Chinese word segmentation [38].

The method uses a transform object Trans f orm to perform the segmentation. It is created on
line 3 using TTM_create_transform which specifies that the Viterbi search algorithm be used to
find the best segmentation (as measured by the sequence of text with spaces inserted which has the
lowest compression codelength). The method then specifies using TTM_add_transform that two
transformations be used for the search (lines 4 to 8). This defines the cost of the transformation
in codelength (second argument to TTM_add_transform), the symbol sequence that needs to
be matched (third argument) specified using a printf-like string syntax borrowed from the C
programming language, and the transformed sequence (fourth argument) also specified using
printf-like string syntax. The first transformation added to the transform model in the method on
line 4 specifies that whatever the current symbol is (using the wildcard “%w” for the third argument to
indicate that any symbol should be matched), it should always be included unchanged as one pathway
in the search tree. This is because the wildcard “%w” is also being used for the fourth argument
meaning that whatever symbol matches it should be transformed unchanged. Line 4 is typically found
in most transform-based applications since usually the original text symbols need to form one search
pathway rather than be totally discarded and/or transformed into something else.

Algorithm 8: A compression-based method for word segmentation

1 method WordSegmentFile (SourceFile, Model, Alphanumeric?)
2 SourceText← TXT_load_text (SourceFile);
3 Trans f orm← TTM_create_transform (TTM_Viterbi);
4 TTM_add_transform (Trans f orm, 0.0, “%w”, “%w”);
5 if not Alphanumeric? then
6 TTM_add_transform (Trans f orm, 0.0, “%w”, “%w ”);
7 else
8 TTM_add_transform (Trans f orm, 0.0, “%f”, “%f ”, TXT_is_aplhanumeric);
9 TTM_start_transform (Trans f orm, Trans f ormType, SourceText, Model);

10 Trans f ormText← TTM_perform_transform (Trans f orm, SourceText);
11 TTM_release_text (SourceText);
12 TTM_release_transform (Trans f orm);
13 return Trans f ormText;
14 end

The method uses the argument Alphanumeric? to indicate which of the second transformations
(line 6 or line 8) should be applied to the search. If this argument is not true, then a space symbol is
inserted prior to each symbol (there is a space included at the beginning of the transformed sequence
“ %w” for the fourth argument on line 6). This transformation would typically be used for word
segmentation of Chinese text, for example, since in this case, we would wish to search through all
the possible insertions of spaces after each of the symbols in the text. If the argument Alphanumeric?
is true, on the other hand, the transformation on line 8 specifies that spaces only be inserted after
alphanumeric characters as a possible search pathway (using the “ %f” option for the matching
and transformed sequences to specify that the function TXT_is_alphanumeric be used to match
the symbol). This transformation is a useful optimisation if English text without spaces is being
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segmented (by finding where to put the spaces back) since it will substantially reduce the search as
non-alphanumeric characters will remain unchanged and not cause an extra pathway to be added to
the search tree.

The effect of having two transformations used in this method is that two search pathways
will be generated for every symbol being transformed. Hence, the maximum size of the search
tree is essentially 2n where n is the number of symbols being transformed. The search is started
using TTM_start_transform on line 9 which initialises the search for the best transformation
of the SourceText using the Model. The Viterbi algorithm that is executed by the operation
TTM_perform_transform (line 10) substantially reduces this search using trellis-based techniques
and other optimisations so that for Markov-based models (such as PPM models) the search is
completed essentially in linear time. The method returns the transformed text Trans f ormText
which has the best compression codelength compared to alternatives once the search performed
by TTM_perform_transform has been completed.

4.8. Language Segmentation

The method LanguageSegmentlFile in Algorithm 9 performs language segmentation. That is,
it marks the boundaries between different languages in the same file. This is an important NLP
application for texts that contain multiple languages which are not explicitly marked up, and also for
languages where code-switching is common, for example Arabic and Welsh, as an important early
step that should be performed on the NLP pipeline.

Algorithm 9: A compression-based method for language segmentation

1 method LanguageSegmentFile (SourceFile)
2 SourceText← TXT_load_text (SourceFile);
3 Trans f orm← TTM_create_transform (TTM_Viterbi);
4 TTM_add_transform (Trans f orm, 0.0, “%w”, “%w”);
5 TLM_reset_model ();
6 while (Model ← TLM_next_model ()) do
7 TTM_add_transform (Trans f orm, 0.0, “%w”, “%m%w”, Model);
8 end
9 TLM_reset_model ();

10 while (Model ← TLM_next_model ()) do
11 TTM_start_transform (Trans f orm, Trans f ormType, SourceText, Model);
12 end
13 Trans f ormText← TTM_perform_transform (Trans f orm, SourceText);
14 TTM_release_text (SourceText);
15 TTM_release_transform (Trans f orm);
16 return Trans f ormText;
17 end

The method creates a transform object Trans f orm on line 3 and specifies that the Viterbi algorithm
be used to perform the search for the best transformation. The method then adds a transformation
using TTM_add_transform on line 4 that uses the wildcard “%w” form to ensure that the current
symbol unchanged is included as one of the search pathways. Then the “%m” form is inserted as an
alternative pathway for each model that has been loaded into memory (lines 5 to 8). This form states
that for the transformed text, the model which is passed as the argument to TTM_add_transform on
line 7 will be used to predict subsequent symbols in the transformed text.
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As with the previous word segmentation in Algorithm 8, the effect of having the transformations
used in this method is that multiple search pathways will be generated for every symbol being
processed. In this case, all possible segmentations of the text using the models that have been loaded
will be searched. Hence, the maximum size of the search tree in this case is mn where m is the
number of models used and n is the length of the text. The search for the best transformation of the
SourceText is started using TTM_start_transform for each model on line 11. Again, the Viterbi
algorithm which is executed by TTM_perform_transform (line 13) substantially reduces the search
using trellis-based techniques and other optimisations and the method returns the transformed text
Trans f ormText which has the best compression codelength once the search has been completed.

4.9. Applications Implemented by the Toolkit

The algorithms detailed above have all been implemented using the Tawa toolkit’s libraries in the
C programming language. Table 3 summarises these applications that come bundled with the toolkit.
The table lists for each application its name (in bold font), a short description (in bold and italic fonts),
the algorithms detailed above they are based on and selected arguments. The encode, decode and
train applications for PPM compression, decompression and model building, for example, use similar
arguments which specify amongst other things the argument size, order of the model, and whether the
model performs full exclusions and update exclusions. The train application has additional arguments
for specifying the title of the model, and whether the model should be written out as a static model.
The markup and segment applications use arguments for specifying whether Viterbi search should be
adopted, and the stack depth if the stack algorithm should be used instead.

These application arguments provide a wide range of possible settings that have proven to be
very effective in many NLP experiments as summarised in Section 5. Many further possible uses still
exist for these applications which have the advantage that they can be used “off-the-shelf” without the
need to perform any further development using the toolkit’s libraries.

Table 3. Applications implemented by the Tawa toolkit with selected arguments.

align—tool for verifying sentence alignment (based on Algorithm 7)
-1 fn (fn = parallel text filename for language 1) -2 fn (fn = parallel text filename for
language 2) -3 fn (fn = model filename for language 1) -4 fn (fn = model filename
for language 2)

classify—tool to classify text files (uses Algorithms 4 and 6)
-m fn (fn = filename for list of models) -t fn (fn = filename for list of test files)

codelength—writes out compression codelengths (uses Algorithms 4 and 6)
-c (print outs codelengths for each character) -e (calculates cross-entropy and not
codelength) -m fn (fn = filename for list of models)

decode—PPM decoder (decompression tool) & (uses Algorithm 3)
encode—PPM encoder (compression tool) (uses Algorithms 1 and 2)

-a n (n = size of alphabet) -e c (c = escape method for the model) -F (does not
perform full exclusions) -m fn (fn = model filename) -N (input is unsigned integers)
-O n (n = max order of model) -p n (report progress every n symbols) -U (does not
perform update exclusions)

markup—segments a file by languages (uses Algorithm 9)
-D n (n = stack depth) -m fn (fn = model filename) -V (Use Viterbi algorithm)

segment—segments a file by words (uses Algorithm 8)
-A (Alphanumeric characters only) -D n (n = stack depth) -m fn (fn = model filename)
-N (input is unsigned integers) -V (Use Viterbi algorithm)

train—builds PPM models (uses Algorithm 5)
same arguments as for encode and decode plus:
-S (writes out the model as a static model) -T str (title of the model)
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Some examples of shell commands and output using these applications are shown in Table 4.
The purpose of including these here is to demonstrate typical use and also some of the possibilities
offered by the commands. Line 1 provides an example of typical use for the encode application. In this
case the raw text from the million-word Brown corpus of American English [39] in the file Brown.txt
is being encoded (compressed) to the file Brown.encoded using the order 5 PPMD algorithm (which
is the default) with an alphabet of 256. Some summary data is output when the program completes
such as the number of input bytes, the number of output bytes and the compression ratio of 2.152 bpc
(bits per character). Line 2 provides the command that can be used to decode (decompress) the encoded
file, and the diff command on Line 3 confirms that the decoded file is the same as the original file
since no differences are produced as output.

Table 4. Sample commands and output using applications implemented by the toolkit.

1 encode -a 256 -O 5 <Brown.txt >Brown.encoded
bytes input 5998525 bytes output 1613517 2.152 bpc

2 decode -a 256 -O 5 <Brown.encoded >Brown.decoded
3 diff Brown.decoded Brown.txt
4 train -S -a 256 -O 5 -e D -T "Brown model" <Brown.txt >Brown.model

Trained on 5998525 symbols
5 encode -m Brown.model <LOB.txt >LOB.encoded

bytes input 5877271 bytes output 1609902 2.191 bpc
6 encode -a 256 -O 5 <LOB.txt >/dev/null

bytes input 5877271 bytes output 1565250 2.131 bpc
7 codelength -e -m models.txt <Brown.txt

English 3.514
French 5.421
German 5.618
Italian 5.664
Latin 5.400
Maori 5.820
Spanish 5.602
Minimum cross-entropy for English = 3.514

8 segment -m Brown.model -V -i woods_unsegm.txt -o woods_segm.txt
9 diff woods_segm.txt woods_correct.txt

< Of easy wind and down yflake
> Of easy wind and downy flake

10 markup -m models.txt <e_and_m.txt -V -F
<Maori>TE MANUHIRI TUARANGI </Maori><English>AND MAORI INTELLIGENCER
LET THE PAKEHA AND THE MAORI BE UNITED.
Salutations to you friends the Maori people of New Zealand! Chiefs and
commoners, great and small, old and young salutations to you all !
It is customary among the Maories to welcome the advent of a stranger
With cries of </English><Maori>Haere mai! Haere mai! </Maori><English>
The welcome is commenced with the approach
of the visitor, and is prolonged until he has fairly entered the Kainga,
Now therefore, the </English><Maori>Manuhiri Tuarangi </Maori><English>
awaits the welcome of the Maori people.

Line 4 provides an example of how the train command can be used to build a model. In this
case, the Brown corpus is being used to train a static order 5 PPMD model which is written out to
the file Brown.model when the command completes. Line 5 loads the model directly into memory
(without the need for processing the original training text which is much slower), and then uses it
to encode another text, the raw text from the million-word LOB corpus of British English [40] in the
file LOB.txt with a compression ratio of 2.191 bpc for the encoded output file LOB.encoded. Line 6
encodes the LOB corpus directly without loading a model, therefore will use a dynamic model that
adapts to the text being encoded (i.e., at the beginning, the model is empty but is updated as the text is
processed sequentially). The compression ratio of 2.131 for this adaptive approach is slightly better
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than the static approach used in Line 5 despite the dynamic model being empty at the start. This is a
typical result for PPM models and reflects the effectiveness of these models at adapting quickly to the
specific nature of the text. Also, the earlier language in the source document (British English in this
case from the LOB corpus) is often a better predictor of subsequent text in the same document rather
than using some other source to prime the encoding model in advance (American English from the
Brown corpus).

Line 7 provides an example of the use of the codelength tool. This application computes the
compression codelength without the need for performing any physical coding which is much slower
since it requires performing I/O operations. In the example, a list of models trained on Bibles in
various languages (English, French, German, Italian, Latin, Māori and Spanish) is specified in the text
file (models.txt). These models are loaded and then the compression cross-entropies for each of
these models is calculated for the source text (the Brown corpus). The output clearly shows that the
English Bible model is a better predictor of American English with a compression ratio of 3.514 bpc
compared to the compression ratios produced by models for the other languages (all above 5.4 bpc).

The command on Line 8 uses the segment tool to perform word segmentation using the Viterbi
algorithm on a sample text (woods_unsegm.txt) which contains the text for Robert Frost’s poem
Stopping by Woods on a Snowy Evening with spaces removed. The Brown corpus model is used as the
training model. The output text file produced by the tool is then compared to the correct text using the
diff command on Line 9. The output produced shows that the word segmentation tool has made just
one mistake: “down yflake” instead of “downy flake”.

The language segmentation tool is being used on Line 10. In this case, the same Bible models
specified in the file models.txt that were used on Line 7 are used again to define the possible
languages for the segmentation, with the Viterbi search being used to find the most compressible
sequence for all possible segmentations of languages at the character level. The output produced on
the sample text (an extract from the Māori-English Niupepa collection from the NZ Digital Library [41]
from the mid-19th to early-20th centuries) shows that only two languages were detected (Māori
and English) and the other languages did not appear in the final segmented text that was output.
The output shown contains only one error (“Kainga” should be tagged as Māori text).

4.10. Implementation Details, Memory Usage and Execution Speeds

This section discusses some implementation details for the toolkit applications, as well as their
typical memory usage and execution speeds. Table 5 provides execution speeds and memory usage
for the commands in Table 4 (ignoring commands 3 and 9 which do not use any of the toolkit’s
applications). The execution speed is calculated from the average of 10 runs of the command on a
MacBook Pro (15-Inch Retina display running OSX El Capitan Version 10.11.6 with 2.5 GHz Intel Core
i7 processor and 16 GB 1600 MHz DDR3 memory). The memory usage is provided in megabytes and
represents the maximum resident set size as reported by the /usr/bin/time -l command.

Table 5. Average execution speeds across 10 runs and memory usage (maximum resident set size) for
the commands in Table 4.

Command 1 2 4 5 6 7 8 10

Avg. exec. speed (secs) 7.272 8.041 7.124 5.027 7.217 60.029 0.185 1.586
Memory usage (MB) 21.05 21.07 21.65 14.17 21.95 56.60 14.36 34.18

From the average execution speeds in Table 4, commands 1 and 2 show that for the Brown corpus,
unprimed encoding is slightly faster than decoding (7.3 s as opposed to 8.0 s). This is a typical result
for PPM compression and is due to way the arithmetic coding ranges are decoded by the toolkit.
(This result backs up the statement in Section 2 concerning that “the encoding or decoding process
are not necessarily equivalent”). In the PPM case, the encoding process is usually quicker but this
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depends on the implementation. The average speed for command 4 shows that building a model from
the Brown corpus takes a similar amount of time to the encoding. This is because the text processing
is similar, and the difference is because the train command needs to perform I/O to write out the
model at the end whereas the encoding program needs to write out the arithmetic encoding stream
as each symbol in the text is processed one-by-one. The result for command 5 shows that using
a static (pre-primed) model for encoding purposes is significantly quicker than using a purely adaptive
dynamic model (5.0 s versus 7.2 s for command 6). Command 7 loads seven static models and uses
each of them to process the Brown corpus text and therefore this takes considerably longer than the
other commands as the Brown corpus is processed multiple times using the approach adopted in
Algorithm 6. The results for Commands 9 and 10 shows that word segmentation is very fast (just 0.18 s),
and language segmentation is also relatively fast (1.6 s). The slower time for the latter is because the
branching factor of the tree being searched is seven (for the seven Bible models in different languages)
as opposed to just two for the word segmentation problem.

Referring to the memory usage figures in Table 4, commands 1, 2, 3 and 6 all use similar amounts
of memory as they need to build in memory a dynamic PPM model for either the Brown corpus or
the LOB corpus. Commands 5 and 9 in contrast load a static model of the Brown corpus, so hence
use significantly less memory (roughly 14 Mb as opposed to 21 or 22 Mb). Command 7 needs to load
the seven static Bible models so therefore uses the most memory of any of the commands; similarly,
command 10 also needs to use the same seven models but uses less memory (34 Mb as opposed to
56 Mb) as the text being processed is much smaller.

Table 6 lists the sizes (in bytes) of some sample texts including the Brown and LOB corpora,
the English and Latin bibles, and the Wall Street Journal (WSJ) texts from the Tipster corpus available
from the Linguistic Data Consortium. The sizes (in bytes) of the static or dynamic PPMD models for
different orders when trained on the texts using the toolkit’s train tool are listed in the table (in columns
4 and 6). These models store the trie data structure that records all the contexts in the training text and
their predictions (i.e., using the frequencies of symbols that follow the context) up to the maximum
order of the model. So an order 6 model, for example, will contain information about all contexts of
lengths 6 down to 0 plus their predictions. The symbol frequencies stored in the trie are used by the
toolkit’s libraries for estimating probabilities and for arithmetic coding purposes. In order to reduce
the size of the dynamic model as it is being updated, each dynamic model also maintains pointers
back into a copy of the input text when a context becomes unique and this is stored in conjunction
with the model’s trie data structure.

Table 6. Sizes (in bytes) of text and models, average training execution speeds (in seconds) and dynamic
model compressed input percentages for various sample texts.

Text Size Order Static Size Avg. Time Dynamic Size Avg. Time Comp. Input
(Bytes) (Bytes) (Seconds) (Bytes) (Seconds) (%)

LOB corpus 5,877,271 6 23,114,666 7.859 41,067,518 8.279 16.23
LOB corpus 5,877,271 5 12,815,126 6.811 22,667,634 7.177 8.35
LOB corpus 5,877,271 4 5,766,170 6.101 10,141,414 6.476 3.39
LOB corpus 5,877,271 3 1,920,470 5.996 3,350,666 6.023 0.96
Brown corpus 5,998,525 6 24,168,398 7.734 42,957,274 8.343 16.73
Brown corpus 5,998,525 5 13,357,088 7.512 23,628,424 7.892 8.54
Brown corpus 5,998,525 4 5,979,854 6.061 10,515,322 6.517 3.43
Brown corpus 5,998,525 3 1,993,502 6.170 3,477,030 6.468 0.97
Brown corpus × 2 11,997,050 5 18,679,790 8.050 31,132,970 8.461 0.00
Brown corpus × 3 17,995,575 5 18,679,790 8.544 31,132,970 8.815 0.00
English Bible 4,138,511 5 4,523,104 2.927 7,846,200 3.035 2.79
Latin Bible 3,399,860 5 4,229,580 2.454 7,324,732 2.520 3.04
Tipster WSJ 132,193,779 5 53,915,630 233.626 95,069,366 223.100 1.48

Also included in the table are two further texts added for illustration purposes to highlight aspects
of the static and dynamic model mechanisms provided by the toolkit. The first, indicated by ‘. . .× 2’ in
the table, is for when a dynamic model was first created from the Brown corpus and written out, then
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the same Brown corpus text was added again after the model was reloaded by the train tool, and then
eventually the model was written out to a different model file (either as a static or dynamic model).
The second, indicated by ‘. . .× 3’ in the table, is for the case when the Brown corpus was used three
times to train the final model.

The table also provides average execution times to build the models across 10 runs (on the same
MacBook Pro used for the experiments reported in Table 4) in columns 5 and 7 for static and dynamic
models respectively. In general, the time for building a static model takes roughly 1 MB per second
and is on average slightly quicker than for building a dynamic model. However, the time required to
build models will depend on the complexity of the model and the length of the text with the models
trained on repeated Brown corpus text, for example, being more complex and therefore slower to build,
and the order 5 model for the much longer Tipster WSJ text having a much faster build rate of 1.85 MB
per second.

For the model sizes, the results show that the sizes of the model grow substantially with order,
but the rate of growth in model size reduces with higher orders. For example, for the Brown and LOB
corpus, the size of the order 6 models is just under twice the size of the order 5 models. This compares
with order 4 models being roughly three times the size of the order 3 models. Experiments with
PPM models show that model size eventually plateaus even with higher orders [6] (pp. 138–139).
A comparison between the static model sizes and the dynamic model sizes shows that the former is
consistently between 0.56 and 0.6 of the latter. This is due to the method used to prune the dynamic
model’s trie stored in the model when it is written out to a file on disk in static form. The size of the
static models compared to the size of the Brown and LOB source texts ranges from approximately four
times for the order 6 models, twice for the order 5 models and down to once and 0.3 times for the order
4 and 3 models respectively. With much larger training size, however, the ratio of the model size to
text size reduces significantly. For example, for the Tipster WSJ text, the size of the static order 5 model
is pruned down to just 0.4 of the size of the text.

Further pruning is also possible when a dynamic model is written out in dynamic form as opposed
to static form. When the model is written out as a dynamic model, the copy of the input text that is
stored in the model can be substantially pruned by removing those parts which no longer have any
possibility of being required for future updates of the trie (since the model has a fixed maximum order
and the maximum depth of the trie has already been reached for some contexts). The trie pointers
have to be changed to point at the new positions in the pruned input text copy. This pruning can lead
to substantial reductions in the size of the models being stored. The percentages of the input text that
need to be kept are shown in the last column of Table 6. For example, when the order 6 models of the
Brown and LOB corpora are written out in dynamic form, the input text copy stored in the model can
be pruned to just over 16% of the training text size. This reduces even more to roughly 8% for order
5 models, 3% for order 4 models and just under 1% for order 3 models which represents a substantial
reduction for these models whose training texts are close to 6 Mb in size. When the training text is
much longer, as for Tipster WSJ, then a much greater percentage of the input text can be pruned out
(over 98% with just 1.48% remaining). For the cases where the Brown corpus text is used to update
a dynamic model twice or three times, then the entire input text copy can be pruned away (i.e., 0%
remains) since all leaf nodes in the trie are at maximum depth according to the maximum order of the
model with all contexts now being repeated.

4.11. Search Algorithms

The Tawa toolkit implements several search algorithms for the method that is used to search
for the best transformation TTM_perform_transform method). Various search algorithms can be
used to prune the search space produced when the transformations specified by one or more calls
to the TTM_add_transform method. Both the Viterbi dynamic programming algorithm [18] and
the stack decoding algorithm [26] have been implemented in the toolkit and are available for the
developer to trade off accuracy, memory and execution speed. The Viterbi algorithm guarantees that
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the segmentation with the best compression will be found by using a trellis-based search—all possible
segmentation search paths are extended at the same time and the poorer performing alternatives that
lead to the use of the same conditioning context are discarded.

One of the drawbacks of the Viterbi algorithm is that it is an exhaustive search rather than
a selective one, unlike sequential decoding algorithms commonly used in convolutional coding which
rely on search heuristics to prune the search space [42]. Teahan et al.’s [9] Chinese word segmentation
method used a variation of the sequential decoding algorithm called the stack algorithm—an ordered
list of the best paths in a segmentation tree is maintained, and only the best path in terms of some
metric is extended while the worst paths are deleted. The metric they used was the compression
codelength of the segmentation sequence in terms of the order 5 PPMD model. This variation has also
been implemented in the toolkit.

In the stack algorithm’s ordered list, paths vary in length (essentially, it is like a best first
search whereas the Viterbi search is more like a breadth first search). For deleting the worst paths,
the traditional method is that the list is set to some maximum length, and all the worst paths longer
than this length are deleted. For Teahan et al.’s [8] PPM word segmenter and in the toolkit, another
variation was used instead. All the paths in the ordered list except the first one were deleted if the
length of the path plus m was still less than the length of the first’s path, where m is the maximum order
of the PPM model. The reasoning behind this pruning heuristic is that it is extremely unlikely (at least
for natural language sequences) that the bad path could ever perform better than the current best path
as it still needs to encode a future m characters despite being already worse in codelength. One further
pruning method was also found to significantly improve execution speed. As for the Viterbi algorithm,
poorer performing search paths that lead to the same conditioning context are discarded. However,
unlike the Viterbi algorithm, search paths vary in length, so only poorer performing search paths with
both the same length and conditioning context are discarded. These heuristics have been implemented
in the toolkit.

In order to illustrate some important aspects of the search process, Figure 3 provides examples
of initial search trees for the segment and markup tools for the small sample text ‘the’. The search
tree for this text for the word segmentation problem (using the tool segment) is shown in the left box
of the figure. The transformed sequences delimited by quotes ‘’ are shown in each node of the tree
with an underscore being used (to make it more visible) to indicate where a space has been inserted
into the sequence. The root node is for the start of the search where no symbol has been inserted yet.
The branching factor of the tree is two as there are two possible transformations—the symbol being
processed in the source text is kept unchanged (as represented by the gray nodes); and a space is added
after the symbol being processed (as represented by the hashed nodes). So, for example, there are two
nodes at level 1 of the tree. Here the first symbol to be processed is the letter ‘t’. Two possible search
paths are generated—one for the letter unchanged (‘t’) and one with a space added to it (‘t_’). At the
next level, two further nodes are added for each node at level 1, so there are four nodes at level 2,
and consequently 8 nodes at the next level and so on.

The search tree for the language segmentation problem (using the tool markup) is shown in
the right box. The tree in this example also has a branching of two as only two transformations
are being used here for the languages being segmented—English and Māori. Hence the search
process is analogous to the word segmentation problem—instead of a space being added or not,
the transformation simply decides to encode the symbol being processed using the English model
for the gray nodes or using the Māori model for the hashed nodes. The subscripts shown in the
transformed sequences within each node indicate which model was used to code each symbol—the
subscript ‘E’ if the English model was used and the subscript ‘M’ if the Māori model was used instead.
If a symbol switches coding from one model to the other, then the sentinel symbol is encoded which
will incur a significant cost as it will have to back off to the null context as a result.

Shown to the right of each node in both trees is the compression codelength for the transformed
sequence as calculated by the toolkit (based on a static order 5 PPMD model trained on the Brown
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corpus for the left box, and static order 5 PPMD models trained on the English and Māori bibles for
the right box). The smallest codelength for each level of the tree is shown in bold font. Note that these
trees show the complete search tree as if a breadth-first search was being applied. In reality, many of
the nodes in the full trees would be pruned away depending on the search algorithm being applied
based on these compression codelength values. (For example, for the Viterbi algorithm, all nodes at
the same level of the tree with the same conditioning context for the maximum order of the model
would be pruned away except for the one with the lowest codelength).

Figure 3. Search trees for the sample text ‘the’ for the word segmentation problem (on the left) and
for the language segmentation problem (on the right). The compression codelengths in bits for the
different sequences are shown on the right of each node with the minimum shown in bold font at each
level of the tree.

Table 7 lists some experimental results for the two search algorithms implemented by the
toolkit—the Viterbi algorithm and the stack algorithm. In this case, the segment tool was used
to segment the first 10,000 words of the unsegmented LOB corpus using a static order 5 PPMD model
trained on the Brown corpus with the train tool. Shown in the table are the following: a description of
the algorithm used (including the size of the stack if the stack algorithm was used); the Levenshtein
editdistance (e) between the correct LOB source text and the output produced by the tool (where
the cost of a deletion and an insertion was counted as 1, and of a substitution as 2); the editdistance
accuracy as a percentage calculated as 100− 100× e/N where N was the size of the source text; the
average time in seconds to complete the segmentation task for 10 runs on the MacBook Pro; and the
number of nodes that were generated in the search tree as a measure of the memory used. The results
show that the Viterbi algorithm produces the least number of errors, and the number of errors reduces
with a larger stack size for the stack algorithm as expected. However, the time and memory results
show that a smaller stack size runs more quickly (twice as fast when the stack size is only 5) and uses
less memory but at a cost in reduced accuracy. Therefore, if speed and/or memory is a concern (when
processing many texts or texts that are much larger in size), then accuracy can be traded for improved
speed and memory by choosing the stack algorithm. These results mirror those published for the
Chinese word segmentation problem using an earlier version of the toolkit [7] and confirm that the
latest version produces similar behaviour.
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Table 7. Results from using various search algorithms for the segment tool to segment the first
10,000 words of the unsegmented LOB corpus using a static order 5 PPMD model trained on the Brown
corpus with the train tool.

Algorithm Editdistance Edistance Accuracy (%) Average Time (Seconds) Number of Nodes

Viterbi 493 99.17 2.657 2,391,680
Stack (size = 5) 787 98.69 1.315 2,338,160
Stack (size = 10) 620 98.96 2.339 2,345,280
Stack (size = 20) 568 99.05 4.369 2,348,080
Stack (size = 50) 533 99.11 10.386 2,443,560

5. Experimental Results Obtained Using the Toolkit

This section provides a summary in Table 8 of a selection of published experimental results that
were produced using the applications in the toolkit. The table lists the following: the publication;
the toolkit tools that were used to obtain the experimental results; the specific application area, such as
emotion recognition in text, gender and authorship categorisation and so on; and selected results
(detailing accuracy, precision and recall where applicable on the various tasks). The purpose is to show
the wide variety of application areas that the toolkit can be applied to and also to provide supporting
evidence of the effectiveness of the algorithms detailed in Section 4. For example, the classification
results achieved using the classify tool consistently outperform well-known feature-based approaches
such as SVM and Naïve Bayes in many application areas. The reader should refer to the publications
directly for full details concerning the experimental methodology involved and the results obtained.

Table 8. A summary of selected experimental results produced using the toolkit.

Reference Tools Used Application Area Selected Results

Alamri and Teahan [35] classify, train Classifying dyslexic text 100% accuracy on English and Arabic texts

Al-Kazaz et al. [30] codelength, train Cryptanalysis of transpos- ition ciphers 100% decryption of 90 cryptograms;
0.963 recall and precision after space insertion

Alkahtani et al. [36] align, train English-Arabic bilingual sentence
alignment

100% at identification of satisfactory and
unsatisfactory English-Arabic translations

Alkhazi and Teahan [13] classify, markup, train Classifying and segmenting Arabic text Acc. 96%, prec. 0.96, recall 0.96 at classifying
classical Arabic and Modern Standard Arabic

Al-Mahdawi and Teahan
[34] classify, train Emotion recognition in text Acc. 96%, prec. 0.90, recall 0.99 at classifying

Ekman’s 6 emotions in LiveJournal blogs

Altamimi and Teahan [33] classify, train Gender and authorship categorisation of
Arabic tweets

Acc., prec. recall: 91%, 0.89, 0.93 for gender
classification; 96%, 0.96, 0.94 for authorship

Liu and Teahan [37] align, train English-Chinese bilingual sentence
alignment

94% at identification of satisfactory and
unsatisfactory English-Chinese translations

Mahoui et al. [4] markup, train Identification of gene function in
biological publications

Prec., recall for identication of gene functions:
0.89 and 0.85; 0.85 and 0.94

Teahan and Aljehane [15] encode, decode Grammar-based compression Improvement in compression between 11%
and 20% on the Calgary Corpus

Teahan and Alhawiti [23] encode, decode Compression of natural language text
Improvement in compression over standard
PPM (e.g., 25% for Arabic, 35% Russian,
32% Persian)

6. Related Work

Many different toolkits, suites, architectures, frameworks, libraries, APIs and/or development
environments have been produced over the years for NLP purposes and more specifically for statistical
NLP. The use of these terms to describe the functionality and nature of the various NLP systems
and approaches have often been inconsistent in the literature. For example, Cunningham [43] stated
for the GATE system—a general ‘architecture’ for text engineering—that it “is generally referred to as
an ‘architecture’, when, if we were a little more pedantic, it would be called a framework, architecture and
development environment”. The meaning of the term ‘framework’ in software engineering has also
evolved over the years—its more specific meaning in recent years requires that a framework has the
key characteristic of ‘inversion of control’ where a framework must handle the flow of control of the
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application. This characteristic is not appropriate for the design used for the Tawa toolkit’s libraries
which do not handle the flow of control in many of its applications (except for when Trans f orm objects
are used). The meaning of the term ‘architecture’ is clearer in the literature—it involves the abstract
design concepts and structures behind an application. For these reasons for the work described in this
paper, the well accepted terms toolkit, libraries and architecture have been used to describe the system,
and its design and implementation.

Table 9 lists a selection of systems that have been developed for NLP. The table lists the name of
the system, a reference, the type of system described using terms used by the developers of the system
and the language(s) in which the system has been developed. The table illustrates that there have
been many systems developed to date in a number of different programming languages with Java
predominating. The preferred type of system is a toolkit and/or an external library being available.
These systems in general provide a suite of tools for various applications, such as tokenisation,
classification, POS tagging, named entity recognition and parsing being the ones provided the most.

Table 9. Some systems for NLP and their details.

System Reference Type of System Language(s)

CoreNLP [44] suite of tools Java
FreeLing [45] library C++
GATE [43] architecture, suite of tools Java
LingPipe [46] toolkit, API Java
MALLET [47] toolkit, API Java
NLTK [48] library Python
OpenNLP [49] library Java
Tawa (This paper) toolkit, libraries C
UIMA [50] architecture, middleware Java, C++

A number of further freely available systems that have been developed by the NLP research
community are based on a range of underlying architectures including those listed in Table 9.
For example, DKPro and ClearTK are two examples that use the UIMA framework architecture
for analysing unstructured information. Alternatively, some of the systems are primarily designed
around a core external library or libraries that can be called from an application. Often these systems
are not described as having an underlying architecture (for example, FreeLing, NLTK and OpenNLP in
the table). The two main approaches all of these systems use for text processing involve a rule-based
approach (either manually designed or automatically generated) and statistical. These systems also
predominantly process natural language text in a word-based manner.

What distinguishes the Tawa toolkit from most of these systems is threefold: firstly, the toolkit
is character-based; secondly, the design of the applications is based around an integrated
compression-based architecture; and thirdly, none of the toolkits in the table (apart from Tawa itself),
provide explicit support for compression-based applications. Tawa is also written with carefully
memory-managed C code for each object type and is designed to be memory efficient and fast.

Like the Tawa system, the LingPipe system also uses character language models but uses the noisy
channel model approach for various applications. Using a character or symbol-based approach means
that methods used for solving the tasks required for applications can be quite different to the traditional
word-based approach. For example, the Tawa toolkit for classification avoids the need for explicit
word-based feature extraction and simply processes all the characters in the text being classified.

The application of compression-based models to NLP has had a long history and one of the
main purposes of the Tawa toolkit is to make these models more easily available for developers to
use. In many cases, the applications implemented using these models have produced state-of-the-art
results. For example, PPM character based language models have been applied successfully to many
applications in NLP [6] such as language identification and cryptography [51] including various
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applications for automatically correcting words in texts such as OCR and word segmentation [8,9]
(also see Table 8 for a further selection of results).

Text mining and named entity extraction in Tawa can also be performed using character-based
language models using an approach similar to that used by Mahoui et al. [4] to identify gene function.
Bratko [52] have also used data compression models for text mining, specifically for spam filtering.
Witten et al. [10,11] have shown how text compression can be used as a key technology for text
mining. Here, character-based language modelling techniques based on PPM to detect sub-languages
of text instead of explicit programming are used to extract meaningful low-level information about
the location of semantic tokens such as names, email addresses, locations, URLs and dates. In this
approach, the training data for the model of the target text contains text that is already marked up
in some manner. A correction process is then performed to recover the most probable target text
(with special markup symbols inserted) from the unmarked-up source text. Yeates et al. [12] show how
many text mining applications can be recast as ‘tag insertion’ problems such as word segmentation
and identifying acronyms in text [53] where tags are re-inserted back into a sequence to reveal the
meta-data implicit in it. Teahan & Harper [17] describe a competitive text compression scheme which
also adopts this tag insertion model. The scheme works by switching between different PPM models,
both static and dynamic (i.e., that adapt to the text as it is being encoded). Tags are inserted to indicate
where the encoder has switched between models. Tag insertion problems, however, are just part
of a much broader class of applications encompassed by the noiseless channel model and therefore
possible using the Tawa toolkit. The toolkit diverges substantially from the tag insertion model
of Yeates et al. [12] (by allowing regular expressions and functions in the specification of both the
matching source sequence and corrected target sequence) and arguably also the noisy channel model
approach (for example, by making it easier to combine models using hybrid encoding methods or by
using preprocessing techniques to modify alphabets).

7. Conclusions and Future Work

A novel toolkit for modelling and processing natural language text has been described. (The toolkit
can also process general text not just natural language text and has been applied successfully to
the processing of the following types of textual data, for example: compression of source code,
bibliographic references, Unix terminal session transcriptions and executable program files; analysis of
complex system output including cellular automata and flocking simulations; and even the textual
transcription of bird song.) The underlying architecture is based on using an encoding approach:
that of characterising applications as a problem of searching for the best encoding of the target text
given the source text. The toolkit implements various types of compression models, as well as several
search algorithms, and various NLP applications. These compression-based models process the text
sequentially and base their predictions of the upcoming character on a fixed length finite context of
preceding characters. Experimental results have shown that these models are competitive against
alternative word-based approaches adopted by most other NLP systems.

Like the noisy channel model, the ‘noiseless channel model’ architecture adopted by the toolkit
models the text processing as sending a message down a communication channel. The design of the
toolkit adheres to two main principles—the communication process must be both lossless and reversible.
All information in the message is communicated without loss, and therefore any transformation of the
source text to the target text is done in such a way that the source text is recoverable. Unlike the noisy
channel model where the source text is unknown when it is decoded, the source text in the approach
adopted by the toolkit is known when it is encoded, therefore providing an opportunity that a more
effective encoding can be found more efficiently.

Future work will involve the application of this new model to further text processing problems
that have not yet been investigated fully such as POS tagging, named entity recognition, OCR and
machine translation. Also, other approaches similar to the joint source-channel model approach of
Haizhou et al. [54] for machine transliteration will also be investigated where the best encoding of
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both the source and target messages are generated simultaneously as this can be easily accommodated
using the toolkit’s architecture.
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